Ti_3AlC_2陶瓷材料的SHS/PHIP制备工艺及其性能与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti_3AlC_2是一种新型的结构与功能一体化材料,兼有金属与陶瓷的双重特性,具有广阔的应用前景。但是用不同制备方法与合成工艺获得的Ti_3AlC_2块体材料在尺寸和性能上均有一定差异。本文在系统实验的基础上首次用自蔓延准热等静压(SHS/PHIP)法制备出了φ150mm的Ti_3AlC_2陶瓷块体材料,并且对该材料的相关性能与应用进行了深入研究。
     SHS/PHIP法具有节能、环保、低成本、高效率、合成与致密化能够一步完成和产物尺寸大等优点。本文通过具体实验确定了用SHS/PHIP法制备φ150mm的Ti_3AlC_2陶瓷块体材料的最佳工艺参数(成分配比为3Ti-1.5Al-1.8C、最佳预制坯相对密度为52%左右、压坯轴向压力为16.5MPa、预压力为1.5MPa、延迟时间为9s、高压压力为70MPa、高温保压时间为32s),并且分析了工艺参数对SHS/PHIP法制备Ti_3AlC_2陶瓷块体材料的影响。
     本文采用多种实验方法和分析测试手段,从实验和理论两方面具体地研究了用SHS/PHIP法制备出的大尺寸Ti_3AlC_2陶瓷块体材料的微观组织结构、力学性能、抗热震性能、机械加工性能、电性能、热性能、抗氧化性能。研究结果表明:用SHS/PHIP法制备出的大尺寸Ti_3AlC_2陶瓷的微观组织结构具有三元层状可加工碳化物的典型特征。它不但具有非常好的机械加工性能、高导电性和低热膨胀系数,还具有优异的力学性能、抗氧化性能和抗热震性。
     论文提出了用SHS/PHIP法制备出的Ti_3AlC_2陶瓷块体材料作为某设备用电刷材料的设想,以解决某设备在工作中存在电信号采集可靠性差、噪音大、存在“自燃”现象等问题。在自主搭建的模拟某设备工作的测试平台上,对Ti_3AlC_2陶瓷电刷应用的可行性进行了验证与分析。实验结果表明,Ti_3AlC_2陶瓷电刷具有较低的载流摩擦系数(小于0.1)、较小的载流磨损量(约为0.005mm~3/h)和稳定的滑动接触电压降。因此,从生产制造成本、可加工性、导电性、载流摩擦特性的角度考虑,用SHS/PHIP法制备出的Ti_3AlC_2陶瓷块体材料完全有可能成为某设备用电刷的候选材料。
     论文还提出了用SHS/PHIP法制备出的Ti_3AlC_2陶瓷块体材料作为电解Al隋性阳极材料的设想,以解决Al电解碳阳极在电解过程中温室气体排放量大、能耗大等环境问题。在自主搭建的小型电解槽内对Ti_3AlC_2惰性阳极的应用进行了可行性验证与分析。实验结果表明,Ti_3AlC_2惰性阳极在电解过程中具有较低和较为稳定的槽电压,并且可电解出金属Al。因此,从生产批量、材料尺寸、导电率、可加工性、槽电压的稳定性的角度考虑,用SHS/PHIP法制备出的Ti_3AlC_2陶瓷块体材料可以初步作为Al电解惰性阳极用候选材料。但从电解产品Al的纯度以及惰性阳极的耐蚀性的角度考虑,用Ti
     3AlC_2陶瓷块体材料作为Al电解惰性阳极的应用还需要进行深入的研究,特别是电解工艺参数的优化与电解腐蚀机理的问题。
Ti_3AlC_2 is a novel structural and functional material which combines the merits of both metals and ceramics.The unique combination of these properties makes Ti_3AlC_2 a candidate material in many diverse applications.However, Ti_3AlC_2 block material prepared by means of different preparation methods or synthesis processes possesses different size and shows different properties.In the paper,based on the systemic experiments,SHS/PHIP(Self-propagating High-temperature Synthesis/ Pseudo Hot Isostatic Pressing) was developed to prepareφ150mm Ti_3AlC_2 ceramics block material for the first time.
