新型中空纤维陶瓷膜的制备科学研究与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷膜与有机聚合物膜相比,具有耐高温、耐化学腐蚀、机械强度高、孔径均匀分布窄、微观结构可控、使用寿命长等独特优点,可以满足特别苛刻的使用要求,在石油化工、化学工业、冶金工业、食品工业、环境工程、新能源等领域有着广泛的应用前景,因而日益受到重视。陶瓷膜技术的应用对节能减排和实现绿色生产,促进社会经济可持续发展具有重要的作用。虽然陶瓷膜及其分离技术在过去的二十年得到迅速的发展,但传统的陶瓷膜一般为平板或多通道管式膜,仍存在许多制约其发展的关键瓶颈,主要有:(1)膜的装填密度低,单位体积有效过滤面积小,分离效率低;(2)制造周期长,工艺过程复杂,制造成本高;(3)膜品种和功能单一,商品化陶瓷膜主要为Al2O3膜,无法满足纷繁复杂的应用需求。近年来,新型中空纤维构型陶瓷膜(外径<2mm)受到广泛关注,中空纤维陶瓷膜除具有传统的陶瓷膜本身优点以外,还具有装填密度大、单位体积膜有效分离面积大、节省原料、设备小型化、结构简单化等特点。溶液相转化法在中空纤维陶瓷膜制备中的应用,可实现通过一步成型制造具有非对称结构和自支撑成膜的复合陶瓷膜,有望大大提高膜分离性能、简化膜制备工艺和显著降低制造成本。因此,研究开发各种新型中空纤维陶瓷膜具有解决长期以来制约陶瓷膜技术发展的瓶颈的巨大潜力。但目前,中空纤维陶瓷膜的研究尚处于起步阶段,仍缺乏相转化法中空纤维陶瓷膜制备与应用相关基础研究。
     为推动中空纤维陶瓷膜的产业化应用,本课题以Y2O3稳定ZrO2(YSZ)为膜材质,进行了相转化法中空纤维陶瓷膜制备技术研究,发展了相应的中空纤维膜结构与性能表征技术(第二章);制备了具有梯度多孔结构的低成本堇青石中空纤维陶瓷微滤膜(第三章)和不同微观结构低成本、高渗透性的莫来石中空纤维陶瓷膜(第四章);将相转化法应用于微管陶瓷膜燃料电池(CMFC)的NiO/YSZ中空纤维阳极制备,发展了以氧化还原稳定的(La0.75Sr0.25)Cr0.5Mn0.5O3 (LSCM)和具有良好化学稳定性的(Pr0.5Nd0.5)0.7Sr0.3MnO3-δ(PNSM)为阴极的微管CMFC,其中温性能可达到实用化水平(第五章)。本论文工作取得的主要成果和创新点归纳如下:
     1.非对称YSZ中空纤维陶瓷膜制备研究
     YSZ陶瓷具有机械强度高和优异的耐腐蚀性能等,是重要的陶瓷膜材料之一。但目前还未见商品化的全YSZ非对称(复合)陶瓷膜,其原因在于需采用粒径大于10μm的YSZ粉制备膜支撑体,烧结温度高(≥1600℃),将导致膜制造成本显著提高。因此一般采用YSZ微粉(<1.5μm)在Al2O3支撑体上制备分离膜层的方法获得YSZ/Al2O3复合陶瓷膜,但两者热膨胀系数差别大,且Al2O3的耐腐蚀性能(尤其是耐碱腐蚀性能)相对较差,将影响陶瓷膜的使用寿命和性能。本工作采用相转化法,通过干/湿法纺丝一步成型和一次高温烧成制备了非对称的YSZ中空纤维陶瓷膜。系统研究了铸膜浆料固含量、芯液和外凝固浴组成等对YSZ中空纤维陶瓷膜制备过程中相转化过程和相应的膜微观结构与性能的影响,以期为相转化法中空纤维陶瓷膜的微观结构与性能调控提供相关制备科学研究基础。研究表明,浆料YSZ含量、芯液和外凝固浴组成变化都可明显改变分相动力学条件,形成不同微观结构的中空纤维陶瓷膜。
     铸膜浆料中YSZ含量增大,导致粘度提高,将抑制分相过程。以水为芯液和外凝固浴,当浆料YSZ含量为50%时,中空纤维膜呈现典型的三明治结构,即中间为海绵状多孔层,而内外两侧为小指孔结构层;固含量为60%-65%时,形成具有外部海绵状层和内部大指孔结构的陶瓷膜。固含量的增大也明显提高了烧结后陶瓷膜海绵状层的致密度,使膜抗弯强度增大而纯水通量降低。
     芯液与聚合物的溶解度参数值差越大,芯液的胶凝能力越强,湿膜越容易通过瞬时分相形成指孔结构和致密的内皮层。芯液中加入溶剂N-甲基吡咯烷酮(NMP)后,其胶凝能力明显下降,湿膜内部分相过程受到抑制,倾向于形成多孔结构的内表面,且从外部产生的指孔将更易向内部扩展;芯液中NMP含量越高,膜孔隙率和外皮层平均孔径越大,膜的纯水渗透通量越高,尤其是NMP含量达到90vol%以上时,可形成高度非对称结构的YSZ中空纤维膜,大的指孔可贯穿至内表面开口,内表面呈高度多孔结构,从而显著降低了膜的渗透阻力。采用纯NMP为芯液制备的YSZ中空纤维膜,经1320℃保温5h烧结后,其外表分离层平均孔径为0.58μm,纯水通量高达16.34 m3/(m2-h-bar),为以纯水作芯液时的3.91倍。芯液中NMP含量增大时,YSZ中空纤维膜孔隙率的增大和大指孔的形成也相应明显降低了其抗弯强度。
     以弱胶凝剂一乙醇代替强胶凝剂一水作为外凝固浴,并以水为芯液,可成功制备高渗透性多孔YSZ中空纤维陶瓷膜。制备的YSZ膜呈现特殊的高度非对称结构,主要由外部薄的海绵状多孔分离层和大的指孔结构形成的支撑层构成,且其内表面比外表面更为多孔和具有更大的平均孔径。中空纤维陶瓷膜的微观结构对其渗透阻力具有极其重要的影响,与水相比,以乙醇为外凝固浴时制备的YSZ中空纤维膜,其纯水渗透通量显著提高,表现出更低的流体渗透阻力;在1350-1400℃保温4h烧烧结后,其外表分离层平均孔径为0.18-0.25μm,表现高的纯水渗透通量和抗弯强度,分别为2.27-4.30m3/(m-h-bar)和154.5-216.4 MPa,远高于管式陶瓷膜。
     本工作以90%-100%NMP溶液为芯液或以乙醇为外凝固浴制备的具有外分离层结构和高度非对称的YSZ中空纤维陶瓷膜特别适用于微滤分离过程及用作超滤或纳滤膜支撑体等。
     2.低成本堇青石中空纤维陶瓷微滤膜的制备研究
     堇青石陶瓷的低膨胀和优异抗热震性能使其可用于抗热冲击场合应用。堇青石原料主要以廉价而丰富的粘土等矿物原料合成,已实现大规模工业化生产,因而价格低廉。本实验室曾以堇青石为原料,成功开发出性能良好的多通道管式堇青石陶瓷膜微滤膜。由于堇青石原料价格和膜烧结温度都低于Al2O3和YSZ陶瓷膜,使得同类膜的整体制造成本显著降低,但其仍由传统工艺制备,过程复杂,周期长,需经多次高温烧成。
     为进一步降低堇青石膜制造成本和提高其渗透性能,本工作以工业级堇青石微粉为原料,通过溶液相转化法制备了非对称梯度多孔堇青石中空纤维陶瓷膜。研究表明,堇青石粉体粒径分布对相转化成膜过程动力学及膜微观结构有重要影响,粒径增大将阻碍指孔结构的形成。以d50为7.8μm的堇青石粉体为原料时,分相过程未发生明显的粘性指进现象,制备的堇青石中空纤维膜主要由内部不规则大孔层结构和外部海绵状细孔层结构构成。本工作重点研究了烧结温度对堇青石中空纤维陶瓷膜微观结构、孔隙率和孔径分布、纯净水和氮气渗透性、弯曲强度及热膨胀性能等的影响。实验结果表明,合适的烧结温度是制备高性能陶瓷膜的重要条件。在1360℃保温2h烧结制备的堇青石中空纤维微滤膜,其分离层最可几孔径约0.38μm,表现出高的纯水和氮气渗透性能,分别达到6.14m3·m-2·h-1·bar-1和782.4 m3·m-2·h-1·bar-1(透膜压差为1bar),远大于孔径相近的管式陶瓷微滤膜;弯曲强度和线性热膨胀系数分别为76.5MPa和2.39×10-6℃-1。本工作表明,通过溶液相转化法,可采用平均粒径大的工业级堇青石粉体为原料通过一步成型制备非对称的多孔堇青石中空纤维陶瓷微滤膜,从而显著降低陶瓷膜的制造成本,制备的堇青石中空纤维膜完全可用于高温废气处理和水处理。
     3.高渗透性低成本莫来石中空纤维陶瓷膜的制备研究
     莫来石陶瓷具有高温抗蠕变、高温强度和断裂韧性高、低热膨胀系数和耐腐蚀等性能,常用于高温抗热震多孔陶瓷(陶瓷膜)的制备。莫来石原料一般采用高温(≥1900℃)电熔法或软化学法合成,产量低和成本高。因此,采用先合成莫来石粉体,再进行陶瓷膜制备的工艺路线将不利于降低膜的制造成本。近年来,以天然矿物为主要原料的低成本新型陶瓷膜的制备与应用研究日益受到关注。采用粘土等矿物为主要原料通过原位反应烧结制备多孔莫来石陶瓷,不但可降低制造成本,还可形成针状晶体,有利于提高莫来石陶瓷的机械强度和抗热震性能
     本工作基于工业领域对低成本、高性能和功能多样化陶瓷膜的应用需求,以廉价的天然矿物高岭土和Al(OH)3为主要原料,AlF3和V2O5为添加剂,通过相转化法和原位固相反应烧结相结合制备不同微观结构的高渗透性非对称莫来石中空纤维陶瓷膜,并探讨了特殊的针状莫来石结构的形成机理与过程。研究表明,在坩埚密闭条件下于1400℃保温2.5h烧结,可获得接近纯的莫来石相,莫来石中空纤维膜为两层非对称结构,外层为薄的柱状莫来石多孔层,而厚的内层则由均匀分布的针状莫来石晶体交错织构而成,呈现高度多孔性结构,针状莫来石晶体长径比可达到25以上;未密闭烧结时,除形成莫来石主晶相外,还存少量的刚玉相,形成的莫来石晶体为不规则形状,未有针状莫来石晶体形成,制备的莫来石中空纤维膜为梯度多孔结构。EDS组成分析表明制备的针状莫来石表现出明显的化学组成非均匀分布现象,针状莫来石边缘部分富Al(Al/Si=3.47),中心部分富硅(Al/Si=2.38),对应的Al2O3含量范围为66wt%-74wt%。
     交错连结的高长径比针状莫来石晶体的形成,可显著提高陶瓷膜孔隙率和渗透性。1400℃保温2.5h烧结时,密闭和末密闭条件于制备的针状莫来石中空纤维陶瓷膜的孔隙率分别可达到68.4%和53.6%,氮气渗透通量分别可达到1.82×104m3·m-2·h-1和1.75×103m3·m-2·h-1(操作压力为1.0bar),远高于常用的管式陶瓷膜。研究表明,密闭条件下制备的莫来石中空纤维膜非常适用于高温烟尘废气的处理和用作膜接触反应器等,而未密闭条件下制备的莫来石膜可用于大规模的水处理应用和用作复合陶瓷膜支撑体等。
     4.中温中空纤维CMFC的制备研究
     中空纤维(微管)CMFC同时具有管式和板式电池的优点,强度高,启动和稳定时间快,单位体积有效电极面积大,体积电流密度高,热稳定性好,易于实现高温密封和连接等,代表了固体氧化物燃料电池(SOFC)的一种新的发展方向。为实现阳极支撑的微管陶瓷膜燃料电池(CMFC)的产业化应用,开发高性能微管阳极制造技术和探寻化学稳定性好及中温下具有良好的电化学性能的阴极材料是极其重要的工作。文献报道的微管阳极通常采用传统的塑性坯料挤压成型工艺制备,所获得的阳极管一般为对称结构,管壁厚,阳极阻力大。
     本工作将相转化法应用于NiO/YSZ中空纤维阳极的制备,并在采用真空辅助的浸渍涂覆技术制备致密的YSZ电解质薄膜(10μm)的基础上,分别发展了基于氧化还原稳定的LSCM和具有良好化学稳定性的PNSM为阴极的微管CMFC,其中前者单电池在850℃、800℃和750℃时的最高功率密度分别可达到513 mW/cm2、408 mW/cm2和278 mW/cm2,后者单电池在800℃、700℃和600℃时的最高功率密度分别为459 mW/cm2、325 mW/cm2和172 mW/cm2。考虑到本工作制备的微管电池外径≤1.30 mm,成堆后电池将具有极高的电极面积/体积比值和高的功率输出,因此,以LSCM和PNSM基阴极制备的微管CMFC中温性能已接近实用化水平,可用于高功率输出的小型电池堆制造,用作小型可移动电源,如汽车辅助电源、无线通讯设备电源等。
Ceramic membranes are known to be superior to polymeric counterparts due to some special advantages, such as better thermal, chemical and mechanical resistances, narrow pore size distribution, controllable microstructure, long service life and little pollution to the environment, and could be used in very harsh environments. Actually, increasing attention has been paid to ceramic membranes in the past twenty years, and ceramic membranes are nowadays widely used in various fields, including petrochemical industry, chemical industry, metallurgical industry, food industry, environmental engineering, new energy resources and etc. Therefore, ceramic membranes and related separation technologies could play an important role in promoting energy saving, emission reduction and green production, and are very propitious to sustainable development of social economy. However, there are still many obstacles for the further development of traditional planar and tubular ceramic membranes, such as following:(1) low packing density, small active area/volume ratio and thus low separation efficiency; (2) long manufacturing time and complex process, leading to high cost; (3) single product and function. The existing porous ceramic membranes for separation are mainly made of Al2O3 material, and could not meet the requirements for some special applications. Ceramic hollow fiber membranes have recently attracted considerable attention, due to the high active area/volume ratio provided by its high packing density and less material consumption. With the application of ceramic membranes in hollow fiber configuration, the separation equipments can be miniaturized and simplified. Ceramic hollow fiber membranes are commonly fabricated by the phase inversion method in one step, and exhibit self-supported asymmetric structure and high permeability. The application of phase inversion method simplifies the fabrication process of ceramic membranes and could greatly reduce the production cost. Therefore, the development of hollow fiber ceramic membranes has the potential to eliminate the bottleneck problems, which has hindered the development of ceramic membrane technology for a long time.
