用户名: 密码: 验证码:
大面积铝合金局部放电微弧氧化及热阻隔膜层制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航空、航天事业的发展,轻量化设计已成为发展趋势。铝合金因具有较高的比强度,现已在航空航天领域得到了广泛应用。然而随着飞行速度提升而带来的严重气动加热问题,使得通常作为飞行器结构材料的铝合金已无法承受过高的热载荷,因此必须对其进行热防护处理。微弧氧化技术作为阀金属表面陶瓷膜原位生长技术,可以实现高结合强度、优良热稳定性的膜层制备,在热阻隔膜层制备方面具有广阔的前景。但因高电压、大电流以及能量效率低等方面的不足,使其无法实现对大尺寸工件的处理,从而限制了该技术的工业化应用。为了实现对大面积工件的微弧氧化处理,本文首先在常规微弧氧化技术的前提下,研究了电极间距离对微弧氧化放电的影响,提出了栅网阴极微距微弧氧化方法,有效地降低了氧化电压,增大了微弧氧化技术的处理能力。在此基础上详细地研究了约束阴极微弧氧化的局部放电特性,通过此方法的采用成功地摆脱了待处理工件尺寸受电源功率输出的限制,实现了大尺寸工件的微弧氧化处理。同时针对约束阴极大面积微弧氧化技术所涉及的放电、成膜特点,进行了非同步、非连续微弧氧化成膜特性研究。此外,为了调控膜层结构,进而改善膜层热阻隔效果,本文基于K_2ZrF_6在碱性溶液中形成带负电颗粒的作用机理,实现了K_2ZrF_6对Na2SiO3-KOH溶液体系所制备膜层的组织及性能调制。并借助扫描电镜(SEM)、X射线衍射仪器(XRD)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)等手段分析了膜层的组织和结构,利用同步热分析仪、热阻隔、高温氧化、热冲击及火焰烧蚀等测试研究了膜层的热物理性能。最终,提出了约束阴极大面积微弧氧化系统的设计与实施方案,为工业化应用提出了依据,并利用该装置在Na2SiO3-KOH-K_2ZrF_6溶液中,实现了尺寸为2000 mm×1000 mm×1 mm铝合金表面的热阻隔膜层制备。
     电极距离变化对微弧氧化放电特性的影响研究表明,在击穿放电发生之前溶液压降所占比例较小(不足百分之十),但当电极表面击穿放电发生后,电极间溶液压降所占比例大幅增加。因此,在微弧氧化放电成膜时,减少电极间距离能够有效的降低溶液压降,提高氧化工作时的能量效率。通过栅网结构阴极的采用,解决了微小电极距离所引起的气体排放及溶液交换问题,最终使得微距微弧氧化得以实现,有效的降低了微弧氧化电压。同时,氧化电压随电极距离变化研究揭示了电压随电极距离减小的非线性降低变化规律,分析认为这主要是因随电极距离的减小电极间电场分布由发散变为均匀所致。
     约束阴极微弧氧化放电行为研究结果表明,采用相对于阳极尺寸较小的阴极,能够使得电场较为集中的分布于临近阴极附近的阳极试样表面,且随电极间距离的减小,电场集中效果更为明显,从而很好的实现了大尺寸待处理工件表面的微弧氧化放电局部控制。阴极尺寸变化结果显示,随着阴极尺寸的增加,氧化电流随之增大,同时阴极下方成膜面积随之增大。但当电极间距离为5 mm阴极尺寸超过Φ20 mm时,由于“气罩效应”使得微小电极距离微弧氧化不能顺畅进行,而栅网结构阴极很好的解决了上述“气罩”问题,确保了约束阴极微距微弧氧化的实现。
     针对约束阴极对大尺寸工件进行处理时涉及的不同区域不同时序的微弧氧化成膜特性,所进行的非同步微弧氧化试验研究表明,当处理电压、时间达到先氧化区域的成膜条件时,不同区域的膜层在厚度、结构及性能上能够达到统一,且不同时序成膜界面处并未出现断裂及分层等现象。针对约束阴极微弧氧化工件表面某一确定位置处膜层的生长并非一次性完成特点,所进行的非连续氧化研究表明,非连续工作模式对膜层生长的影响并不明显,且对膜层显微结构影响不大,非连续氧化模式所形成的膜层与连续成膜方式的耐磨、耐腐蚀性能随工作电压变化具有相同的变化规律,均随电压的增加而提高。
     基于“K_2ZrF_6在碱性溶液中形成负电Zr(OH)4颗粒”的作用机理,通过K_2ZrF_6的添加,能够对Na2SiO3-KOH溶液中2024铝合金微弧氧化膜层的结构及性能进行调制。结果显示,K_2ZrF_6的引入增大了微弧氧化成膜速率,并对膜层结构产生了显著调制作用。含K_2ZrF_6溶液制得膜层的内外表面较为平整,膜层内大尺寸缺陷减少。EDX线扫描及XPS分析表明,添加K_2ZrF_6后所形成的膜层中有大量Zr元素出现,且其含量随距膜/基界面距离的增加而增加。XRD及TEM结果显示,K_2ZrF_6添加后制备的膜层中晶态氧化物含量降低、非晶态物质增多。膜层热分析测试表明,不同溶液中制备的膜层都具有很好的热稳定性,2024基体经微弧氧化处理后抗高温氧化性能都有所提高。隔热性能测试显示,经K_2ZrF_6调制后的膜层具有更加优良的热阻隔性能。
     为验证微距约束阴极微弧氧化对大尺寸工件处理的实用性,设计并制造了一套适用于工业标准尺寸铝板的大面积微弧氧化处理系统,在Na2SiO3-KOH-K_2ZrF_6溶液中,实现了尺寸为2 mm×1 m、厚度为1 mm的2024铝合金板的表面热阻隔膜层制备,为工业化生产提供了技术依据。
With the development of space and aircraft industries, more and more aluminum alloys have been used in the manufacturing aerocrafts. With the increase of aerocrafts’speed, the service environment becomes more and more harsh and temperature rise and thermal shock on aerocrafts surface are big problems. Consequently, aluminum alloys as frequent aerocraft structural material can not endure so high temperature circumstance, which substantially limits further their applications. Microarc oxidation (MAO), as a relatively new surface treatment method to produce thick, thermal stability, thermal protection and adherent coatings on rectifying metals has been developed rapidly in recent years. MAO is an anodizing process during which microdischarges generate dielectric breakdown of the anodic oxide film under high electric field. As a result, it is difficult to process large-scale workpiece in the suggested electrical regime. In this paper, as a novel technique, confined cathode microarc oxidation with shorter distance (SD-CCMAO) has been proposed to process workpiece with large area. The discharge characteristics of the SD-CCMAO have been investigated. In addition, in order to modulate the microstructure and then improve the thermal-resistance of MAO coatings fabricated on 2024 alloy, K_2ZrF_6 additive has been introduced into Na2SiO3-KOH based electrolyte. The modulation effect of K_2ZrF_6 addition on microstructure has been investigated by SEM, XRD, XPS and TEM respectively. Meanwhile, the thermal properties of MAO coatings formed on 2024 aluminum alloy in different electrolytes have been studied. Ultimately, a MAO system for processing workpiece with a large area has been designed and developed.