     SHS/PHIP has many advantages,such as environmental protection,energy conservation,low cost,high efficiency,simultaneous synthesis and densification. The optimal process parameters of Ti_3AlC_2 ceramics prepared by SHS/PHIP were determined as follows:the best component(3Ti-1.5Al-1.8C),the best relative density of perform(52%),the axial pressure(16.5MPa),the pre-load(1.5MPa), the time delay(9s),the high pressure(70MPa) and the pressure time(32s). Furthermore,the reasons why the process parameters have an effect on densification behaviors were analyzed on the basis of the experiments.
     The experimental and theoretical methods are applied to studying microstructure,mechanical properties,thermal schock resistance,machining property,electrical conductivity,hot property,and oxidation resistance.Research results show that microstructure of large size Ti_3AlC_2 ceramics prepared by SHS/PHIP has typical layered feature of ternary carbide compound.In addition to good workability,high conductivity and low thermal expansion coefficient,it has excellent mechanical properties,excellent oxidation resistance and excellent thermal shock resistance.
     Ti_3AlC_2 ceramics block material is proposed as a candidate to the electrical brush material of a model equipment in order to solve problems of unreliable electrical signal collection,working noise and self-combustion.Feasibility test with respect.to operation of Ti_3AlC_2 ceramic electrical brush was carded out at the self-designed testing equipment which simulated work condition.The experimental results show that Ti_3AlC_2 ceramic electrical brush has low current friction coefficient less than 0.1,low current wear capacity which is 0.005mm~3/h and stable contact drop.Allowing for such factors as production cost, machinability,electrical conductivity and current friction properties,Ti_3AlC_2 ceramics block material prepared by means of SHS/PHIP is capable of being a candidate to the electrical brush material of a model equipment.
     Ti_3AlC_2 ceramics block material by SHS/PHIP is proposed as a candidate to inert anode instead of carbon anode of Al electrolysis in order to reduce a lot of greenhouse gases discharge and energy consumption.Feasibility test with respect to application of Ti_3AlC_2 inert anode was performed in the self-designed electrolyzing cell.The experimental results show that Ti_3AlC_2 inert anode has low and stable cell voltage,and is able to electrolyze metal Al.Allowing for such factors as production cost,blank size,electrical conductivity,machinability and stability of cell voltage,Ti_3AlC_2 ceramics block material prepared by SHS/PHIP can be used as inert anode material of Al electrolysis.However,because of purity of product Al and erosion resistance of inert anode,the application of Ti_3AlC_2 inert anode should be studied further,especially mechanism of electrolytic erosion and the optimization of process parameter.