     In order to advance the industrial applications of ceramic hollow fiber membranes, the research on the preparative technology of yttria-stabilized zirconia (YSZ) hollow fiber membranes by phase inversion was conducted in our work, and characterization technologies for the prepared membranes have also been developed (Chapter two). The cost-effective cordierite hollow fiber membrane with graded porous structure was fabricated successfully by phase inversion method and using coarse industrial cordierite powder as raw material (Chapter three). The low-cost mullite hollow fiber membrane with high porosity and high permeability was also developed by the combination of phase inversion method and in-situ reaction sintering technique (Chapter four) so as to obtain preferred microstructures for special applications. In the end, we have developed the micro-tubular ceramic membrane fuel cell (CMFC) with redox stable (La0.75Sr0.25)Cr0.5Mn0.5O3 (LSCM) and chemical stable (Pr0.5Nd0.5)0.7Sr0.3MnO3-δ(PNSM) as cathode, respectively, and the phase inversion technique was applied to fabricate the NiO-YSZ hollow fiber anode (Chapter five). The main achievements and innovations in this dissertation are summarized as follows:
     1. Research on the preparative technology of asymmetric YSZ hollow fiber membranes
     YSZ is one of the widely used materials for ceramic membranes because of its high mechanical strength, favorable chemical stability and competitive price, and can be used in liquid filtration with much better alkali durability than other ceramic membranes, e.g. Al2O3 membrane. However, pure YSZ composite membrane is rare at the market. This is mainly because of very high sintering temperature (≥1600℃) of YSZ membrane supports made of YSZ powders with an average particle size more than 10μm, and consequent high fabrication cost.
     Asymmetric YSZ hollow fiber membranes were prepared by the phase inversion method in one step in this work, based on the dry/wet spinning process. The influences of process parameters, including solid content of suspension, composition of internal and external coagulants, on the microstructure and properties of YSZ hollow fiber membranes were investigated systematically in order to effectively control the microstructure and properties for various applications. Results show that all these process parameters have significant influence on the kinetics conditions of phase inversion and thus the microstructure of the YSZ hollow fiber membranes.
     The increase of YSZ content in suspensions would increment the viscosity, and inhibits the phase inversion behavior. The prepared YSZ hollow fiber membrane shows a typical sandwich structure, i.e. sponge-like structure layer in the middle, and finger-like structure layer at the inner and outer regions, when the suspension has a solid content of 50 wt% and using water as the internal and external coagulants. As the solid content is increased up to 60%-65%, the membranes are composed of thick sponge-like structure at the outer side and finger-like structure at the inner side. Also, the increase of solid content obviously enhances the density of the sponge-like structure layer, and consequently results in higher bending strength but lower pure water permeability.
     The coagulation power of coagulant can be characterized by the difference of solubility parameters between coagulant and polymer. Larger difference means stronger coagulation power of coagulant. Strong coagulant would lead to rapid precipitation to form finger-like structure and dense skin layer. The addition of solvent NMP into the internal coagulant decreases its coagulation power and thus the precipitation rate in the inner region. This would lead to porous inner surface and facilitate the finger-like pores originated from the outer side to extend to the inner side. Moreover, higher content of NMP in internal coagulant contributes to higher porosity of the membrane and larger pore size of the outer skin layer, which accordingly increases the pure water permeability of the YSZ hollow fiber membrane. When the internal coagulant contains more than 90% NMP, a highly asymmetric structure can be obtained with large finger-like pores extending to the inner surface and the formation of highly porous inner surface. This special microstructure is beneficial for reducing the fluid resistance and increasing the permeability of porous hollow fiber ceramic membranes. The YSZ hollow fiber membrane shows an average pore size of 0.58μm when prepared with pure NMP as internal coagulant and sintered at 1320℃for 5h. The corresponding pure water flux could reach up to 16.34 m3/(m2·h·bar), which is about 2.91 times higher than that prepared using water as internal coagulant. The increase in porosity and the formation of large finger-like pores at higher NMP content would reduce the bending strength of the membranes.
     Highly permeable porous yttria-stabilized zirconia (YSZ) hollow fiber membranes can be successfully prepared as ethanol instead of water was used as the external coagulant. The prepared YSZ hollow fiber membranes show a special asymmetric structure with an outer-skinned separation layer, highly porous inner surface and sub-layer composed of long and large finger-like pores, and the inner surface shows higher porosity and larger mean pore size. The microstructure has significant effect on the fluid resistance and permeability of the prepared membranes. The YSZ hollow fiber membrane prepared with ethanol as the external coagulant shows much lower fluid resistance, compared with the one using water as the external coagulant. Results show that YSZ hollow fiber membranes with high permeability and high bending strength can be obtained using ethanol as the external coagulant and by controlling the sintering temperature. The outer-skinned YSZ hollow fiber membranes show a pure water flux of 2.27 to 4.30 m3·m-2·h-1·bar-1 and a bending strength of 154.5 to 201.7 MPa when sintered between 1350 and 1400℃, both of which are much higher than the tubular membrane.
     The present work shows that porous YSZ hollow fiber membranes with highly asymmetric microstructure and outer active layer could be obtained with 90-100vol% NMP as internal coagulant or ethanol as external coagulant. The prepared membranes are suitable to be used for microfiltration and as supports for composite membranes.