     A shorter electrode distance decreases the voltage drop, and eventually lowers the energy consumption. If the distance becomes too small, the MAO does not work. The novel technique using a grid cathode is employed to implement MAO with the shorter electrode distance. Both the voltage drop and the joule heat in the electrolyte are reduced. Consequently, the processing efficiency, from the viewpoint of energy consumption per unit coating volume, decreases by 25% if the electrode distance decreases from 50 mm to 5 mm. Meanwhile, the experimental result shows that the voltage changes non-linearly with the electrode distance. The non-linear behaviour is much dependent on relative dimension and electrode distance of anode-cathode system but slightly affected by applied anodizing current density and whether there is discharge on anode surface. This may be attributed to the divergence effect of electric field between two electrodes and well verified experimentally by the similar current density on the different parts of the anode if the distance is short. Our results also suggest that, a shorter electrode distance can reduce effectively anodizing voltage and, consequently, improve greatly the energy efficiency. This may speed up the industrial application of PEO technology.
     Confined cathode microarc oxidation (CC-MAO) has been investigated in Na2SiO3-KOH solution with industrial pure aluminums substrate materials. The effects of the electrode distance (ED) on working current, potential distribution, arcing voltage and so on have been focused on. The energy efficiency as a function of ED has also been evaluated. The results show the working current decreases with increasing ED with the same exposure area of confined cathode and anode. However, the working current increases with increasing ED if only the cathode is confined. It is attributed to different electrical field on the anode surface. With increasing ED, the electrical field beneath the confined cathode decreases while that far from the cathode increases. This leads to a different total working current. The arcing voltage increases with increasing ED while the effective voltage on anode surface nearly keeps constant. The thickness of the ceramic coating produced with a small ED is much higher than that with a larger ED. The energy consumption per unit volume of oxides by CCMAO indicates that smaller ED leads to higher energy efficiency. The influences of MAO voltage and treatment time during asynchronous MAO process on the oxide current, coating thickness and surface morphology have been studied. Experimental results show that, when the voltage keeps constant, the difference of MAO current between the naked sample and the local oxided sample decreases with treatment time increasing. For the voltage varying, at the beginning of MAO treatment, the difference of MAO current between the naked sample and the local oxided sample increases with the increase in voltage, and then decreases with the increase in treatment time. When the voltage is higher, the thicknesses of different regions are easy to get identical. Scanning electron microscopy shows that longer treatment time and higher voltage will contribute to more identical surface morphology of MAO coatings.
     Pure aluminum was treated by microarc oxidation in electrolyte containing Na2SiO3 and KOH at constant voltage mode. The effect of voltage on the properties of the coating prepared by discontinuous microarc oxidation was investigated. The phase composition and surface morphologies of MAO coatings were analyzed by XRD and SEM. The results show that, for the discontinuous MAO, the current drops to some extent at the interrupted point. MAO coatings fabricated by different modes show the similar thickness that increases with increasing oxide time. The processing mode has slight effect on the phase composition of MAO coatings, which are mainly composed ofγ-Al_2O_3 andα-Al_2O_3. The surface morphology of the MAO coatings is hardly affected by processing mode and no lamination is observed for the coatings prepared by discontinuous mode. The coatings fabricated by different modes possess the similar wear resistance and corrosion resistance. This discontinuous mode improves the control flexibility during micro-oxidation processes.
     Zr(OH)4 particles can be formed and negatively charged in alkaline solution with K_2ZrF_6 addition. Based on this, Zr-containing ceramic coatings were fabricated on 2024 aluminum alloy by microarc oxidation (MAO) using K_2ZrF_6 as a special additive in Na2SiO3-KOH base electrolyte. The results show that the K_2ZrF_6 addition can increase the micro-arc oxidation rate and significantly alter the structure of MAO coatings. Both the top surface and inner surface of MAO coatings fabricated in Zr-containing electrolyte become relatively smooth. Compared with the coating formed in Zr-free electrolyte, a large amount of Zr element is found in the coating formed in electrolyte with K_2ZrF_6 addition. Two main phases,γ-Al_2O_3 andα-Al_2O_3, are contained in Zr-free coating. In contrast, more amorphous phase is found in Zr-containing coating with reduced amount of crystalline alumina. Experimental results also demonstrate that Zr-containing coating exhibits higher heat resistance.
     To investigate the feasibility of industrial application, a MAO system for processing a 2024 alloy plate with the standard scale (2000 mm×1000 mm×1 mm) has been designed and manufactured. The Zr-containing coating on the whole large workpiece surface has been achieved successfully.
引文
[1]刘萝威,曹运红.高温树脂基复合材料在超音速导弹弹体上的应用[J].宇航材料工艺,2002,15:15-19.
    [2] Voevodin A A, Yerokhin A L, Lyubimov V V, et al. Characterization of Wear Protective Al-Si-O Coatings Formed on Al-Based Alloys by Microarc discharge Treatment[J]. Surface and Coatings Technology,1996,86-87:516-521.
    [3] Yerokhin A L, Nie X, Leyland A, et al. Plasma Electrolysis for Surface Engineering[J]. Surface and Coatings Technology,1999,122(2-3):73-93.
    [4] Chen Z T , Li G , Wu Z Q, et al. The Crack Propagating Behavior of Composite Coatings Prepared by PEO on Aluminized Steel during in Situ Tensile Processing[J]. Materials Science and Engineering: A , 2011 ,528(3):1409-1414.
    [5] Tian J, Luo Z Z, Qi S K, et al. Structure and Antiwear Behavior of Micro-Arc Oxidized Coatings on Aluminum Alloy[J]. Surface and Coatings Technology,2002, 154(1):1-7.