引文
[1]李华.Ti_3SiC_2陶瓷及其复合材料的制备和性能研究.中国科技大学博士学位论文.2004,5:2页
    [2]王晓辉.层状可加工陶瓷Ti_3AlC_2、Ti_2AlC的合成性能.中国科学院金属研究所博士学位论文.2003,6:4页
    [3]朱教群,梅炳初,陈艳林.三元层状碳化物Ti_3SiC_2的研究进展.材料科学与工程.2001,19(4):105-109页
    [4]A.T.Procopio,M.W.Barsoum,T.EI-Raghy.Characterization of Ti_4AlN_3.Matall Mater Trans.2000,31 A(12):333-337P
    [5]M.W.Barsoum.The M_(n+1)AX_n phase:A new class of solids;thermodynamically stable nanolaminates.Prog.Solid State Chem.2000,28:201-281P
    [6]M.Jean-Luc Loubet.Comportement tribologique d'une phase MAX:transition et effets d'échelle sur différents Ti_3SiC_2.L'école centrale de lyon these présentée devant.2004,9:23P
    [7]M.A.Barsoum,T.El-Raghy.The MAX Phases:Unique New Carbide and Nitride Materials.Am.Sci.2001,(89):334-343P
    [8]朱教群.三元层状碳化物Ti_3SiC_2的制备及性能研究.武汉理工大学博士学位论文.2003,6:3页
    [9]N.V.Tzenov,M.W.Barsoum.Synthesis and characterization of Ti_3AlC_2.J.Am.Ceram.Soc.2000,83(4):825-832P
    [10]刘红飞,余洪滔,刘海强,高闰丰,胡明杰.热力学稳定纳米层状陶瓷-M_(n+1)AX_n三元化合物.山东陶瓷.2005,28(5):26-31页
    [11]X.H.Wang,Y.C.Zhou.Microstructure and properties of Ti_3AlC_2 prepared by the solid-liquid reaction synthesis and simulation in situ hot pressing process.Acta.Marerialia.2000,50:3141-3149P
    [12]陈克新,郭俊明,葛振斌,周和平,郭小钧,宁晓山.燃烧合成热压烧结制备Ti_3AlC_2陶瓷.稀有金属材料与工程.2001,31(增刊1):20-23页
    [13]W.B.Zhou,B.C.Mei,J.Q.Zhu.Frabrication of high-purity ternary carbide Ti_3AlC_2 by spark plasma sintering(SPS) technique.Ceram.Infor.2006:1-4P
    [14]周卫兵,梅炳初,朱教群,洪小林.Ti_3AlC_2陶瓷材料的制备及性能研究.山东陶瓷.2003,26(4):3-5页
    [15]Y.W.Bao,X.H.Wang,H.B.Zhang,Y.C.Zhou.Thermal shock behavior of Ti_3AlC_2 from between 200℃ and 1300℃.J.Euro.Ceram.2005,25:3367-3374P
    [16]M.W.Barsoum,H.I.Yoo,I.K.Polushina.Electical conducetivity,thermopower,and Hall effect Ti_3AlC_2,Ti_4AlN_3,and Ti_2AlC.Phys.Rev.B.2000,62(15):10194-10198P
    [17]周卫兵,梅炳初,朱教群,洪小林.新型层状陶瓷Ti_3AlC_2的研究进展.江苏陶瓷.2003,36(3):12-14页
    [18]X.H.Wang,Y.C.Zhou.Sythesis and oxidation of bulk Ti_3AlC_2.Key.Eng.Mater.2002,224-226:785-790P
    [19]徐学文,李养贤,梅炳初,等.热压烧结Ti_3AlC_2材料在空气中的恒温氧化行为.中国科学E辑科学技术.2006,36(5):483-490页
    [20]D.B.Lee,S.W.Park.High temperature oxidation of Ti_3AlC_2 between 1173K and 1473K in air.Mater.Sci and Eng.2006(434 A):147-154P
    [21]周(韦华),翟洪祥,黄振莺,管明林.钛铝碳的高速摩擦特性及摩擦氧化行为.硅酸盐学报.2006,34(5):523-526页