     2. Elaboration of asymmetric porous cordierite hollow fiber membrane for microfiltration
     Cordierite is one of the most popular ceramic materials for its interesting properties such as good thermal and chemical durability, low thermal expansion coefficient. This makes it particularly suitable to be applied at high temperature where a good thermal shock resistance is required.In our previous work, tubular cordierite membranes have been developed. The cordierite membranes were confirmed to be cost-effective since the material cost and the sintering temperature of cordierite ceramics are much lower than those of A12O3 and YSZ. However, to the best of our knowledge, little work has been done to develop cordierite hollow fiber membrane for microfiltration.
     Asymmetrical porous cordierite hollow fiber membranes have been successfully prepared by a combined phase inversion and sintering method, using industrial grade cordierite powders as raw material. The particle size of cordierite powders has significant influence on the microstructure of the hollow fiber membranes. Cordierite hollow fiber membranes with the inner macro-void structure and the outer thin sponge-like structure can be obtained when cordierite powder with larger particle size (d50=7.8μm) was used. This special structure is ideal for the actual application of cordierite hollow fiber membranes. But the hollow fiber derived from cordierite powder with smaller particle size (d50=1.6μm) shows large finger-like structure. The sintering temperature has significant effect on the microstructure, porosity and pore size distribution, gas permeability, bending strength and thermal expansion of the hollow fiber membranes prepared with cordierite powder of d50=7.8μm. The porous cordierite hollow fiber membrane shows a nitrogen flux of 745 m3/(m2-h-bar), bending strength of 76.5 MPa, and LTEC of 2.39×10-6℃-1 sintered at 1360℃for 2h, and the probable pore size of its outer separation layer is about 0.38μm. This work demonstrates that the graded porous ceramic hollow fiber membrane for micro-filtration can be prepared using industrial grade cordierite powder with large particle size. The prepared cordierite hollow fiber membrane will be particularly ideal for the treatment of hot waste gas at high temperatures and the treatment of waste water, etc.
     3. Research on the formation of highly permeable mullite hollow fiber membrane
     Mullite is an important material for thermal shock resistant porous ceramic at elevated temperatures, because of its favorable properties, such as high creep resistance, high strength and fracture toughness at high temperature, low thermal expansion and excellent corrosion resistance. In particular, the formation of acicular mullite grains could increase the porosity, mechanical strength and thermal shock resistance of porous mullite ceramic. Therefore, in this work, highly permeable asymmetric mullite hollow fiber membranes with different microstructure were prepared by the combination of phase inversion and in-situ reaction sintering technique. The natural mineral kaolin and Al(OH)3 were used as the main raw materials, and AIF3 and V2O5 as additives. The mechanism and reaction process for the formation of the special acicular mullite structure were investigated in detail. The hollow fiber membranes sintered at 1400℃for 2.5h in closed crucible shows a nearly pure mullite phase, and consists of two different layers:the outer thin layer composed of prismatic mullite grains, and the inner thick and highly porous layer composed of inter-connected acicular mullite grains with aspect ratio more than 25. For the membrane sintered at the same temperature without closed crucible, the main crystalline phase is mullite accompanied by a small quantity of corundum. The synthesized mullite is in irregular form and no acicular crystal was observed. In this case, the prepared mullite hollow fiber membrane shows a three-layered graded porous structure with decreasing pore size towards the outer side, which is resulted from different precipitation rate. EDS analysis show that large acicular mullite grains exhibit a non-uniform composition across the grain with Si-rich core(Al/Si=2.38) and Al-rich rims (Al/Si=3.47), which corresponds to 66-74 wt% Al2O3.
     The formation of inter-connected acicular mullite with high aspect ratio could significantly increase the porosity and gas permeability of the hollow fiber membrane. The membranes sintered at 1400℃for 2.5h with and without closed crucible exhibit a high porosity of 68.4% and 53.6%, and high nitrogen flux 1.82×104 m3·m-2·h-1 and 1.75×103 m3·m-2·h-1, respectively, which are much higher than those for commonly- used tubular ceramic membranes. Results show that the acicular mullite hollow fiber membrane sintered in closed crucible is ideal to be applied in the treatment of dust-containing waste gas at elevated temperature and used as membrane contactor for chemical reactions, etc., and that the mullite membrane sintered without crucible can be used for the treatment of waste water and gas in large scale and as support for composite hollow fiber membranes. The preparation method developed in this work could reduce the manufacturing cost of ceramic membrane drastically, and facilitate the formation of mullite hollow fiber membranes with different microstructure to meet requirements for various applications.
     4. Research on the hollow fiber CMFC
     Hollow fiber (micro-tubular) CMFC possesses many desirable advantages over conventional planar and tubular systems, including high mechanical strength, high electrode area per unit volume and high volume current density, a superior tolerance for thermal stress, more facile sealing, high feasibility for rapid start-up and shut-down operations, as well as rapid response to load variation, and becomes a new development tendency of SOFC. The micro-tubular anodes were often prepared by a traditional plastic extrusion process. The anode derived from this method usually has symmetric structure with large wall thickness which results in a large resistance in the anode side during cell operations.
     In this research, the phase inversion method was applied to prepare the NiO/YSZ hollow fiber anode, and thin YSZ electrolyte membrane (10μm) was then deposited on the pre-sintered anode by a vacuum-assisted dip-coating technique. Based on this, we developed the micro-tubular CMFCs based on the redox stabe LSCM cathode and chemical stable PNSM cathode, respectively. The former shows peak power densities of 513,408 and 278 mW/cm2 at 850,800 and 750℃, respectively, while the latter exhibits peak power densities of 459,325 and 172 mW/cm2 at 800,700 and 600℃, respectively. In view of the small diameter of the prepared single cells (≤1.30 mm), the resultant hollow fiber CMFC stacks would have high electrode/volume ratio and thus high power output, and could meet the practical requirements of IT-CMFC based on YSZ electrolyte. The anode-supported hollow fiber CMFC is an excellent candidate for smaller scale applications such as auxiliary power units for automobile and power sources for portable wireless devices, etc.
引文
[1]A.J. Burggraaf, L. Cot, Fundamentals of Inorganic Membrane Science and Technology [M], Amsterdam:Elsevier,1996.
    [2]徐铜文,膜化学与技术教程[M],合肥:中国科学技术大学出版社,2003.
    [3]J. Zhou, X. Zhang, Y. Wang, et al. Elaboration and characterization of tubular macroporous ceramic support for membranes from kaolin and dolomite [J], J Porous Mater,2010,17:1-9.
    [4]董应超,新型低成本多孔陶瓷分离膜的制备与性能研究[D],中国科学技术大学博士学位论文,2008.
    [5]徐南平,刑卫红,赵宜江,无机膜分离技术及应用[M],北京:化学工业出版社,2003.
    [6]Y. Liu, X. Tan, K. Li. SrCe0.95Yb0.05O3-a (SCYb) hollow fibre membrane: Prepar-ation, characterization and performance [J], J. Membr. Sci.2006,283:380-385.
    [7]詹世景,朱雪峰,王卫平,等.Ni-BaCeo.6Zro2Ndo.2O3-δ金属陶瓷双相膜的氢渗透性与稳定性[J],催化学报,2009,30(10):986-990.
    [8]Z. P. Shao, W. S. Yang, Y. Cong, H. Dong, J. H. Tong, G. X. Xiong, Investigation of the per-meation behaviour and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3 oxygen membra-ne [J], J. Membr. Sci.2000,172:177-181.
    [9]A.C. van Veen, M. Rebeilleau, D. Farrusseng, C. Mirodatos, Studies on the perfor-mance stability of mixed conducting BSCFO membranes in medium temperature oxygen permeation [J], Chem. Commun.2003,32:32-36.
    [10]H. Wang, Y. Cong, W.S. Yang, Oxygen permeation study in a tubular Ba0.5Sr0.5-Co0.8Fe0.2O3 oxygen permeable membrane [J], J. Membrane Sci.2002,210:259-263.
    [11]Li S, Jin W, Xu N, Shi J. Synthesis and oxygen permeation properties of La0.6Sr0.4Co0.2Fe0.8O3-δ membranes [J]. Solid State Ionics,1999,124:161-170.
    [12]V. V. Kharton, A. A.Yaremchenko, A.V. Kovalevsky, E.N. Naumovich, P.F. Kerko, Perovs-kite-type oxides for high-temperature oxygen separation membranes [J], J. Membr. Sci.1999, 69:163-167.
    [13]周健儿,张小珍,胡学兵,等.莫来石陶瓷超滤膜的制备与表征[J].人工晶体学报,2009,38(5):1179-1183.
    [14]C. C. Wei, K. Li. Preparation and Characterization of a Robust and Hydrophobic Ceramic Membrane via an Improved Surface Grafting Technique [J], Ind. Eng. Chem. Res.2009,48: 3446-3452.
    [15]方大儒,中空纤维陶瓷膜的制备研究,中国科学技术大学硕士学位论文[D],2009.
    [16]C. C. Wei, Oi Yee Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fibre membranes-One step fabrication process [J], J. of Membr. Sci.2008,320:191-197.
    [17]Lee K H, Kim Y M. Asymmetric hollow inorganic membranes [J]. Key Eng. Mater.,1992, 61/62:17-22.
    [18]Benjamin F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes [J], J. Membr. Sci.2009,328(1):134-140.
    [19]C. C. Wei, K. Li, Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells [J], Ind. Eng. Chem. Res.2008,47:1506-1512.
    [20]J. Li, H. Qi, Y. Shi, Applications of titania and zirconia hollow fibers in sorptive microextraction of N,N-dimethylacetamide from water sample [J], Analytica Chimica Acta, 2009,651:182-187.
    [21]R. Yuan, X. Fu, X. Wang, P. Liu, L. Wu, Y. Xu, X. Wang, Z. Wang, Template Synthesis of Hollow Metal Oxide Fibers with Hierarchical Architecture [J], Chem. Mater.2006,18(19): 4700-4705.
    [22]L. Xu, H. K. Lee, Zirconia Hollow Fiber:Preparation, Characterization, and Microextraction Application [J], Analytical Chemistry,2007,79(14):5241-5248.
    [23]V. Maneeratana, W. M. Sigmund, Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based precursor [J], Chemical Engineering Journal,2008,137: 137-143.
    [24]Dan Li,Younan Xia, Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning [J], Nano Lett.,2004,4(5):933-938.
    [25]W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, J. C. Nino, Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems [J], J. Am. Ceram. Soc.,2006,89(2):395-407.