    [6] Zhang P , Nie X, Henry H, et al. Preparation and Tribological Properties of Thin Oxide Coatings on An Al383/SiO_2 Metallic Matrix Composite[J]. Surface and Coatings Technology,2010,205(6):1689-1696.
    [7] Chen F, Zhou H, Chen C, Xia Y J. Study on The Tribological Performance of Ceramic Coatings on Titanium Alloy Surfaces Obtained Through Microarc Oxidation[J]. Progress in Organic Coatings,2009,64(2-3):264-267.
    [8] Bloyce A, Qi P Y, Dong H, et al. Surface Modification of Titanium Alloys for Combined Improvements in Corrosion and Wear Resistance[J]. Surface and Coatings Technology,1998,107(2-3):125-132.
    [9] Nie X, Leyland A, Song H W, et al. Thickness Effects on The Mechanical Properties of Micro-Arc Discharge Oxide Coatings on Aluminium Alloys[J]. Surface and Coatings Technology,1999,116-119:1055-1060.
    [10] Arslan E, Totik Y, Demirci E E, et al. High Temperature Wear Behavior of Aluminum Oxide Layers Produced by AC Micro Arc Oxidation[J]. Surface and Coatings Technology,2009,204(6-7):829-833.
    [11] Barik R C, Wharton J A, Wood R J K, et al. Corrosion, Erosion and Erosion-Vorrosion Performance of Plasma Electrolytic Oxidation (PEO) DepositedAl_2O_3 Coatings[J]. Surface and Coatings Technology,2005,199(2-3):158-167.
    [12] Wasekar N P, Jyothirmayi A, Krishna L R, et al. Effect of Micro Arc Oxidation Coatings on Corrosion Resistance of 6061-Al Alloy[J]. Journal of Materials Engineering and Performance,2008,17(5):708-713.
    [13] Lv G H, Gu W C, Chen H, et al. Microstructure and Corrosion Performance of Oxide Coatings on Aluminium by Plasma Electrolytic Oxidation in Silicate and Phosphate Electrolytes[J]. Chinese Physics Letters,2006,23(12):3331-3333.
    [14] Zhao L C, Cui C X, Wang Q Z, et al. Growth Characteristics and Corrosion Resistance of Micro-Arc Oxidation Coating on Pure Magnesium for Biomedical Applications[J]. Corrosion Science,2010,52(7):2228-2234.
    [15] Han Y, Hong S H, Xu K W. Structure and in Vitro Bioactivity of Titania-Based Films by Micro-Arc Oxidation[J]. Surface and Coatings Technology,2003,168(2-3):249-258.
    [16] Jin F Y, Tong H H, Li J, et al. Structure and Microwave-Absorbing Properties of Fe-Particle Containing Alumina Prepared by Micro-Arc Discharge Oxidation[J]. Surface and Coatings Technology,2006,201(1-2):292-295.
    [17] Jian F L, Li W, Jia Y F. Micro Arc Oxidationi of S-Containing TiO_2 Films by Sulfur Bearing Electrolytes[J]. Journal of Materials Processing Technology,2009,209(2):762-766.
    [18] Wu X H, Jiang Z H, Liu H L, et al. Photo-Catalytic Activity of Titanium Dioxide Thin Films Prepared by Micro-Plasma Oxidation Method[J]. Thin Solid Films,2003,441(1-2):130-134.
    [19] Song W H, Ryu H S, Hong S H. Antibacterial Properties of Ag (or Pt)-Containing Calcium Phosphate Coatings Formed by Micro-Arc Oxidation[J]. Journal of Biomedical Materials Research Part A,2009,88A(1):246-254.
    [20] Curran J A, Clyne T W. Porosity in Plasma Electrolytic Oxide Coatings[J]. Acta Materialia,2006,54(7):1985-1993.
    [21] Curran J A, Clyne T W. The Thermal Conductivity of Plasma Electrolytic Oxide Coatings on Aluminum and Magnesium[J]. Surface and Coatings Technology, 2005,199(2-3):177-183.
    [22] Xin S G, Song L X, Zhao R G, et al. Composition and Thermal Properties of The Coating Containing Mullite and Alumina[J]. Materials Chemistry and Physics,2006,97(1):132-136.
    [23] Yerokhin A L, Shatrov A, Samsonov V, et al. Oxide Ceramic Coatings on Aluminium Alloys Produced by A Pulsed Bipolar Plasma Electrolytic Oxidation Process[J]. Surface and Coatings Technology,2005,199(2-3):150-157.
    [24] Monfort F, Berkani A, Matykina E, et al. Development of Anodic Coatings on Aluminium under Sparking Conditions in Silicate Electrolyte[J]. Corrosion Science,2007,49(2):672-693.
    [25] Yerokhin A L, Leyland A, Matthews A. Kinetic Aspects of Aluminium Titanate Layer Formation on Titanium Alloys by Plasma Electrolytic Oxidation[J]. Applied Surface Science,2002,200(1-4):172-184.
    [26] Padture N P, Gell M, Jordan E H. Thermal Barrier Coatings for Gas-Turbine Engine Applications[J]. Science,2002,296(5566):280-284.
    [27] Erickson L C, Hawthorne H M, Troczynski T. Correlations between Microstructural Parameters, Micromechanical Properties and Wear Resistance of Plasma Sprayed Ceramic Coatings[J]. Wear,2001,250:569-575.
    [28] Beele W, Marijnissen G, Lieshout A V. The Evolution of Thermal Barrier Coatings-Status and Upcoming Solutions for Today's Key Issues[J]. Surface and Coating Technology,1999,120-121:61-67.
    [29] Sobolev V V, Guilemany J M. Dynamic Processes during High Velocity Oxy Fuel Spraying[J]. International Materials Review,1996,41(1):13-32.
    [30] Nicholls J R, Lawson K J, Johnstone A, et al. Methods to Eeduce The Thermal Conductivity of EB-PVD TBCs[J]. Surface and Coatings Technology ,2002,151-152(1):383-391.
    [31] Jiang S M, Xu C Z, Li H Q, et al. High Temperature Corrosion Behaviour of A Gradient NiCoCrAlYSi Coating I: Microstructure Evolution[J]. Corrosion Science,2010,52(5):1746-1752.