    [22]H.X.Zhai,Z.Y.Huang,M.X.Ai.Tribophysical properties of polycrystalline bulk Ti_3AlC_2.J.Am.Ceram.2005,88(11):3720-3274P
    [23]孙志梅.Ti_3SiC_2的结构与性能研究.中国科学院金属研究所博士学位论文.2002:1-4、54页
    [24]M.A.Pietzka,J.C.Schuster.Summary of constitutional data on the aluminum-carbon-titanium system.J.phase Equilib.1994.15:392-400P
    [25]Y.C.Zhou,X.H.Wang,Z.M.Sun,S.Q.Chen.Electronic and structural properoties of the layered ternary carbide Ti_3AlC_2.J.Mater.Chem.2001,11:2335-2339P
    [26]Y.C.Zhou,Z.M.Sun.Electronic structure and bonding properties of layered machinable Ti_2AlC and Ti_2AlN ceramic.Phys.Rev.B.2000,61:12570-12573P
    [27]A.Nickel.Electronic structure of stoichiometric and non- stoichiometric TiC and TiN.Acade.Pre.Amster.1990:485P
    [28]X.M.Min,Y.Ren.Electronic structure and bonding properties of Ti_2AlC and Ti_3AlC_2.J.Wuhan University of Technology-Mater.Sci.Ed.2007,22(1):27-30P
    [29]M.W.Barsoum.Comment on "reaction layers around SiC particles in Ti:an electron microscopy study".Scripta.Mater.2000,43:285-286P
    [30]A.Zhou,C.A.Wang,Z.B.Ge,L.F.Wu.Preparation of Ti_3AlC_2 and Ti_2AlC by self-propagating high-temperature synthesis.J.Mater.Sci.Lett.2001.20(21):1971-1973P
    [31]X.H.Wang,Y.C.Zhou.Solid-liquid reaction synthesis of layered machinable Ti_3AlC_2 ceramics.J.Mater.Chem.2002,12(3):455-460P
    [32]M.Lipacinski,J.Puszynski,J.Lis.Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique.J.Am.Ceram.Soc.2001,84(12):3051-3053P
    [33]徐学文,朱教群,梅炳初,刘俊.Ti_3AlC_2的制备与性能进展.陶瓷研究与职业教育.2003,1(4):4-5、43-46页
    [34]Lipacinski.M,Puszynski.J,Lis.J.Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique.J.Am.Ceram.Soc.2001,84(12):3051-3053P
    [35]李小雷,周爱国,汪长安,等.自蔓延高温合成Ti_2AlC与Ti_3AlC_2及其反应机理.硅酸盐学报.2002,30(3):407-410页
    [36]郭俊明,陈克新,刘光华,周和平,宁小山.放电等离子(SPS)快速烧结可加工陶瓷Ti_3AlC_2.稀有金属材料与工程.2005,34(1):132-134页
    [37]Aiguo Zhou,Cyhang-an Wang,Yong Huang.A possible mechanism on synthesis of Ti_3AlC_2.Materials Science and Engineering A.2003,(352):333-339P
    [38]梅炳初,徐学文,朱教群,刘俊.Ti_3AlC_2的制备与微观结构.硅酸盐学报.2004,32(7):897-900页
    [39]Jiaoqun.Z,Bingchu M,Xuewen Xu,etal.Synthesis of high-purity Ti_3SiC_2and Ti_3AlC_2 by HP.J.Mater.Sci.Lett.2003,49:693-697P
    [40]Xiaohui W and Yanchun Z.Microstructure and prosperities of Ti_3AlC_2prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot press process.Acta Materialia.2000,50:3141-3149P
    [41]韩杰才,王华彬,杜善义.自蔓延高温合成的理论与研究方法.材料科学与 工程.1997,15(2):20-25页
    [42]傅正义.SHS技术研究进展-纪念SHS技术诞生三十周年.复合材料学报.2000,17(1):5-10页
    [43]A.G.Merzhanov.Solid Flames:Discoveries,Concepts and Horizons of Cognition.Conbust.Sci.Tech.1994,98:307-336P