    [26]Y. Zhang, J. Li, Q. Li, L. Zhu, X. Liu, X. Zhong, J. Meng, X. Cao, Preparation of CeO2-ZrO2 ceramic fibers by electrospinning [J], Journal of Colloid and Interface Science,2007,307: 567-571.
    [27]T. Suzuki, T. Y., Y. Fujishiro, M. Awano, Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature [J], Journal of Power Sources,2006,160: 73-77.
    [28]X. Tan, S. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes [J], Journal of Membrane Science,2001,188:87-95.
    [29]S. Loeb, S. Sourirajan. High flow porous membranes for separating water from saline solutions[P]. USP:3 133 132,1964-05-12.
    [30]S.P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morphology of PVDF hollow fibre membranes [J], J. Membr. Sci.,1998,150:75-85.
    [31]S. Koonaphapdeelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fibre membrane [J], J. Membr. Sci.2007,291:70-76.
    [32]左丹英.溶液相转化法制PVDF微孔膜过程中的结构控制及其性能研究[D].浙江大学博士学位论文,2005
    [33]Z. Li, C. Jiang, Investigation of the Dynamics of Poly(ether sulfone) Membrane Formation by Immersion Precipitation [J],Journal of Polymer Science:Part B:Polymer Physics,2005,43: 498-510.
    [34]杨永强,PPESK中空纤维超滤膜、纳滤膜的研究.大连理工大学博士学位论文[D],2006.
    [35]C. Barth, M.C. Gon(?)alves, A.T.N. Pires, J. Roeder, B.A. Wolf, Asymmetric polysulfone and polyethersulfone membranes:effects of thermodynamic conditions during formation on their performance [J], J. Membr. Sci.2000,169:287-299.
    [36]J. Kim, Y. Kim, T. Kanamori, H. Lee, K. Baik, S. Kim, Vitrification Phenomena in Polysulfone/NMP/Water System [J], J. Appl. Poly. Sci.,1999,71:431-438.
    [37]Reuvers A.J., Van den Beg J.W.A., Smolders C.A., Fomation of membranes by means of immersion precipitation. Part I. A model to deseribe mass transfer during immersion precipitation [J]. J. Membr. Sci.,1987,34(1):45-65.
    [38]Reuvers A.J., Smolders C.A., Formation of membranes by means of immersion Precipitation. Part II 2. The mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water [J], J. Membr Sci.,1987,34(1):67-86.
    [39]陆茵.PVDF相转化成膜机理及制膜规律研究[D],浙江大学博士学位论文,2003.
    [40]王连军,李怒广,江成璋,PES制膜体系凝胶时间的研究.膜科学与技术[J],2001,21(3):16-20
    [41]王连军,李怒广,江成璋,PES制膜体系亚层形成机理的研究[J],膜科学与技术,2001,21(1):4-10
    [42]N. Leblanc, D. Le Cerf, C. Chappey, M. Metayer, G. Muller Influence of solvent and non-solvent on polyimide asymmetric membranes formation in relation to gas permeation [J], Separation and Purification Technology 22-23 (2001) 277-285.
    [43]M. L. Yeow, Y. T. Liu, K. Li, Isothermal Phase Diagrams and Phase-Inversion Behavior of Poly(vinylidene fluoride)/Solvents/Additives/Water Systems [J], Journal of Applied Polymer Science,2003,90:2150-2155.
    [44]富海涛,杨大令,张守海,,杨永强,王宏琳,蹇锡高,非溶剂添加剂对聚芳醚砜酮复合膜气体渗透性能的影响[J],膜科学与技术,2007,27(5):22-26.
    [45]何涛,江成璋,聚醚讽微孔膜制备中非溶剂添加剂作用研究[J],膜科学与技术,1998,18(3):43-48.
    [46]李战胜,江成璋,非溶剂添加剂对PES/NMP铸膜液性质的影响[J].膜科学与技术,2001,21(5):1-6.
    [47]L. Shi, R. Wang, Y. Cao, D. T. Liang, J. H. Tay, Effect of additives on the fabric-cation of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes [J], J. Membr. Sci.315 (2008) 195-204.
    [48]B. Torrestiana-Sanchez, R.I. Ortiz-Basurtoa E. Brito-De La Fuente, Effect of nonsolvents on properties of spinning solutions and polyethersulfone hollow fiber ultrafiltration membranes [J], Journal of Membrane Science 152 (1999) 19-28.
    [49]L. Shi, R. Wang, Y. Cao, C. Feng, D. T. Liang, J. H. Tay, Fabrication of poly-(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes [J], Journal of Membrane Science 305 (2007) 215-225
    [50]J. Kim, K. Lee, Effect of PEG additive on membrane formation by phase inversion [J], Journal of Membrane Science 138 (1998) 153-163.
    [51]Z. Xu, F. A. Qusay, Effect of Polyethylene Glycol Molecular Weights and Concentrations on Polyethersulfone Hollow Fiber Ultrafiltration Membranes [J], Journal of Applied Polymer Science,2004,91:3398-3407.
    [52]J. S. Kang, Y. M. Lee, Effects of Molecular Weight of Polyvinylpyrrolidone on Precipitation Kinetics During the Formation of Asymmetric Polyacrylonitrile Membrane [J], Journal of Applied Polymer Science,2002,85:57-68.
    [53]D. Wang, K. Li, W.K. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes [J], J. Membr. Sci.163 (1999) 211-220.
    [54]李战胜,李怒广,汪成璋,浸入凝胶法聚合物形成机理的研究现状[J].膜科学与技术,2002,22(2):29-36.
    [55]Lin D. J., Chnag C. L., Huang F. M., Cheng L. P., Effet of salt additive on the formation of microporous Poly(vinylidene fluoride) membranes by Phase inversion from LiClO4/Water/DMF/PVDF system [J]. Polymer,2003,44:413-422.
    [56]J. Yan, W. W. Y. Lau, Effect of internal coagulant on morphology of polysulfone hollow fiber membranes. I [J],Separation Science and Technology,1998,33(1):33-55.
    [57]D. Yu, W. Chou, M. Yang, Effect of draw ratio and coagulant composition on polyacrylonitrile hollow fiber membranes [J], Separation and Purification Technology 52 (2006) 380-387.
    [58]C. Liu, R. Bai, Preparing highly porous chitosan/cellulose acetate blend hollow fibers as adsorptive membranes:Effect of polymer concentrations and coagulant compositions [J], Journal of Membrane Science 279 (2006) 336-346.
    [59]A. Xu, A. Yang, S. Young, D. deMontigny, P. Tontiwachwuthikul, Effect of internal coagulant on effectiveness of polyvinylidene fluoride membrane for carbon dioxide separation and absorption [J], J. Membr. Sci.311 (2008) 153-158.
    [60]T. Chung, X. Hu, Effect of Air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers [J], Journal of Applied Polymer Science,1997,66:1067-1077.
    [61]K. C. Khulbe, C. Y. Feng,T. Matsuura, D. C. Mosqueada-Jimenaez, M. Rafat, D. Kingston,R. M. Narbaitz, M. Khayet, Characterization of Surface-modified Hollow Fiber Polyethersulfone Membranes Prepared at Different Air Gaps [J], Journal of Applied Polymer Science,2007, 104:710-721.
    [62]M. Khayet, The effects of air gap length on the internal and external morphology of hollow fiber membranes [J], Chemical Engineering Science 58 (2003) 3091-3104.
    [63]K.C. Khulbe, C.Y. Feng, F. Hamad, T. Matsuura, M. Khayet, Structural and performance study of micro porous polyetherimide hollow fiber membranes prepared at different air-gap [J], Journal of Membrane Science 245 (2004) 191-198.
    [64]M. Khayet, M.C. Garcia-Payo, F.A. Qusay, M.A. Zubaidy, Structural and performance studies of poly(vinyl chloride) hollow fiber membranes prepared at different air gap lengths [J], Journal of Membrane Science 330 (2009) 30-39.
    [65]D. Wang, K. Li, W. K. Teo, Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation [J], Journal of Membrane Science 138 (1998) 193-201.
    [66]A.F. Ismail, M.I. Mustaffar, R.M. Illias, M.S. Abdullah, Effect of dope extrusion rate on morphology and performance of hollow fibers membrane for ultrafiltration [J], Separation and Purification Technology 49 (2006) 10-19.
    [67]黄仲涛,曾昭槐,钟邦克等编著,无机膜技术及其应用[M],北京:中国石化出版社,1999.
    [68]J. I. Calvo, P. Pradanos, A. Hernandez, W. R. Bowen, N. Hilal, R. W. Lovitt, P. M. Williams, Bulk and surface characterization of composite UF membranes Atomic force microscopy, gas adsorption-desorption and liquid displacement techniques [J], Journal of Membrane Science 128(1997)7-21.
    [69]J. Ren, Z. Li, F. Wong, A new method for the prediction of pore size distribution and MWCO of ultrafiltration membranes [J], J. Membr. Sci.279 (2006) 558-569.
    [70]E. Jakobs, W. J. Koros, Ceramic membrane characterization via the bubble point technique [J], Journal of Membrane Science 124 (1997) 149-159.
    [71]J. I. Calvo, A. Bottino, G. Capannelli, A. Hernandez, Pore size distribution of ceramic UF membranes by liquid-liquid displacement porosimetry [J], J. Membr. Sci.310 (2008) 531-538.
    [72]J. Kong, K. Li, An improved gas permeation method for characterising and predicting the performance of microporous asymmetric hollow fibre membranes used in gas absorption[J], Journal of Membrane Science 182 (2001) 271-281.
    [73]M. Khayet, T. Matsuura, Determination of surface and bulk pore sizes of flat-sheet and hollow-fiber membranes by atomic force microscopy, gas permeation and solute transport methods [J], Desalination 158 (2003) 57-64.
    [74]C. Zhao, X. Zhou, Y. Yue, Determination of pore size and pore size distribution on the surface of hollow-fiber filtration membranes:a review of methods [J], Desalination,129 (2000) 107-123.
    [75]A. F. M. Leenaars, A. J. Burggraaf, The preparation and characterization of alumina membranes with ultrafine pores:Part 3. The permeability for pure liquids [J], J Membr Sci, 1985,24 (3):245-260.