    [32] Li W Z , Li Y Q, Wang Q M, et al. Oxidation of A NiCrAlYSi Overlayer with or without A Diffusion Barrier Deposited by One-step Arc Ion Plating[J]. Corrosion Science,2010,52(5):1753-1761.
    [33]郭红霞.铝及铝合金化学氧化研究[J].电镀与涂饰,2003,22(4):17-18.
    [34] Thompson G E, Wood G C. Porous Anodic Film Formation on Aluminium[J]. Nature,1981,290:230-232.
    [35] Fedorov V A, Velikosel'skaya N D. Physico-Chemical Characteristics of Hardened Surface Layer on Aluminum Alloys, Obtained under MicroarcOxidation[J]. Fizika i Khimiya Obrabotki Materialov (Russia),1990,4:57-62.
    [36] Güntherschulze A, Betz H . Die Elektronenstr?mung in Isolatoren Bei Extremen Feldst?rken[J]. Zeitschrift für Physik A Hadrons and Nuclei,1934,91(1-2):70-96.
    [37] Van T B, Sherman D B, Gerald P W. Mechanism of Anodic Spark Deposition[J]. American Ceramic Society Bulletin,1977,56(6):563-566.
    [38] Ikonopisov S. Theory of Electrical Breakdown during Formation of Barrier Anodic Films[J]. Electrochimica Acta,1977,22(10):1077-1082.
    [39]吴汉华,汪剑波,龙北玉,等.电流密度对铝合金微弧氧化膜物理化学特性的影响[J].物理学报,2005,54(12):5743-5478.
    [40] Krysmann W, Kurze P, Dittrich K H, et al. Process Characteristics and Parameters of Anodic Oxidation by Spark Discharge (ANOF)[J]. Crystal Research and Technology,1984,19(7):973-979.
    [41] Wirtz G P, Brown S D, Kriven W M. Ceramic Coatings by Anodic Spark Deposition[J]. Materials and Manufacturing Processes,1991,6(1):87-115.
    [42] Shlottig F, Schrechenbach J, Marx G. Preparation and Characterization of Chromium and Sodium Tantalate Layers by Anodic Spark Deposition[J]. Fresenius’Journal of Analytical Chemistry,1999,363(2):209-211.
    [43] Vijh A K. Sparking Voltages and Side Reactions during Anodization of Valve Metals in Terms of Electron Tunnelling[J]. Corrosion Science , 1971,11(6):411-417.
    [44] Albella J M, Montero I, Martínez-Duart J M. Electron Injection and Avalanche during The Anodic Oxidation of Tantalum[J]. Journal of The Electrochemical Society,1984,131(5):1101-1104.
    [45] Albella J M, Montero I, Martínez-Duart J M. Anodization and Breakdown Model of Ta2O5 Films[J]. Thin Solid Films,1985,125(1-2):57-62.
    [46] Freitas M B J G, Bulhoes L O S. Breakdown and Crystallization Processes in Niobium Oxide Films in Oxalic Acid Solution[J]. Journal of Applied Electrochemistry,1997,27(5):612-615.
    [47] Khaselev O, Weiss D, Yahalom J. Structure and Composition of Anodic Films Formed on Binary Mg-Al Alloys in KOH-Aluminate Solutions under Continuous Sparking[J]. Corrosion Science,2001,43(7):1295-1307.
    [48] Yerokhin A L, Snizhko L O, Gurevina N L, et al. Discharge Characterization in Plasma Electrolytic Oxidation of Aluminum[J]. Journal of Physiscs D: Applied Physics,2003,36(17):2110-2120.
    [49] Rakoch A G, Khokhlov V V, Bautin V A, et al. Model Concepts on The Mechanism of Microarc Oxidation of Metal Materials and The Control over This Process[J]. Protection of Metals,2006,42(2):158-169.
    [50] Dunleavy C S, Golosnoy I O, Curran J A, et al. Characterisation of Discharge Events during Plasma Electrolytic Oxidation[J]. Surface and Coatings Technology,2009,203(22):3410-3419.
    [51] Arrabal R, Matykina E, Hashimoto T, et al. Characterization of AC PEO Coatings on Magnesium Alloys[J]. Surface and Coatings Technology,2009,203(16):2207-2220.
    [52] Yao Z P, Jiang Y L, Jia F Z, et al. Growth Characteristics of Plasma Electrolytic Oxidation Ceramic Coatings on Ti-6Al-4V Alloy[J]. Applied Surface Science,2008,254(13):4084-4091.
    [53] Moon S, Jeong Y. Generation Mechanism of Microdischarges during Plasma Electrolytic Oxidation of Al in Aqueous Solutions[J]. Corrosion Science,2009,51(7):1506-1512.
    [54] Hussein R O, Nie X, Northwood D O, et al. Spectroscopic Study of Electrolytic Plasma and Discharging Behaviour during The Plasma Electrolytic Oxidation (PEO) Process[J]. Journal of Physics D: Applied Physics,2010,43(10):105203-105215.
    [55] Gu W C, Lv G H, Chen H, et al. Characterisation of Ceramic Coatings Produced by Plasma Electrolytic Oxidation of Aluminum Alloy[J]. Materials Science and Engineering: A,2007,447(1-2):158-162.
    [56] Sundararajan G, Krishna L R. Mechanisms and underlying The Formation of Thick Alumina Coatings through The MAO Coating Technology[J]. Surface and Coatings Technology,2003,167(2-3):269-277.
    [57] Krishna L R, Somaraju K R C, Sundararajan G. The Tribological Performance of Ultra-Hard Ceramic Composite Coatings Obtained Through Microarc Oxidation[J]. Surface and Coatings Technology,2003,163-164:484-490.
    [58] Xue W B, Deng Z W, Lai Y C, et al. Analysis of Phase Distribution for Ceramic Coatings Formed by Microarc Oxidation on Aluminum Alloy[J]. Journal of The American Ceramic Society,1998,81(5):1365-1368.
    [59] Mécuson F J, Czerwiec T, Henrion G, et al. Tailored Aluminium Oxide Layers by Bipolar Current Adjustment in The Plasma Electrolytic Oxidation (PEO) Process[J]. Surface and Coatings Technology,2007,201(21):8677-8682.
    [60] Xue W B, Deng Z W, Chen R Y, et al. Growth Regularity of Ceramic Coatings Formed by Microarc Oxidation on Al-Cu-Mg Alloy[J]. Thin Solid Films,2000,372(1-2):114-117.