    [44]A.G.Merzhanov.Self-Propagating High-Temperature Synthesis:Twenty Years of Search and Findings.Combustion and Plasma Synthesis of High-Temperature Materials.Edited by Z.A.Munir and J.B.Holt.1997:1-53P
    [45]J.Subrahmanyan,M.Vijakamar.Review:Self-Propagating High-Temperature Synthesis.J.Mater.Sci.1992,27:6249-6273P
    [46]张金咏.自蔓延高温合成的非平衡动力学及其对材料结构的影响.武汉理工大学博士学位论文.2002,6:1页
    [47]Stenphen D.Dunmead and Zuhair A.Munir.Temperature profile analysis in combustion synthesis:theory and background.J.Am.ceram.Soc.1992,75(1):175-179P
    [48]Makoto Sasaki and Takakazu Suzuki.Chemical vapor infiltration of silicon carbides using the SiCl_4-CH_4-H_2 reagent system.Y.Inter.J.SHS.1994,2(2):109P
    [49]Munir.Z A and Anselmi-Tamburini.U.Self-propagating exothermic reaction:the synthesis of high-temperature materials by combustion.Mater.Sci.Rep,1989,3:277-365P
    [50]S.D.Dunmead,Z.A.Munir.Temperature Profile Analysis in Combustion Synthesis:Ⅰ,Theory and Background.J.Am.Ceram.Soc.1992,75(1):175-179P
    [51]S.D.Dunmead,Z.A.Munir.Temperature Profile Analysis in Combustion Synthesis:Ⅱ,Experimental Observations.J.Am.Ceram.Soc.1992,75(1):180-188P
    [52]R.A.Cutler,K.M.Rigtrup,A.V.Virkar.Synthesis,Sintering,Microstructure and Mechanical Properties of Ceramics Made by Exothermic Reactions.J.Am.Ceram.Soc.1992,75(1):36-43P
    [53]李翀,赫晓东,朱春城,李庆芬.三元层状陶瓷Ti_3SiC_2的高温氧化行为.材料工程,2006(S1):168-172页
    [54]朱春城,赫晓东,曲伟.SHS工艺制备TiC-TiB2/Ni-Cu复合材料的性能.哈尔滨工业大学学报.2003,35(8):953-957页
    [55]A.G.Merzhanov,Shkiro.Solid flames:discoveries,concepts and horizons of cognition.Combust.Sci and Tech,1994,98:307-336P
    [56]MaximV Kuznetsov.Self-propagationg high temperature sythesis of barium-chrominm ferrites Li0.5Fe2.5-xCrxO4(0<x<2).J.Phys.D:Appl.Phys.1998,31:2883-2893P
    [57]王双喜,王健江.SHS技术在制备金属.陶瓷复合材料中的应用.机械设计与制造工程.1999,28(3):42-44页
    [58]李久荣.陶瓷-金属复合材料.冶金工业出版社,1995:23-50页
    [59]张金咏,傅正义,王为民.陶瓷.金属复合材料制备与研究.武汉工业大学学报.1999,21(2):10-13页
    [60]李志强.Al_2O_3/TiAl复合材料自蔓延高温合成研究.哈尔滨工业大学博士学位论文.2001.10:3-6页
    [61]B.V.Norozhilov.Nonlinear SHS Phenomena:Experiment,Theory,Numerical Modeling.Pure & Appl.Chem.1992,64(7):955-964P
    [62]S.Zhang,Z.A.Munir.Spin Combustion in the Nickel-Silicon System.J.Mater.Sci.1992,27:5789-5794P
    [63]J.Lee,A.Lee,C.Chen.Reverse Burning Phenomenon in Self-Propagating Hihg-Temperature Synthesis.J.Mater.Res.1998,13(6):1626-1630P
    [64]D.V.Strunin,A.G.Strunina,E.N.Rumanov et al.Chaotic Reaction Wave with Fast Diffusion of Activator.Phy.Lett.A.1994,192:361-363P
    [65]余石金,邹正光,何曾先.SHS过程中非线性结构及其影响因素.材料科学与工艺.2005,13(2):139-142页
    [66]ZuhairA.Munir.Synthesis of High Temperature Materials by Self-propagating Combustion Methods.Cera.Bull.1988,67(2):342-349P