    [76]T. Van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, Alumina and titania multilayer membranes for nanofiltration:preparation, characterization and chemical stability [J], J. Membr. Sci.207 (2002) 73-89.
    [77]J. Zhou, X. Zhang, Y. Wang, X. Hu, A. Larbot, M. Persin, Electrokinetic charac-terrization of the A12O3 ceramic MF membrane by streaming potential measurements [J], Desalination 235 (2009) 102-109.
    [78]R. Herbig, P. Arki, G. Tomandl, Rolf E. Braunig, Comparison of electrokinetic properties of ceramic powders and membranes [J], Separation and Purification Technology 32 (2003) 363-369.
    [79]Qi Zhang, Yiqun Fan, Nanping Xu, Effect of the surface properties on filtration performance of Al2O3-TiO2 composite membrane [J], Separation and Purification Technology 66 (2009) 306-312.
    [80]S. Condom, S. Chemlal, W. Chu, M. Persin, A. Larbot, Correlation between selectivity and surface charge in cobalt spinel ultrafiltration membrane [J], Separation and Purification Technology 25 (2001) 545-548
    [81]J. B. Wachtman, Mechanical Properties of Ceramics, New York:Wiley,1996.
    [82]S. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method [J], Ceramics International 29 (2003)875-881.
    [83]X. Tan, Y. Liu, K. Li, Mixed conducting ceramic hollow-fiber membranes for air separation [J], AIChE Journal,2005,51(7):1991-2000.
    [84]Z.Wang, N. Yang, B. Meng, X. Tan, Preparation and oxygen permeation proper-ties of highly asymmetric La0.6Sr0.4Co0.2Fe0.8O3-x perovskite hollow-fiber membranes [J], Ind. Eng. Chem. Res.2009,48:510-516.
    [85]J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooymans, H. Weyten, F. Servaes, R. Leysen Preparation of LaSrCoFeO3-x membranes [J], Solid State Ionics 135 (2000) 637-642.
    [86]S. Liu, X. Tan, Z. Shao, J. C. Diniz da Costa, Ba0.5Sr0.5Co0.8Fe0.2O3-x Ceramic Hollow-Fiber Membranes for Oxygen Permeation [J], AIChE Journal,2006,52(10):3452-3461.
    [87]S. Liu, M. Liu, Z. Shao, J. C. Diniz da Costa,Z. P. Xu,From Chelating Precursor to Perovskite Oxides and Hollow Fiber Membranes [J], J. Am. Ceram. Soc.,2007,90(1):84-91.
    [88]Z. Chen, R. Ran, Z. Shao, H.Yu, J.C. Diniz da Costa, S. Liu, Further performa-nee improvement of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite membranes for air separation [J], Ceramics International 35 (2009) 2455-2461.
    [89]T. Schiestel, M. Kilgus, S. Peter, K.J. Caspary, H. Wang, J. Caro, Hollow fibre perovskite membranes for oxygen separation [J], J. Membr. Sci.258 (2005) 1-4.
    [90]H. Wang, C. Tablet, T. Schiestel, J. Caro, Hollow fiber membrane reactors for the oxidative activation of ethane [J], Catalysis Today 118 (2006) 98-103.
    [91]H. Wang, S. Werth, T. Schiestel, J. Caro, Perovskite hollow fiber membranes for the production of oxygen-enriched air[J], Angew. Chem. Int. Ed.2005,44:6906-909.
    [92]B. Meng, Z. Wang, X. Tan, S. Liu, SrCo0.9Sc0.1O3-δ perovskite hollow fibre me-mbranes for air separation at intermediate temperatures [J], Journal of the European Ceramic Society 29 (2009)2815-2822.
    [93]X. Tan, K. Li, Modeling of Air Separation in a LSCF Hollow-Fiber Membrane Module [J], AIChE Journal July 2002,48(7):1469-1475.
    [94]H. Liu, X. Tana, Z. Pang, J. C. Diniz da Costa, G. Lu, S. Liu, Novel dual structured mixed conducting ceramic hollow fibre membranes [J], Separation and Purification Technology 63 (2008) 243-247.
    [95]B. Zydorczak, Z. Wu, K. Li, Fabrication of ultrathin La0.6Sr0.4Co0.2Fe0.8O3-x hollow fibre membranes for oxygen permeation [J], Chemical Engineering Science 64 (2009) 4383-4388.
    [96]X. Tan, Z. Pang, Z. Gu, S. Liu, Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling [J], J. Membr. Sci.302 (2007) 109-114.
    [97]李伟,陶瓷中空纤维氧分离膜研究[D],中国科学技术大学博士学位论文,2009.
    [98]W. Li, J. Liu, C. Chen, Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation [J], Journal of Membrane Science 340 (2009) 266-271.
    [99]W. Li, T. Tian, F. Shi, Y. Wang, C. Chen, Ce0.8Sm0.2O3-δ-La0.8Sr0.2MnO3-δ Dual-Phase Composite Hollow Fiber Membrane for Oxygen Separation [J], Ind. Eng. Chem. Res.2009,48: 5789-5793.
    [100]Y. Liu, Oi Yee Chen, Chiao Chien Wei, K. Li, Preparation of yttria-stabilised zirconia (YSZ) hollow fibre membranes [J], Desalination 199 (2006) 360-362.
    [101]Lihong Liu, Xiaoyao Tan, Shaomin Liu, Yttria Stabilized Zirconia Hollow Fiber Membranes [J], J. Am. Ceram. Soc.,2006,89(3):1156-1159.
    [102]B. Wang, Z. Wu, A.G. Livingston, K. Li, A novel phase transition technique for fabrication of mesopore sized ceramic membranes [J], J. Membr. Sci.339 (2009) 5-9.
    [103]李健生,郝艳霞,王连军,等.氧化铝中空纤维膜的制备与表征[J].催化学报,2001,22(5):437-440.
    [104]W. Yin, B. Meng, X. Meng, X. Tan, Highly asymmetric yttria stabilized zirconia hollow fibre membranes [J], J. Alloys Compd.476 (2009) 566-570.
    [105]孟广耀,陶瓷膜燃料电池研究进展与展望[J],中国科学技术大学学报,2008,38(6):576-593.
    [106]T. Suzuki, T. Yamaguchi, Y. Fujishiro, M. Awano, Fabrication and charac-terization of micro tubular SOFCs for operation in the intermediate temperature [J], Journal of Power Sources 160 (2006) 73-77.
    [107]T. Suzuki, Z. Hasan, Y. Funahashi, T. Yarnaguchi, Y. Fujishiro, M. Awano, Impact of anode microstructure on solid oxide fuel cells [J], Science,2009,325:852.
    [108]N. M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100W anode supp-orted micro-tubular SOFC stack [J], Journal of Power Sources 145 (2005) 428-434.
    [109]N. Yang, X. Tan, Z. Ma, A phase inversion/sintering process to fabricate nickel/ yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells [J], Journal of Power Sources 183 (2008) 14-19.
    [110]N. Droushiotis, U. Doraswami, K. Kanawka, G.H. Kelsall, K. Li, Characteri-zation of NiO-yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes [J], Solid State Ionics 180 (2009) 1091-1099.
    [111]C. Jin, J. Liu, L. Li, Y. Bai, Electrochemical properties analysis of tubular NiO-YSZ anode-supported SOFCs fabricated by the phase-inversion method [J], Journal of Membrane Science 341 (2009) 233-237.
    [112]S. Liu, X. Tan, K. Li, R. Hughes, Preparation and characterisation of SrCe0.95Yb0.05O2.975 hollow fibre membranes [J], J. Membr. Sci.193 (2001) 249-260.
    [113]S. Liu, K. Li, R. Hughes, Preparation of SrCe0.95Yb0.05O3-δ perovskite for use as a membrane material in hollow fibre fabrication [J], Mater. Res. Bull.39 (2004) 119-133.
    [114]Y. Liu, K. Li, Preparation of SrCe0.95Yb0.05O3-δ hollow fibre membranes:Study on sintering processes [J], Journal of Membrane Science 259 (2005) 47-54.
    [115]Y. Liu, X. Tan, K. Li, SrCe0.95Yb0.05O3-δ (SCYb) hollow fibre membrane:Preparation, characterization and performance [J], J. Membr. Sci.283(2006) 380-385.
    [1]J. Zhou, X. Zhang, Y. Wang, X. Hu, A. Larbot, M. Persin, Electrokinetic characterization of the Al2O3 ceramic MF membrane by streaming potential measurements [J], Desalination,2009, 235,(1):102-109.
    [2]C. Guizard, A. Ayral, A. Julbe, Potentiality of organic solvents filtration with ceramic membranes. A comparison with polymer membranes, Desalination,2002,147(2):275-280.
    [3]A.J. Burggraaf, L. Cot, Fundamentals of Inorganic Membrane Science and Technology [M], Amsterdam:Elsevier,1996.
    [4]C. Wei, K. Li, Preparation and characterization of a robust and hydrophobic ceramic memb-rane via an improved surface grafting technique [J], Ind. Eng. Chem. Res.48(2009)3446-3452.
    [5]Xiaoyao Tan, Shaomin Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes [J], Journal of Membrane Science 188 (2001) 87-95.
    [6]F. L. Hua, Y. F. Tsang, Y. J. Wang, S. Y. Chan, H. Chua, S. N. Sin, Chem. Eng. J.128(2007) 169-175.
    [7]H.W.J.P. Neomagus, G Saracco, H.F.W.Wessel, G.F. Versteeg, The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants [J], Chem. Eng. J.77 (3) (2000) 165-177.
    [8]Chiao Chien Wei and K. Li, Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells [J], Ind. Eng. Chem. Res.2008,47,1506-1512.
    [9]Chunli Yang, Wei Li, Shangquan Zhang, Lei Bi, Ranran Peng, Chusheng Chen,Wei Liu, Fabrication and characterization of an anode-supported hollow fiber SOFC [J], Journal of Power Sources 187 (2009) 90-92
    [10]Sirichai Koonaphapdeelert, Xiaoyao Tan, Zhentao Wu, K. Li, Solvent distillation by ceramic hollow fibre membrane contactors [J], Journal of Membrane Science 314 (2008) 58-66.