    [61] Li J M, Cai H, Xue X N, et al. The Outward-Inward Growth Behavior of Microarc Oxidation Coatings in Phosphate and Silicate Solution[J]. Materials Letters,2010,64(19):2102-2104.
    [62] Monfort F, Berkani A, Matykina E, et al. A Tracer Study of Oxide Growth during Spark Anodizing of Aluminum[J]. Journal of The Electrochemical Society,2005,152(6):C382-C387.
    [63] Matykina E, Doucet G, Monfort F, et al. Destruction of Coating Material during Spark Anodizing of Titanium[J]. Electrochimica Acta , 2006 ,51(22):4709-4715.
    [64] Me′cuson F J, Czerwiec T, Belmonte T, et al. Diagnostics of An Electrolytic Microarc Process for Auminium Alloy Oxidation[J]. Surface and Coatings technology,2005,200(1-4):804-808.
    [65] Matykina E, Berkani A, Skeldon P, et al. Real-Time Imaging of Coating Growth during Plasma Electrolytic Oxidation of Titanium[J]. Electrochimica Acta,2007,53(4):1987-1994.
    [66] Matykina E, Arrabal R, Mohamed A, et al. Plasma Electrolytic Oxidation of Pre-Anodized Aluminium[J]. Corrosion Science,2009,51(12):2897-2905.
    [67] Tillous K, Toll-Duchanoy T, Bauer-Grosse E, et al. Microstructure and Phase Composition of Microarc Oxidation Surface Layers Formed on Aluminium and Its Alloys 2214-T6 and 7050-T74[J]. Surface and Coatings Technology,2009,203(19):2969-2973.
    [68] Guan Y J, Xia Y, Li G. Growth Mechanism and Corrosion Behavior of Ceramic Coatings on Aluminum Produced by Autocontrol AC Pulse PEO[J]. Surface and Coatings Technology,2008,202(19):4602-4612.
    [69] Nie X, Meletis E I, Jiang J C, et al. Abrasive Wear/Corrosion Properties and TEM Analysis of Al_2O_3 Coatings Fabricated using Plasma Electrolysis[J]. Surface and Coatings Technology,2002,149(2-3):245-251.
    [70]李华平,柴广跃,彭文达,等.微弧熔区的淬冷过程及其对氧化铝膜微观结构的影响[J].无机材料学报,2008,23(1):114-120.
    [71]王立世,潘春旭,蔡启舟,等.等离子体电解氧化过程中单个稳态放电的热效应研究[J].物理学报,2007,56(9):5341-5346.
    [72] Xin S G, Song L X, Zhao R G, et al. Properties of Aluminium Oxide Coating on Aluminium Alloy Produced by Micro-Arc Oxidation[J]. Surface and Coatings Technology,2005,199(2-3):184-188.
    [73] Xue W B, Wang C, Deng Z W, et al. Evaluation of The Mechanical Properties of Microarc Oxidation Coatings and 2024 Aluminium Alloy Substrate[J]. Journal of Physics: Condensed Matter,2002, 14(44):10947-10952.
    [74] Wang Y M, Lei T Q, Jiang B L, et al. Growth, Microstructure and Mechanical Properties of Microarc Oxidation Coatings on Titanium Alloy in Phosphate-Containing Solution[J]. Applied Surface Science,2004,233(1-4):258-267.
    [75] Meier S M, Cupta D K, Sheffler K D. Ceramic Thermal Barrier Coatings for Commercial Gas Turbine Engines[J]. Journal of metals. 1991, 43(3):50-53.
    [76] Schlichting K W, Vaidyanathan K, Sohn Y H, et al. Application of Cr3+ Photoluminescence Piezo-Spectroscopy to Plasma-Sprayed Thermal Barrier Coatings for Residual Stress Measurement[J]. Materials Science and Engineering: A,2000, 291(1-2)::68-77.
    [77]席晓光.微弧氧化技术述[J].表面技术,2007,36(4):66-67.
    [78] Chigrinova N M, Chigrinov V E, Kukharev A A. The Heat Protection of Highly Forced Diesel Pistons by Anodic Microarc Oxide Coating[J]. Protection of Metals,2000,36(3):269-274.
    [79] Chigrinova N M, Chigrinov V E, Kukharev A A. Formation of Coatings by Anodic Microarc Oxidation and Their Operatioin in Thermally-Stressed Assemblies[J]. Power Metallurgy and Metal Ceramcis,2001,40(5-6):213-220.
    [80] Chigrinova N M, Kuznechik O O, Chigrinov V E, et al. Influence of Heat-Shielding Coatings Formed by Means of Anodic Micro-Arc Oxidation on The Service Life Characteristics of Piston Engines[J]. Powder Metallurgy and Metal Ceramics,2005,44(5-6):304-307.
    [81] Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, et al. Production of Hard and Heat-Resistance Coatings on Aluminium Using A Plasma Micro-Discharge[J]. Surface and Coatings Technology,2000,123(1):24-28.
    [82] Butyagin P I, Khokhryakov Y V, Mamaev A I. Microplasma Systems for Creating Coatings on Aluminum Alloys[J]. Materials Letters , 2003 ,57(11):1748-1751.
    [83] Tan J C, Tsipas S A, Golosnoy I O, et al. A Steady-State Bi-Substrate Technique for Measurement of The Thermal Conductivity of Ceramic Coatings[J]. Surface and Coatings Technology,2006,201(3-4):1414-1420.
    [84] Curran J A, Clyne T W. Thermo-Physical Properties of Plasma Electrolytic Oxide Coatings on Aluminium[J]. Surface and Coatings Technology,2005,199(2-3):168-176.
    [85] Curran J A, Kalkanci H, Magurova Y, et al. Mullite-Rich Plasma Electrolytic Oxide Coatings for Thermal Barrier Applications[J]. Surface and Coatings Technology,2007,201(21):8683-8687.
    [86]王亚明,崔艳芹,侯正全. LY12铝合金微弧氧化/树脂填料复合涂层的组织与防热性能[J].金属热处理,2010,35(3):7-12.
    [87] Shen D J, Wang Y L, Nash P, et al. Microstructure, Temperature Estimation and Thermal Shock Resistance of PEO Ceramic Coatings on Aluminum[J]. Journal of Materials Processing Technology,2008,205(1-3):477-481.
    [88]张盈,薛文斌,蒋兴莉,等. 6061铝合金微弧氧化膜的组织及热震性能[J].材料热处理学报,2008,29(3):134-137.