    [67]I.P.Borovinskaya.Chemical Classes of the SHS Processes and Materials.Pure & App.Chem.1992,64(7):919-940P
    [68]A.P.Aldushin,A.G.Merzhanov.Gasless Combustion with Phase Transitions.Dokl.Akad.Nauk.SSSR.1997,236:1113-1136P
    [69]傅正义,王为民,王浩.SHS合成陶瓷过程中的金属液相.无机材料学报.1996,11(2):303-308页
    [70]M.Lakshmikantha,J.A.Sekhar.Analytical Modeling of the Propagation of a Thermal Reaction Front in Condensed Systems.J.Am.Ceram.Soc.1994,77(1):202-210P
    [71]A.G.Merzhanov.Structural Macrokinetics of SHS Processes.Pure & App.Chem.1992,64(7):941-953P
    [72]刘宜汉.镍铁尖晶石基惰性阳极制品的研究.东北大学博士学位论文.2004,2:1-8页
    [73]刘业翔.铝电解惰性阴极预科润湿性阴极的研究与开发进展.轻金属.2001,(9):26-31页
    [74]邱竹贤.铝工业应用新型电极材料的研究.轻金属.2001,(9):30-35页
    [75]L.Ewards and H.Kdvande.Inert anodes and other technology changes,and impact on present technology.J.Met.2001,53(5):28-32P
    [76]H.Kvande.Inert electrodes in Aluminum electrolysis cells.Ligh.Met.1999,34(5):369-376P
    [77]刘业翔.功能电极材料及其应用.长沙.中南大学出版社,1996:137-181页
    [78]N Jarrett.Production of aluminum and alumina.New York:Al-Ver.1987:188-207P
    [79]张敏,凤仪.电流对碳纳米管-银-石墨复合材料摩擦磨损性能的影响.摩擦学学报.2005,25(4):328-332页
    [80]L.Rapoport,N.Parkansky,I.Lapsker.Effect of transverse current injection on the tribological properties of WC cemented carbide.Wear.2001,249:1-5P
    [81]H.Zhao,G.C.Barber,J.Liu.Friction and wear in high speed sliding with and without electrical current.Wear.2001,249:409-414P
    [82]Konchits V V,Kim C K.Electric current passage and interface heating.Wear.1999,232:31-40P
    [83]翟洪祥,汪长安.Ti_3SiC_2材料在受电弓滑板中的应用研究.机车电传动.2003(增刊):44-45页
    [84]周(韦华).Ti_3AlC_2材料的载流摩擦磨损行为.硅酸盐学报.2006,2:1-3页
    [85]刘建军,朱波,王成果.电力机车受电弓滑板的技术现状.机械工程师.2003,(10):23-24页
    [86]松山晋作.集电装置材料的演变-受弓滑板和接触网导线.国外机车车辆 工艺.2003,5:2-6页
    [87]肖军,张鹏,杜云慧,刘汉武.电力机车受电弓滑板的发展.铁道机车车辆.2005,25(6):65-68页
    [88]候明,孙乐民,李爱娜.电力机车受电弓滑板现状.粉末冶金技.2006,24(3):223-226页
    [89]颜士钦,许少凡,凤仪,应美芳,王成福.碳纤维/金属基复合材料的制造及其在电接触材料中的应用.材料科学与工程.1998,16(1):72-74页
    [90]李政.碳纤维/镀铜石墨.铜复合材料组织与性能研究.合肥工业大学硕士学位论文.2004:8-9页
    [91]W.Y.Yang,G.C.Weatherly.A Study of Combustion Synthesis of Ti-Al Intermetallic Compounds.J.Mater.Sci.1996,31:3707-3713P
    [92]王学成,张小明,柴惠芬,等.燃烧合成TiAl合金结构转变动力学的端部淬火熄灭法分析.稀有金属材料与工程.1999,28(3):161-165页
    [93]B.M.Khusid,V.V.Kulebyskin,E.A.Bashtovaya.Mathematical and Experimental Modelling of Quenching a Self-Propagating High-Temperature Synthesis Process.Inter.J.Heat & Mass Transfer.1998,42:4235-4252P
    [94]顾建忠.自蔓延高温合成工艺及其应用.特殊钢.1994,15(3):6-12页
    [95]汪华林,李海林.自蔓延高温合成的材料与工艺.功能材料.1996,27(3):206-210页
    [96]张爱军.自蔓延高温燃烧合成TiC/Ti-Al基复合材料的研究.哈尔滨工业大学硕士学位论文.2001:34页