    [11]Shaomin Liu, K. Li, Preparation TiO2/Al2O3 composite hollow fibre membranes [J], Journal of Membrane Science 218 (2003) 269-277
    [12]Lee K H, Kim Y M. Asymmetric hollow inorganic membranes [J]. Key. Eng. Mater.,1992, 61/62:17-22.
    [13]L. Liu, X.Tan, S. Liu, Yttria Stabilized Zirconia Hollow Fiber Membranes [J], J. Am. Ceram. Soc.,2006,89(3):1156-1159.
    [14]Chiao ChienWei, Oi Yee Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fibre membranes-One step fabrication process [J], Journal of Membrane Science 320 (2008) 191-197.
    [15]H. Zhang, X. Quan, S. Chen, H. Zhao, Y. Zhao, W. Li, Zirconia and titania composite membr-anes for liquid phase separation:preparation and characterization [J], Desalination,2006,190: 172-180.
    [16]J. C.Wu, L. C. Cheng, An improved synthesis of ultrafiltration zirconia membranes via the sol-gel route using alkoxide precursor [J], J. Membr. Sci.167 (2000):253-261.
    [17]Y. Liu, Oi Yee Chen, Chiao Chien Wei, K. Li, Preparation of yttria-stabilised zirconia (YSZ) hollow fibre membranes [J], Desalination 199 (2006) 360-362.
    [18]W. Yin, B. Meng, X. Meng, X. Tan, Highly asymmetric yttria stabilized zirconia hollow fibre membranes [J], Journal of Alloys and Compounds 476 (2009) 566-570.
    [19]吕经烈,中空纤维膜技术及其应用[J],海洋技术,2002,21(4):73-76.
    [20]H. Ohya, S. Shiki, H. Kawakami, Fabrication study of polysulfone hollow-fiber microfiltra-tion membranes:Optimal dope viscosity for nucleation and growth [J], Journal of Membrane Science 326 (2009) 293-302.
    [21]B. Torrestiana-Sanchez, R.I. Ortiz-Basurto, E. Brito-De La Fuente, Effect of nonsolvents on properties of spinning solutions and polyethersulfone hollow fiber ultrafiltration membranes [J], Journal of Membrane Science 152 (1999) 19-28.
    [22]S. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fibre memb-ranes by a combined phase-inversion and sintering method [J], Ceram. Int.29 (2003) 875-881.
    [23]D.R Dinger, Rheology for Ceramists, Dinger Ceramic Consulting Services, Clemson, United States,2002.
    [24]Smolders C A, Reuvers A J, Boom R M, et al. Microstructures in phase inversion membranes. Part 1. Formation of macrovoeds [J]. J Membr Sci,1992,73:259-275.
    [25]Benjamin F.K:Kingsbury, K. Li,A morphological study of ceramic hollow fibre membranes [J], Journal of Membrane Science 328 (2009) 134-140.
    [26]关振铎,张中太,焦金生,著.无机材料物理性能[J].北京:清华大学出版社.1992.
    [27]Aotian Xu, Aihua Yang, Stephanie Young, David deMontigny, Paitoon Tontiwachwuthikul, Effect of internal coagulant on effectiveness of polyvinylidene fluoride membrane for carbon dioxide separation and absorption [J], Journal of Membrane Science 311 (2008) 153-158.
    [28]JianshuoYan, Wayne W. Y. Lau, Effect of internal coagulant on morphology of polysulfone hollow fiber membranes. I [J], Separation Science and Technology,1998,33(1):33-55.
    [29]Jian-Jun Qin, Tai-Shung Chung, Effects of orientation relaxation and bore fluid chemistry on morphology and performance of polyethersulfone hollow fibers for gas separation [J], Journal of Membrane Science 229 (2004) 1-9.
    [30]王广东,胡小玲,管萍,乔吉超,张团红.溶剂/非溶剂组合对聚醚飒分离膜结构与性能的影响[J].材料导报,2006,20(1):132-134.
    [31]李井峰,许振良,杨虎.溶剂/非溶剂体系对聚醚砜微孔膜性能和结构的影响[J].高校化学工程学报,2007,21(1):20-25.
    [32]黄加乐,董声雄,郑炳云,龚琦.聚醚砜膜亚层结构形成的影响因素[J].福州大学学报(自然科学版),2003,31(3):356-359.
    [33]朱平平,杨海洋,何平笙.如何理解混合溶剂的良、劣性[J].高分子通报,2004,(5):93-98.
    [34]S. G. Li, Th. van den Boomgaard, C. A. Smolders, H. Strathmann, Physical Gelation of Amorphous Polymers in a Mixture of Solvent and Nonsolvent [J], Macromolecules,1996,29: 2053-2059.
    [35]D. Yu, W. Chou, M. Yang, Effect of draw ratio and coagulant composition on polyacryloni-trile hollow fiber membranes [J], Separation and Purification Technology 52 (2006) 380-387.
    [36]常启兵,多孔陶瓷膜的材料设计与科学研究[D],中国科学技术大学博士学位论文,2005.
    [37]C. Liu, R. Bai, Preparing highly porous chitosan/cellulose acetate blend hollow fibers as adsorptive membranes:Effect of polymer concentrations and coagulant compositions [J], Journal of Membrane Science 279 (2006) 336-346.
    [38]S. P. Deshmukh, K. Li, Effect of ethanol composition in water coagulation bath on morph-ology of PVDF hollow fibre membranes [J], Journal of Membrane Science 150 (1998) 75-85.
    [39]C. Buysse, A. Kovalevsky, F. Snijkers, A. Buekenhoudt, S. Mullens,J. Luyten, J. Kretzschmar, S. Lenaerts, Fabrication and oxygen permeability of gastight, macrovoid-free Ba0.5Sr0.5Co0.8Fe0.2O3-δ capillaries for high temperature gas separation [J], Journal of Membrane Science, doi:10.1016/j.memsci.2009.10.030
    [40]Lihong Liu, Shujun Gao, Yuanhong Yu, Rong Wang, David Tee Liang, Shaomin Liu, Bio-ceramic hollow fiber membranes for immunoisolation and gene delivery I:Membrane development [J]. Journal of Membrane Science 280 (2006) 375-382.
    [41]D. Wang, K. Li, W.K. Teo, Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive [J], Journal of Membrane Science 176 (2000) 147-158.
    [1]L. Xu, W. Li, S. Lu, Q. Zhu, Y. Ling, Treating dyeing waste water by ceramic membrane in crossflow microfiltration [J], Desalination,2002,149(1-3):199-203.
    [2]H. Zhang, X. Quan, S. Chen, H. Zhao, Y. Zhao, W. Li Zirconia and titania comp-osite membranes for liquid phase separation:preparation and characterization [J], Desalination,2006, 190:172-180.
    [3]Y. Dong, X. Liu, Q. Ma, G. Meng, Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials [J], J. Membr. Sci.2006, 285:173-181.
    [4]H. P. Hsieh, Inorganic Membranes for Separation and Reaction [M], Amsterdam:Elsevier Science,1996.
    [5]X. Tan, S. Liu, K. Li. Preparation and characterization of inorganic hollow fiber membranes [J], J. Membr. Sci.2001,188:87-95.
    [6]L. Liu, X. Tan, S. Liu. Yttria Stabilized Zirconia Hollow Fiber Membranes [J], J. Am. Ceram. Soc.,89[3] 1156-1159(2006)
    [7]H. Wang, T. Schiestel, C. Tablet, M. Schroeder, J. Caro, Mixed oxygen ion and electron conducting hollow fiber membranes for oxygen separation[J], Solid State Ionics,2006,177: 2255-2259.
    [8]J. de Jong, N.E. Benesl, G.H. Koops, M. Wessling. Towards single step production of multi-layer inorganic hollow fibers [J], J. Membr. Sci.,2004,239:265-269.
    [9]X. Tan, Y. Liu, K. Li, Preparation of LSCF Ceramic Hollow-Fiber Membranes for Oxygen Production by a Phase-Inversion/Sintering Technique[J], Ind. Eng. Chem. Res.2005,44:61-66.
    [10]S. Liu, G. R. Gavalas, Preparation of Oxygen Ion Conducting Ceramic Hollow-Fiber Membranes [J], Ind. Eng. Chem. Res.2005,44:7633-7637.
    [11]S. Liu, X. Tan, K. Li, R. Hughes Preparation and characterisation of SrCe0.95- Yb0.05O2.975 hollow fibre membranes [J], J. Membr. Sci.2001,193:249-260.
    [12]K.H. Lee, Y. M. Kim, Asymmetric hollow inorganic membranes[J], Key Eng. Mater.,1992, 61-62:17-22.
    [13]M.R. Weir, E. Rutinduka, C. Detellier, C.Y. Feng, Q. Wang, T. Matsuura, R. Le Van Mao, Fabrication, characterization and preliminary testing of all-inorganic ultrafiltration membranes composed entirely of a naturally occurring sepiolite clay mineral[J], J. Membr. Sci.2001,182 (1-2):41-50.
    [14]R. Le Van Mao, E. Rutinduka, C. Detellier, P. Gougay, V. Hascoet, S. Tavakoliyan, S. V. Hoa, T. Matsuura, Mechanical and pore characteristics of zeolite composite membranes [J], J. Mater. Chem.,1999,9:783-788.
    [15]Y. Dong, S. Chen, X. Zhang, J. Yang, X. Liu, G. Meng, Fabrication and character-ization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite [J], J. Membr. Sci.2006,281(1-2):592-599.
    [16]B. K. Nandi, R. Uppaluri, M. K. Purkait, Preparation and characterization of low cost ceramic membranes for micro-filtration applications [J], Applied Clay Science,2008,42 (1-2):102-110.
    [17]S. Masmoudi, A. Larbot, H. EIFeki, R. BenAmar, Elaboration and properties of new ceramic microfiltration membranes from natural and synthesized apatite [J], Desalination,2006,190: 89-103.
    [18]N.Saffaj, S. A.Younssi, A. Albizane, A. Messouadi, M. Bouhria, M. Cretin, A. Larbot, Elaboration and Properties of TiO2-ZnAl2O4 ultrafiltration membranes deposited on cordierite Support [J], Sep. purify. Technol.2004,36:107-114.
    [19]F. BouLzerara, A.Harabi, S.Achour, A. Larbot, porous ceramic supports for membranes Prepared from kaolin and doloma mixture[J], J. Eur. Ceram. Soc.2006,26:1663-1671.