    [89] Yao Z P, Jiang Z H, Wang F P, et al. Oxidation Behavior of Ceramic Coatings on Ti-6Al-4V by Micro-Plasma Oxidation[J]. Journal of Materials Processing Technology,2007,190(1-3):117-122.
    [90] Nedozorov P M, Kilin K N, Yarovaya T P, et al. Optical Properties of ZrO_2-Containing Anodic Coatings on Aluminum[J]. Journal of Applied Spectroscopy,2001,68(4):670-674.
    [91] Wu Z D, Yao Z P, Hua Z Z. Preparation and Structure of Microarc Oxidation Ceramic Coatings Containing ZrO_2 Grown on LY12 Al Alloy[J]. Rara Metals,2008,27(1):55-58.
    [92] LuoH H, Cai Q Z, Wei B K, et al. Study on The Microstructure and Corrosion Resistance of ZrO_2-Containing Ceramic Coatings Formed on Magnesium Alloy by Plasma Electrolytic Oxidation[J]. Journal of Alloys and Compounds,2009,474(1-2):551-556.
    [93] Luo H H, Cai Q Z, He J A, et al. Preparation and Properties of Composite Ceramic Coating Containing Al_2O_3-ZrO_2-Y_2O_3 on AZ91D Magnesium Alloy by Plasma Electrolytic Oxidation[J]. Journal of Alloys and Compounds,2009,9(6):1341-1346.
    [94] Yao Z P, Jiang Y L, Jiang Z H. Preparation and Structure of Ceramic Coatings Containing Zirconium Oxide on Ti Alloy by plasma electrolytic oxidation[J]. Journal of Materials Processing Technology,2008,205(1-3):303-307.
    [95] Mu W Y, Han Y. Characterization and Properties of The MgF2/ZrO_2 Composite Coatings on Magnesium Prepared by Micro-Arc Oxidation[J]. Surface and Coatings Technology,2008,202(17):4278-4284.
    [96] Han Y, Song J F. Novel Mg2Zr5O12/Mg2Zr5O12-ZrO_2-MgF2 Gradient Layer Coating on Magnesium Formed by Microarc Oxidation[J]. Journal of the American Ceramic Society,2009,92(8):1813-1816.
    [97] Matykina E, Arrabal R, Monfort F, et al. Incorporation of Zirconia into Coatings Formed by DC Plasma Electrolytic Oxidation of Aluminium in Nanoparticle Suspensions[J]. Applied Surface Science , 2008 , 255(5) :2830-2839.
    [98] Matykina E, R Arrabal, Skeldon P, et al. Incorporation of Zirconia Nanopartiles into Coatings Formed on Aluminum by AC Plasma Electrolytic Oxidation[J]. Journal of Applied Electrochemistry,2008,38(10):1375-1383.
    [99] Arrabal R, Matykina E, Skeldon P, et al. Incorporation of Zirconia Particles into Coatings Formed on Magnesium by Plasma Electrolytic Oxidation[J]. Journal of Materials Science,2008,43(5):1532-1538.
    [100] Snizhko L O, Yerokhin A L, Pilkington A, et al. Anodic Processes in Plasma Electrolytic Oxidation of Aluminium in Alkaline Solutions[J]. Electrochimica Acta,2004,49(13):2085-2095.
    [101] Patcas F, Krysmann W. Efficient Catalysts with Controlled Porous Structure Obtained by Anodic Oxidation under Spark-Discharge[J]. Applied catalysis A: General,2007,316(2):240-249.
    [102] Guan Y J, Xia Y. Correlation between Discharging Property and Coatings Microstructure during Plasma Electrolytic Oxidation[J]. Transactions of Nonferrous Metals Society of China,2006,16:1097-1102.
    [103]薛文斌,邓志威,陈如意.铝合金微弧氧化过程中能量转换的实验研究[J].表面技术,1997,26(3):21-23.
    [104] Timoshenko A V, Magurova Y V. Investigation of Plasma Electrolytic Oxidation Processes of Magnesium Alloy MA2-1 under Pulse Polarisation Modes[J]. Surface and Coatings Technology,2005,199(2-3):135-140.
    [105] Deng S H, Yi D Q, Gong Z Q, et al. Influence of Potential on The Structure and Properties of Microarc Oxidation Coating on Mg Alloy[J]. Anti-Corrosion Methods and Materials,2008,55(5):264-269.
    [106] Matykina E, Arrabal R, Skeldon P, et al. Optimisation of The Plasma Electrolytic Oxidation Process Efficiency on Aluminium[J]. Surface and Interface Analysis,2009,42(4):221-226.
    [107]钟涛生,蒋百灵,李均明.铝合金微弧氧化电流密度的临界条件研究[J].材料保护,2005,38(8):16-18.
    [108]严志军,朱新河,程东,等.一种低能耗微弧氧化方法和装置[P].中国,101092730,2007-12-26.
    [109]蒋百灵,张先锋,朱静铝.镁合金微弧氧化技术研究现状和产业化前景[J].金属热处理,2004,29(1):23-29.
    [110]沈德久,王玉林.微弧氧化摩擦式阴极.中国,2789279,2006-06-21.
    [111]王亚明,韩晓东,郭立新,等. LY12铝合金表面喷射式微弧氧化工艺研究[J].材料热处理学报,2009,30(2):121-124.
    [112]张永君.大面积工件表面的微弧氧化处理方法及其装置[P].中国, 101037782,2007-09-19
    [113]徐章跃,赵之良,何明修.一种大面积轻合金微弧氧化表面处理方法及装置[P].中国,101368286,2009-20-18.
    [114]杜希文,原续波.材料分析方法[M].天津:天津大学出版社,2006:131-132.
    [115]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998:135.
    [116] Guo H F, An M Z, Xu S, et al. Formation of Oxygen Bubbles and Its Influence on Current Efficiency in Micro-Arc Oxidation Process of AZ91D Magnesium Alloy[J]. Thin Solid Films,2005,485(1-2):53-58.
    [117] Han I, Choi J H, Zhao B H, et al. Micro-Arc Oxidation in Various Concentration of KOH and Structural Change by Different Cut Off Potential[J]. Current Applied Physics,2007,7(S1):e23-e27.
    [118] Mamaev A I, Chekanova Y Y, Ramazanova Z M. Parameters of Pulsating Microplasam Processes on Aluminum and Its Alloys[J]. Protect Metal,2000,36(6):659-662.