    [97]郭俊明,陈克新,葛振斌,等.碳含量对Ti-Al-C系燃烧合成Ti_3AlC_2粉体的影响.金属学报.2003,39(4):409-413页
    [98]郭俊明,陈克新,周和平.不同铝含量对Ti-Al-C系燃烧合成Ti_3AlC_2粉体的影响.复合材料学报.2004,21(3):59-62页
    [99]王子红,范群成,顾美传.Ti_2AlC可加工陶瓷自蔓延高温合成中显微组织演变.中国有色金属学报.2004,14(6):990-995页
    [100]孙晓东,梅炳初,袁润章,等.TiC-Al体系的燃烧合成反应.武汉工业大学学报.1997,19(1):8-11页
    [101]洪小林,梅炳初,朱教群,等.放电等离子烧结制备Ti_2AlC材料的研究.硅酸盐学报.2003,31(10):991-993页
    [102]朱春城.TiB_2-TiC的陶瓷基复合材料的自蔓延高温合成研究.哈尔滨工业大学博士学位论文,2004:59-60页
    [103]Y.C.Zhou,Z.M.Sun.Microstructure and mechanism of damage tolerance for Ti_3SiC_2 bulk ceramics.Mater.Res.Innovat.1999,2:360-363P
    [104]Wang Zidong,Hu Hanqi,Li QingChun.Reaction model in Al-Ti-C System,Acta.Metall.Trans.Sinica,1995,8(2):137-140P
    [105]葛振斌,陈克新,郭俊明,等.燃烧合成Ti_3AlC_2粉体的机理研究.无机材料学报.2003,18(2):427-432页
    [106]Y.C.Zhou,Z.M.Sun.Microstructure and mechanism of damage tolerance for Ti3SiC2 bulk ceramics.Mater.Res.Innovat.1999,2:360-363P
    [107]W.D.Kingery,H.K.Bowen,D.R.Uhlmann.陶瓷导论(第一版).北京:中国建筑工业出版社,1982:722页.
    [108]Cannon W R,Langdon T G.Creep of ceramics,part 1 mechanical characterstics.eristics.J.Mater.Sci.1983,18:1-50P
    [109]Radovic M,Barsoum M W,El-Raghy.Tensile creep of fine grained Ti_3SiC_2in the 1000-1200℃ temperature range.Acta.Mater.2001,49:4103-4112P
    [110]W.D.Kingery.Fractors affecting thermal shock resistance ceramics materials.J.Am.Ceram.Soc.1955,38(1):3-15P
    [111]D.P.H.hasselman.Elastic energy at fracture and surface energy as design criteria for thermal shock.J.Am.Ceram.Soc.1963,(46):535-540P
    [112]Tzenov N V,Barsoum M W.Synthesis and characteristic of Ti_3AlC_2.J.Amer.Ceram.Soc.2000,83(4):825-832P
    [113]I.M.Low.Vickers contact damage of micro-layered Ti_3SiC_2.J.Europ.Ceram.Soc.1998,18:709-713P
    [114]胡春风,包亦望,周延春.Ti_3SiC_2陶瓷的能量耗散机理.材料研究学报.2005,19(5):457-463页
    [115]Barsoum M W,H-I Yoo,I K Polushina.Electrical conductivity,thermopower,and hall effect of Ti_3AlC_2,Ti_4AlN_3 and Ti_3SiC_2.Phys.Rew.B.2000,62(15):10194-10198P
    [116]Y.S.杜洛金.固体物理性质导论.理论和测量.奚同庚,王梅华译.中国计量出版社.1987:284-304页
    [117]周(韦华).Ti_3AlC_2材料的载流摩擦磨损行为.北京交通大学硕士学位论文.2006,2:24页
    [118]Wang X H,Zhou Y C.Oxidation behavior of Ti_3AlC_2 powders in flowing.J.Mate.Chem.2002,12(9):2781-2785P
    [119]Xu Xue Wen,Li Yangxian,Zhu Jiaoqun,Mei Bingchu.High- temperature oxidation on behavior of Ti_3AlC_2 in air.Trans.Nonferrous Met.Soc.2006:869-873P
    [120]WANG X H,ZHOU Y C.Oxidation behavior of TiC-containing Ti_3AlC_2based materials at 500-900℃ in air.Mat.Res.Innovat.2003,7:381-390P
    [121]Barsoum M W.Oxidation of Ti_(n+1)AlX_n where n=1-3 and X is C,N,Part Ⅰ:Model.J.Electronchem.Soc.2001,148(8):544-550P