    [20]M. C. Almandoz, J. Marchese, P. Pradanos, L. Palacio, A. Hernandez, Prepar-ation and characterization of non-supported microfiltration membranes from alumin-osilicates [J], J. Membr. Sci.2004,241:95-103.
    [21]M. A. Camerucci, G. Urretavizcaya, A. L. Cavalieri, Sintering of cordierite based materials [J], Ceram. Int.2003,29 (2) 159-168.
    [22]Y. Kobayashi, K. Sumi, E. Kato, Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives [J], Ceram. Int.2000,26:739-743
    [23]Y. Dong, X. Feng, D. Dong, S. Wang, J. Yang, J.Gao, X. Liu, G Meng, Elabora-tion and chemical corrosion resistance of tubular macro-porous cordierite ceramic membrane supports [J], J. Membr. Sci.2007,304(1-2):65-75.
    [24]Y. Dong, B.Lin, S. Wang, K. Xie, D. Fang, X. Zhang, H. Ding, X. Liu, G. Meng, Cost-effective tubular cordierite micro-filtration membranes processed by co-sintering [J], J. Alloys Compd.2009,477 (1-2):35-40.
    [25]倪文,陈娜娜,堇青石的矿物学特性及其应用[J],地质评论,1995,41(4):340-347.
    [26]Benjamin F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes [J], J. Membr. Sci.2009,328:134-140.
    [27]T. Chung, X. Hu, Effect of air-gap distance on the morphology and thermal prop-erties of polyethersulfone hollow fibers [J], J. Appl. Polym. Sci.1997,66 (6):1067-77.
    [28]M. Khayet, The effects of air gap length on the internal and external morphology of hollow fiber membranes [J], Chem. Eng. Sci.2003,58 (14):3091-3104.
    [29]Z. S. Li, Investigation of the dynamics membrane formation by of poly(ether sulfone) membrane formation by precipitation immersion [J], J. Polym. Sci. B:Polym. Phys.,2005, 43(5):498-510.
    [30]S. A. McKelvey, W. J. Koros, Phase separation, vitrification, and the manifest-tation of macrovoids in polymeric asymmetric membranes [J], J. Membr. Sci.1996,112 (1):29-39.
    [31]J. Barzin, B. Sadatnia, Theoretical phase diagram calculation and membrane morphology evaluation for water/solvent/polyethersulfone systems [J]. Polymer,2007,48 (6):1620-1631.
    [32]L. Shi, R. Wang, Y. Cao, D.T. Liang, J. H. Tay, Effect of additives on the fabric-cation of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes[J], J. Membr. Sci.2008,315(1-2):195-204.
    [33]M. J. Han, S. T. Nam, Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane [J], J. Membr. Sci.2002,202 (1-2):55-61.
    [34]K. Lee, B. Sea, S. Nam, M. Han, Trade-off between thermodynamic enhance-ment and kinetic hindrance during phase inversion in the preparation of polysulfone membranes [J], Desalination 2003,159:289-296.
    [35]R. M. Smart, F. P. Glasser, The subsolidus phase equilibria and melting temper-atures of MgO-Al2O3-SiO2 compositions [J], Ceram. Int.1981,7 (3):90-97.
    [36]J. Zhou, X. Zhang, Y. Wang, A. Larbot, X. Hu, Elaboration and characterization of tubular macroporous ceramic support for membranes from kaolin and dolomite [J], J Porous Mater (2010) 17:1-9.
    [37]R.W. Baker, Membrane Technology and Applications (2nd ed.) [M], Hoboken:John Wiley& Sons,2004.
    [38]S. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method [J], Ceram. Int.2003,29 (8) 875-881.
    [39]R. J. Uhlhorn, K. Keizer, A. J. Burggaraaf. Synthesis of ceramic membranes [J], J Mater Sci, 1992,27 (2):527-530.
    [40]Y. Kobayashi, K. Sumi, E. Kato, Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives[J], Ceram. Int.2000,26 (7):739-743.
    [41]李得家,曾令可,刘艳春,等.降低蜂窝陶瓷用堇青石热膨胀系数的途径[J],中国陶瓷,2008,44(3):12-14.
    [42]F. A. C. Oliveiraa, J. C. Fernandes, Mechanical and thermal behaviour of cordierite-zirconia composites [J], Ceram. Int.2002,28:79-91.
    [43]肖卓豪,卢安贤。R2O-MO-Al2O3-SiO2玻璃的组成与其热膨胀系数的关系[J],中南大学学报(自然科学版),2005,36(4):566-570.
    [1]赵光岩,饶平根,吕明.莫来石及多孔莫来石的研究和应用[J].中国陶瓷,2006,42(9):13-17.
    [2]H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite-A review [J], Journal of the European Ceramic Society,2008,28 (1):329-344.
    [3]董应超.新型低成本多孔陶瓷分离膜的制备与性能研究[D].中国科学技术大学博士学位论文,2008.
    [4]X. Miao, Porous mullite ceramics from natural topaz [J], Materials Letters,1999,38(1):167-172.
    [5]G. Chen, H. Qi, W. Xing, N. Xu, Direct preparation of macroporous mullite supports for membranes by in situ reaction sintering [J], J. Membr. Sci.2008,318(1):38-44.
    [6]陈纲领,漆虹,邢卫红,徐南平.原位反应烧结合成针状结构多孔莫来石载体[J].无机材料学报,2008,23(3):597-601.
    [7]周健儿,张小珍,杨昊,汪婷.莫来石复合陶瓷微滤膜的制备与表征[J].陶瓷学报,2009,30(1):1-4.
    [8]周健儿,张小珍,胡学兵,孙露,刘磊.莫来石陶瓷超滤膜的制备与表征[J].人工晶体学报,2009,38(5):1179-1183.
    [9]Y. Dong, S. Chen, X. Zhang, J. Yang, X. Liu, G Meng, Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite [J], J. Membr. Sci.2006,281 (1-2):592-599.
    [10]Y. Dong, X. Liu, Q. Ma, G Meng, Preparation of cordierite-based porous ceramic micro-filtration membranes using waste fly ash as the main raw materials [J], J. Membr. Sci.2006, 285(1):173-181.
    [11]B. K. Nandi, R. Uppaluri, M. K. Purkait, Preparation and characterization of low cost ceramic membranes for micro-filtration applications [J], Applied Clay Science,2008,32(2):434-439.
    [12]F. BouLzerara, A.Harabi, S.Achour, A. Larbot, porous ceramic supports for membranes prepared from kaolin and doloma mixture [J], J. Eur. Ceram. Soc.,2006,26:1663-1671.
    [13]蔡细鄂.针状莫来石过滤材料的研制[D].景德镇陶瓷学院硕士学位论文,2008.
    [14]赵世凯.针状莫来石及其应用研究[D].景德镇陶瓷学院硕士学位论文,2009.
    [15]周健儿,张小珍,汪永清,蔡细鄂,铝质原料对多孔针状莫来石合成的影响[J],陶瓷学报,2010,31(1):46-49.
    [16]Aleksander J. Pyzik, Cheng G. Li, New Design of a Ceramic Filter for Diesel Emission Control Applications [J], Int. J. Appl. Ceram. Technol.,2005,2(6):440-451.
    [17]A. J. Pyzik, C. S. Todd, C. Han, Formation mechanism and microstructure development in acicular mullite ceramics fabricated by controlled decomposition of fluorotopaz [J], Journal of the European Ceramic Society,2008,28 (1):383-391.
    [18]任国斌.Al2O3-SiO2系实用耐火材料[M].北京:冶金工业出版社,1998:7-38.
    [19]徐晓虹,郭子瑜,孙钱平.等.原位生成莫来石晶须机理的研究[J],武汉理工大学学报,2005,27(12):18-21
    [20]Jianer Zhou, Xiaozhen Zhang, Yongqing Wang, A. Larbot, Xuebing Hu, Elaboration and characterization of tubular macroporous ceramic support for membranes from kaolin and dolomite [J], J Porous Mater,2010,17:1-9.
    [21]A. Yamuna, S. Devanarayanan, M. Lalithambika, J. Am. Ceram. Soc.2002,85(5): 1409-1413.
    [22]I. A. Aksay, J. Pask, Al2O3-SiO2 binary system [J]. Science,1974,69:183.
    [23]J. R. Moyer, P. Rudolf, Stoichiometry of fluorotopaz and mullite made from fluorotopaz [J]. J. Am. Ceram. Soc.,1994,77(4),1087-1089.
    [24]S. Prochaska, F. J. Klug, Infrared-Transparent Mullite Ceramics [J], J. Am. Ceram. Soc.,1983,66(12):874-880.
    [25]X. Li and W. J. Thomson, Kinetic Mechanism for Mullite Formation from Sol-Gel Precursors [J], J. Mater. Sci.,1990,59:374.
    [26]K. Okada, N. Otsuka, Synthesis of Mullite Whiskers and Their Application in Composites [J], J. Am. Ceram. Soc.,1991,74(10):2414-2418.
    [27]Wei, W. and Holloran, J. W., Phase transformations of diphasic aluminosilicate gels [J]. J. Am. Ceram. Soc.,1988,71(3),166-172.
    [28]张旭东,莫来石晶须的生长机理研究[J],陶瓷学报,1998,19(2):76-78
    [29]王洪彬,张玉军,张敏.莫来石晶须研究进展[J],山东轻工业学院学报,2005,19(4):58-61.
    [30]袁建君,刘智恩,韩玉,溶胶凝胶法制备的莫来石晶须的形貌和生长过程研究[J].人工晶体学报,1996,25(1):49-53.
    [31]陈玉如,李会军,刘文西,等.莫来石陶瓷中的位错[J].电子显微学报,1990,(3):246-248.
    [32]K. Okada, N. Otsuka, Synthesis of mullite whiskers by vapour-phase reaction [J], Journal of Materials Science Letters,1989,8:1052-1054.
    [33]袁建君,刘智恩,韩玉.莫来石晶须制备新工艺与生长机理[J].无机材料学报,1996,11(1):101-106.
    [34]Yung-Feng Chen, Moo-Chin Wang, Min-Hsiung Hon, Phase transformation and growth of mullite in kaolin ceramics[J], J. Euro. Ceram. Soc. 2004,24(8):2389-2397.