    [119] Albella J M, Montero I, Duart J M M, et al. Dielectric Breakdown Processes in Anodic Ta2O5 and Related Oxides[J]. Journal of Materials Science,1991,26(13):3422-3432.
    [120] Beverly R E, Campbell R N. Aqueous-Electrolyte Resistors for Pulsed Power Applications[J]. Review of Scientific Instruments,1995,66(12):5625-5629.
    [121] Gordienko P S, Panin E S, Dostovalov A V, et al. Voltammetric Characteristics of The Metal-Oxide-Electrolyte System at Electrode Polarization with Pulse Voltage[J]. Protection of Metals and Physical Chemistry of Surface,2009,45(4):487-493.
    [122] Rakoch A G, Khokhlov V V, Bautin V A, et al. Model Concepts on The Mechanism of Microarc Oxidation of Metal Materials and The Control over This Process[J]. Protection of Metals,2006,42(2):158-169.
    [123] Snizhko L O, Yerokhin A L, Gurevina N L, et al. Excessive Oxygen Evolution during Plasma Electrolytic Oxidation of Aluminium[J]. Thin Solid Films,2007,516(2-4):460-464.
    [124] Sioda R E. Electrolysis with Flowing Solution on Porous and Wire Electrodes[J]. Electrochimica Acta,1970,15(5):783-793.
    [125] Okubo T, Kodera T, Kondo K. Patterned Copper Plating Layer Thickness Made Uniform by Placement of Auxiliary Grid Electrode about Ball Grid Arrays[J]. Chemical Engineering Communications,2006,193(12):1503-1513.
    [126] Calabek M, Micka K, Baca P, et al. Influence of Grid Design on Current Distribution over The Electrode Surface in A Lead-Acid Cell[J]. Journal of Power Sources,2000,85(1):145-148.
    [127] Liu B, Zhang G L, Cheng D J, et al. Inner Surface Coating of TiN by The Grid-Enhanced Plasma Source Ion Implantation Technique[J]. Journal of Vacuum Science & Technology A,2001,19(6):2958-2962.
    [128] Suehiro J, Pethig R. The Dielectrophoretic Movement and Positioning of A Biological Cell Using A Three-Dimensional Grid Electrode System[J]. Journal of Physics D: Applied Physics,1998,31(22):3298-3305.
    [129] Shi Z M, Song G L, Atrens A. Influence of Anodising Current on The Corrosion Resistance of Anodised AZ91D Magnesium Alloy[J]. Corrosion Science,2006,48(8):1939-1959.
    [130] Kalkanc(?) H, Kurnaz S C. The Effect of Process Parameters on Mullite-Based Plasma Electrolytic Oxide Coatings[J]. Surface and Coatings Technology,2008,203(1-2):15-22.
    [131] Wei C B, Tian X B, Yang S Q, et al. Anode Current Effects in Plasma Electrolytic Oxidation[J]. Surface and Coatings Technology,2007,201(9-11):5021-5024.
    [132] Parfenov E V, Yerokhin A L, Matthews A . Frequency Response Studies for The Plasma Electrolytic Oxidation Process[J]. Surface and Coatings Technology,2007,201(21):8661-8670.
    [133] Srinivasan P B, Liang J, Blawert C, et al. Effect of Current Density on The Microstructure and Corrosion Behaviour of Plasma Electrolytic Oxidation Treated AM50 Magnesium Alloy[J]. Applied Surface Science , 2009 ,255(7):4212-4218.
    [134] Xue W B, Wang C, Li Y L, et al. Effect of Microarc Discharge Surface Treatment on The Tensile Properties of Al-Cu-Mg Alloy[J]. Matterial Letters,2002,56(5):737-743.
    [135]顾伟超,吕国华,陈华,等.管状铝质材料的等离子体电解沉积行为研究[J].物理学报,2007,56(4):2337-2341.
    [136] Gu W C, Lv G H, Chen H, et al. PEO Protective Coatings on Inner Surface of Tubes[J]. Surface and Coatings Technology,2007,201(15):6619-6622.
    [137] Zozulin A J, Bartak D E. Anodized Coatings for Magnesium Alloys[J]. Metal Finishing, 1994, 92(3):39-44.
    [138] Wang Y M, Jiang B L, Lei T Q. Dependence of Growth Features of Microarc Oxidation Coatings of Titanium Alloy on Control Modes of Alternate Pulse[J]. Material Letters,2004,58(12-13):1907-1911.
    [139] Moon S M, Pyun S I. The Formation and Dissolution of Anodic Oxide Films on Pure Aluminium in Alkaline Solution[J]. Electrochimica Acta,1999,44(14):2445-2454.
    [140]王亚明,雷霆权,蒋百灵,等. Na2SiO3-KOH-(NaPO3)6溶液中Ti6Al4V微弧氧化陶瓷膜研究[J].稀有金属材料与工程,2003,32(12):1041-1044.
    [141]王亚明,蒋百灵,郭立新,等.磷酸盐系溶液中钛合金微弧氧化涂层生长与组织结构[J].中国有色金属学报,2004,14(4):548-553.
    [142] Ghasemi A, Raja V S, Blawert C, et al. Study of The Structure and Corrosion Behavior of PEO Coatings on AM50 Magnesium Alloy by ElectrochemicalImpedance Spectroscopy[J]. Surface and Coatings Technology , 2008 ,202(15):3513-3518.
    [143] Barik R C, Wharton J A, Wood R J K, et al. Corrosion, Erosion and Erosion-Corrosion Performance of Plasma Electrolytic Oxidation (PEO) Deposited Al_2O_3 Coatings[J]. Surface and Coatings Technology,2005,199(2-3):158-167.
    [144] Wei T B, Yan F Y, Tian J. Characterization and Wear- and Corrosion-Resistance of Microarc Oxidation Ceramic Coatings on Aluminum Alloy[J]. Journal of Alloys and Compounds,2005,389(1-2):169-176.
    [145]陈飞,周海,万汉城,陈晨,吕反修.铝合金表面微弧氧化陶瓷层摩擦学性能的研究[J].材料加工工业,2006,35(24):40-42.
    [146] Polat A , Makaraci M , Usta M. Influence of Sodium Silicate Concentration on Structural and Tribological Properties of Microarc Oxidation Coatings on 2017A Aluminum Alloy Substrate[J]. Journal of Alloys and Compounds,2010,504(2):519-526.