    [122]Barsoum M W.Oxidation of Ti_(n+1)AlX_n where n=1-3 and X is C,N,Part Ⅱ:Expimental results.J.Electronchem.Soc.2001,148(8):551-562P
    [123]O.Van der biet,J.Vleugels.Perspectives on the development of ceramic composites for cutting tool applications.Eng.Mater.2002,(206-213):955-960P
    [124]Elizabeth J Opila.Oxidation kinetics of chemically vapor-deposited SiC in wet oxygen.J.Am.Ceram.Soc.1991,74(1):109P
    [125]宋世谟,庄公惠,王正烈,等.物理化学.北京:高等教育出版社.1992.5:3页
    [126]Wang X H,Zhou Y C.Oxidation behavior of Ti_3AlC_2 at 1000-1400℃ in air.Corr.Sci.2003,45:891-907P
    [127]Thomas H A J,Steven R..Aluminum-Titanate-A literature review part Ⅱ:Engineering properties and thermal stability.Br.Ceram.Trans.J.1989,88:184P
    [128]徐刚,韩高荣.钛酸铝陶瓷材料在铝溶体中的抗热震行为及热膨胀特性的研究.铸造.2003,52(8):606-608页
    [129]Bobeth.M,Bischoff.E,Schumann.E,Rockstroh,Ruhle.M.Aluminum depletion profiles in.oxidaizad NiAl single-crystals.Corros.Sci.1995,37:657-670P
    [130]Beye.R.W.Gronsky.R.Novel phases in the oxidation of γ-titanium aluminum.Acta.Metal.Mater.1994,42:1373-1381P
    [131]Ikeda J A,Chiang Y M.Space charge segregation at grain boundaries in tiantium dioxide:(Ⅰ) relationship between lattice defect chemistry and space charge potenyial.J.Am.Ceram.Soc.1993,76:2437-2446P
    [132]Haulr R,Dumbgen G.Sauerstoff-selostdiffusion in rutilkristallen.J.Phy.Chem.Solids.1965,26(1):1-10P
    [133]Ikeda J A,Chiang Y M.Space charge segregation at grain boundaries in tiantium dioxide:(Ⅱ) model experiments.J.Am.Ceram.Soc.1993,76:2447-2454P
    [134]Langensiepen.R.A.,Tressler.R.E.,Howell.P.R..A preliminary study of precipitation in Ti~(4+)-doped polycrystalline aluminum.J.Mater.Sci.1983,18:2771-2776P
    [135]Liu.C,Huntz.A.M,Lebrun.J.L.Origin ang development of residual stresses in the Ni-NiO system-in situ studies at high temperature by X-ray diffraction.Mater.Sci.Eng.1993,160:113-126P
    [136]Barsoum.M.W.,T EI-Raghy.The MAX Phases:Unique New Carbide and Nitride Materials.Am.Scien.2001.89:334-343P
    [137]张敏.碳纳米管-银-石墨复合材料电磨损性能的研究.合肥工业大学硕士学位论文.2005:13页
    [138]Shinchi A,Imada Y,Honda F.Electric contact surface of Pd-plated metal in organic gas/air atmospheres.Wear.1999,230:78-85 P
    [139]刘毅斌.滑动点接触的摩擦磨损机理与试验研究.北京交通大学硕士学位论文.2005:18页
    [140]曹大力,石忠宁,徐长伟,杨少华,邱竹贤.铝电解用惰性阳极的研究进展.有色矿冶.2005,21(2):33-36页
    [141]赵群,邱竹贤.高技术陶瓷工业的顶级挑战-铝电解惰性阳极的研制.稀有金属材料与工程.2002,31(增刊1):528-531页
    [142]钱旭坤.Co-Ni-xNiFe2O4惰性阳极的制备与性能研究.哈尔滨工业大学硕士学位论文.2006:40页
    [143]柏跃磊.铝电解惰性阳极合金阳极材料的制备与性能测试.哈尔滨工业大学学士学位论文.2006:15页
    [144]石忠宁.铝电解惰性金属阳极和金属.氧化铝样机的研制与测试.东北大学博士学位论文.2004:37-38页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700