    [147]郝建民,陈宏,张荣军,等.镁合金微弧氧化陶瓷层的耐蚀性[J].中国有色金属学报,2003,13(4):988-991.
    [148] Duan H P, Du K Q, Yan C W, et al. Electrochemical Corrosion Behavior of Composite Coatings of Sealed MAO Film on Magnesium Alloy AZ91D[J]. Electrochimica Acta,2006,51(14):2898-2908.
    [149]阎峰云,林华,马颖,范送岩.镁合金微弧氧化电极液电导率的研究[J].轻合金加工技术,2007,35(5):28-31.
    [150] Klapkiv M D, Nykyforchyn H M, Posuvailo M. Spectral-Analysis of Electrolytic Plasma in The Process of Synthesis of Aluminum-Oxide[J]. Material Science,1994,3(3):333-344.
    [151]来永春,邓志威,宋红卫,等.耐磨性微弧氧化膜的特性[J].摩擦学学报,2000,20(4):304-306.
    [152] Wei D Q, Zhou Y, Jia D C, et al. Effect of Applied Voltage on The Structure of Microarc Oxidized TiO_2-Based Bioceramic Films[J]. Materials Chenmistry and Physics,2007,104(1):117-182.
    [153]蒋百灵,吴国建,张淑芬,等.镁合金微弧氧化陶瓷层生长过程及微观结构的研究[J].材料热处理学报,2002,23(1):5-8.
    [154]王立世,潘春旭,蔡启舟,等.镁合金表面微弧氧化陶瓷膜的腐蚀失效机理[J].中国腐蚀与防护学报,2008,28(4):219-224.
    [155]蒋百灵,白力静,蒋永锋. LY12铝合金表面氧化铝陶瓷层的生长过程[J].中国有色金属学报,2001,11(S2):186-189.
    [156]吴汉华,于凤荣,李俊杰,等.铝合金微弧氧化陶瓷膜形成过程中的特性研究[J].无机材料学报,2004,19(3):617-622.
    [157] Gnedenkov S V, Khrisanfova O A, Zavidnaya A G, et al. Composition and Adhesion of Protective Coatings on Aluminum[J]. Surface and Coatings Technology,2001,145(1-3):146-151.
    [158]魏涛,雷廷权,周玉,等.陶瓷热障涂层的研究进展[J].宇航材料工艺,1997,3:1-4.
    [159] Shang W, Chen B Z, Shi X C, et al. Electrochemical Corrosion Behavior of Composite MAO/Sol-Gel Coatings on Magnesium Alloy AZ91D Using Combined Micro-Arc Oxidation and Sol-Gel Technique[J]. Journal of Alloys and Compounds,2009,474(1-2):541-545.
    [160]辛世刚,赵荣根,都徽,等.铝合金表面氧化锆等离子体电解氧化涂层的制备及形成机理研究[J].无机材料学报. 2009, 24(1):107-110.
    [161]许煜汾,范文元.陶瓷微滤膜分离Zr(OH)4悬浮液的研究[J].中国粉体技术,2000,6(s1):251-253.
    [162]辛世刚,宋力昕,赵荣根,等.微弧氧化Al-Si-O陶瓷涂层的结构与结合强度[J].无机材料学报,2006,21(2):493-498.
    [163] Wang Y M, Zhang P F, Guo L X, et al. Effect of Microarc Oxidation Coating on Fatigue Performance of Ti-Al-Zr Alloy[J]. Applied Surface Science,2009,255(20):8616-8623.
    [164]文磊,王亚明,周玉,等. LY12铝合金微弧氧化涂层组织结构对基体疲劳性能的影响[J].稀有金属材料与工程,2009,38(s2):747-750.
    [165] Ko Y G, Namgung S, Shin D H. Correlation between KOH Concentration and Surface Properties of AZ91 Magnesium Alloy Coated by Plasma Electrolytic Oxidation[J]. Surface and Coatings Technology,2010,205(7):2525-2531.
    [166] Gupta P, Tenhundfeld G, Daigle E O, et al. Electrolytic Plasma Technology: Science and Engineering-An Overview[J]. Surface and Coatings Technology,2007,201(21):8746-8760.
    [167] Wang Y L, Jiang Z H, Yao Z P. Microstructure, Bonding Strength and Thermal Shock Resistance of Ceramic Coatings on Steels Prepared by Plasma Electrolytic Oxidation[J]. Applied Surface Science,2009,256(3):650-656.
    [168] Matsumoto M, Kato T, Yamaguchi N, et al. Thermal Conductivity and Thermal Cycle Life of La_2O_3 and HfO_2 Doped ZrO_2-Y_2O_3 Coatings Produced by EB-PVD[J]. Surface and Coatings Technology,2009,203(19):2835-2840.
    [169]尹周澜,陈玮,李晋峰. F-对氧化铝物相转变及α-氧化铝显微结构的影响[J].硅酸盐通报,2007,26(4):640-644.
    [170]陈玮.α-Al_2O_3形成过程显微结构演变及其调控[D].长沙:中南大学,2010,34-35.
    [171] Chu M S, Wu S K. The Improvement of High Temperature Oxidation of Ti-50Al by Sputtering Al Film and Subsequent Interdiffusion Treatment[J]. Acta Materialia,2003,51(11):3109-3120.
    [172]姚忠平,姜兆华,郝国栋,等.高温氧化对钛合金微弧氧化陶瓷膜组成与结构的影响[J].材料科学与工艺,2008,16(1):23-25.
    [173] Xu Y J, Yao Z P, Jia F Z, et al. Preparation of PEO Ceramic Coating on Ti Alloy and Its High Temperature Oxidation Resistance[J]. Current Applied Physics,2010,10(2):698-702.
    [174] Gilbert A, Kokini K, Sankarasubramanian S. Thermal Fracture of Zirconia-Mullite Composite Thermal Barrier Coatings under Thermal Shock: An Experimental Study[J]. Surface and Coatings Technology,2008,202(10):2152-2161.
    [175] Leckie R M, Kr?mer S, Rühle M, et al. Thermochemical Compatibility between Alumina and ZrO_2-GdO3/2 Thermal Barrier Coatings[J]. Acta Materialia,2005, 53(11):3281-3292.
    [176] Wu K, Wang Y Q, Zheng M Y. Effects of Microarc Oxidation Surface Treatment on The Mechanical Properties of Mg Alloy and Mg Matrix Composites[J]. Materials Science and Engineering: A,2007,447(1-2):227-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700