    [35]徐晓虹,吴建锋,柯尊文,郭子瑜.原位合成莫来石晶须及其微观结构的研究[J].陶瓷学报,2007,28(2):89-92.
    [36]袁建君,刘智恩,韩玉,溶胶凝胶法制备莫来石晶须[J],硅酸盐学报,1996,24(3):342-344.
    [37]S. H. Hong, G. L. Messing, Anisotropic grain growth in diphasic-gel derived titania-doped mullite [J], J. Am. Ceram. Soc.,1998,81(5):1269-1277.
    [38]Y. Dong, S. Chen, X. Zhang, J. Yang, X. Liu, G. Meng, Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite [J], Journal of Membrane Science,2006,281 (1):592-599.
    [1]孟广耀.陶瓷膜燃料电池研究进展与展望[J].中国科学技术大学学报,2008,38(6):572-592.
    [2]周利,程谟杰,衣宝廉.管型固体氧化物燃料电池技术进展[J].电池,2005,36(1):63-65.
    [3]T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Impact of Anode Microstructure on Solid Oxide Fuel cells[J], Science,2009,325:852-854.
    [4]N. Akhtara, S.P. Decent, D. Loghin, K. Kendall, micro-tubular solid oxide fuel cells:An experimental study[J], J. Power Sources 193 (2009) 39-48.
    [5]Y. Funahashi, T. Shimamori, T. Suzuki, Y. Fujishiro, M. Awano, Fabrication and characteri-zation of components for cube shaped micro tubular SOFC bundle [J], J. Power Sources 163 (2007)731-736.
    [6]T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Fabrication and characteriza-tion of micro tubular SOFCs for advanced ceramic reactors [J], J. Alloys Compd. 451 (2008):632-635.
    [7]P. Sarkar, L. Yamarte, H. Rho, L. Johanson, Anode-Supported Tubular Micro-Solid Oxide Fuel Cell [J], Int. J. Appl. Ceram. Technol.4 (2007) 103-108.
    [8]G. J. Saunders, K. Kendall, Reactions of hydrocarbons in small tubular SOFCs [J], J. Power Sources 106 (2002) 258-263.
    [9]Chiao Chien Wei, K. Li, Yttria-Stabilized Zirconia (YSZ)-Based Hollow Fiber Solid Oxide Fuel Cells [J], Ind. Eng. Chem. Res.47 (2008) 1506-1512.
    [10]Y. Liu, S.I. Hashimoto, H. Nishino, K. Takei, M. Mori,T. Suzuki, Y. Funahashi, Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation [J], J. Power Sources 174 (2007) 95-102.
    [11]T. Suzuki, T. Yamaguchi, Y. Fujishiro, M. Awano, Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature [J], J. Power Sources 160 (2006) 73-77.
    [12]C. Yang, W. Li, S. Zhang, L. Bi, R. Peng, C. Chen, W. Liu, Fabrication and characterization of an anode-supported hollow fiber SOFC [J], J. Power Sources 187 (2009) 90-92.
    [13]N. Droushiotis, U. Doraswami, K. Kanawka, G.H. Kelsall, K. Li, Characterization of NiO-yttria stabilised zirconia (YSZ) hollow fibres for use as SOFC anodes [J], Solid State Ionics 180 (2009) 1091-1099.
    [14]N. Yang, X. Tan, Z. Ma, A phase inversion/sintering process to fabricate nickel/yttria-stabilized zirconia hollow fibers as the anode support for micro-tubular solid oxide fuel cells [J], J. Power Sources 183 (2008) 14-19.
    [15]Z. Wang, K. Sunb, S. Shen, N. Zhang, J. Qiao, P. Xu, Preparation of YSZ thin films for intermediate temperature solid oxide fuel cells by dip-coating method [J], J. Membr. Sci.320 (2008) 500-504.
    [16]J. Seydel, M. Becker, E. Ivers-Tiffee, H. Hahn, Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates [J], Mater. Sci. Eng. B 164 (2009) 60-64.
    [17]M. Han, X. Tang, H. Yin, S. Peng, Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs [J], J. Power Sources 165 (2007) 757-763.
    [18]J. H. Joo, G. M. Choi, Thick-film electrolyte (thickness<20 μm)-supported solid oxide fuel cells [J], J. Power Sources 180 (2008) 195-198.
    [19]J. Ding, J. Liu, An anode-supported solid oxide fuel cell with spray-coated yttria-stabilized zirconia (YSZ) electrolyte film [J], Solid State Ionics 179 (2008) 1246-1249.
    [20]S.C. singhal, K. Kendall, High temperature Solid oxide fuel cells:Fundamentals, design and applications [M]. New York:Elsevier Limited,2003.
    [21]H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Ln1-xSrxCoO3(Ln= Sm, Dy) for the electrode of solid oxide fuel cells [J], Solid State Ionics,1997,100(3-4):283-288.
    [22]D. M. Bastidas, S. Tao, J.T.S. Irvine, A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes [J], J. Mater. Chem.16 (2006) 1603-1605.
    [23]T. Hibino, A. Hashimoto, T. Inoue, J. I. Tokuno, S. I. Yoshida, M. Sano, A low-operating-temp-erature solid oxide fuel cell in hydrocarbon-air mixtures [J], Science 288(2000)2031-2034.
    [24]Z. P. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. L. Zhan, S. A. Barnett, A thermally self-sustained micro solid-oxide fuel-cell stack with high power density [J], Nature 435 (2005) 795.
    [25]J. C. Ruiz-Morales, J. Canales-Vazquez, J. Pena-Martinez, D. M. Lopez, P. Nunez, On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δ as both anode and cathode material with improved microstructure in solid oxide fuel cells [J], Electrochimica Acta 52 (2006) 278-284.
    [26]S. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells [J], Nature Mater.2 (2003) 320-323.
    [27]S. Tao, J. T. S. Irvine, J.A. Kilner, An efficient solid oxide fuel cell based-upon single-phase perovskites [J], Adv. Mater.17 (2005) 1734-1737.
    [28]S.P. Jiang, X.J. Chen, S.H. Chan, J.T. Kwok, K.A. Khor, (La0.75Sr0.25)(Cr0.5 Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells [J], Solid State Ionics 177 (2006) 149-157.
    [29]S. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method [J], Ceram. Int.29 (2003) 875-881.
    [30]X. Tan, Y. Liu, K. Li, Mixed Conducting Ceramic Hollow-Fiber Membranes for Air Separation [J], AlChE J.51(2005) 1991-2000.
    [31]S.D. Kim, S.H. Hyun, J. Moon, J.H. Kim, R.H. Song, Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells [J], J. Power Sources 139 (2005) 67-72.
    [32]U. Doraswami, P. Shearing, N. Droushiotis, K. Li, N.P. Brandon, G.H. Kelsall, Modelling the effects of measured anode triple-phase boundary densities on the performance of micro-tubular hollow fiber SOFCs [J], Solid State Ionics (2009), doi:10.1016/j.ssi.2009.10.013.
    [33]M. Liu, D. Dong, R. Peng, J. Gao, J. Diwu, X. Liu, G. Meng, YSZ-based SOFC with modified electrode/electrolyte interfaces for operating at temperature lower than 650℃ [J], J. Power Sources 180 (2008) 215-220.
    [34]D. Cui, L. Liu, Y. Dong, M. Cheng, Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling [J], J. Power Sources 174(2007)246-254.
    [35]Q.M. Nguyen, T. Takahashi, Science and Technology of Ceramic Fuel Cells, Amsterdam: Elsevier Science,1995.
    [36]S. Tao, J.T.S. Irvine, Synthesis and Characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a Redox-Stable, Efficient Perovskite Anode for SOFCs [J], J. Electrochem. Soc.151 (2004) A252-A259.
    [37]J. C. Ruiz-Morales, J. Canales-Vazquez, B. Ballesteros-Perez, J. Pena-Martinez, D. Marrero-Lopez, J.T.S. Irvine, P. Nunez, LSCM-(YSZ-CGO) composites as improved symmetrical electrodes for solid oxide fuel cells [J], J. Euro. Ceram. Soc.27 (2007) 4223-4227.
    [38]T. Suzuki, T. Yamaguchi, Y. Fujishiro, M. Awano, Current collecting efficiency of micro tubular SOFCs [J], J. Power Sources 163 (2007) 737-742.
    [39]S. T. Aruna, M. Muthuraman, K. C. Patil, Studies on strontium substituted rare earth manganites [J], Solid State Ionics 120 (1999) 275-280.
    [40]T. Wen, H. Tu, Z. Xu, O. Yamamoto, A study of (Pr, Nd, Sm)1-xSrx MnO3 cathode materials for solid oxide fuel cell [J], Solid State Ionics 121 (1999) 25-30.
    [42]G. Ch. Kostogloudis, Ch. Ftikos, Chemical Compatibility of RE1-x SrxMnO3+δ (RE= La, Pr, Nd, Gd,0    [42]G. Ch. Kostogloudis, N. Vasilakos, Ch. Ftikos; Preparation and Characterization of Pr1-xSrx-MnO3+δ (x= 0,0.15,0.3,0.4,0.5) as a Potential SOFC Cathode Material Operating at Intermediate Temperatures (500-700℃) [J], J. Euro.Ceram. Soc.17 (1997) 1513-1521.
    [43]D. Dong, J. Gao, M. Liu, G. Chu, J. Diwu, X. Liu, G. Meng, Preparation of Pro.35Ndo.35Sr0.3-MnO3-δ/YSZ composite cathode powders for tubular solid oxide fuel cells by microwave-induced monomer gelation and gel combustion synthesis process [J], J. Power Sources 175 (2008)436-440.
    [44]D. Dong, M. Liu, K. Xie, J. Gao, X. Liu, G. Meng, Comparative study on the performance of tubular solid oxide fuel cells with various Pr0.35Nd0.35Sr0.3MnO3/YSZ cathode layers made by different processes [J], J. Power Sources 175 (2008) 272-275.
    [45]M. Liu, D. Dong, L. Chen, J. Gao, X. Liu, G. Meng, Synthesis and electrochemical properties of (Pr-Nd)1-ySryMnO3-δ and (Pr1-xNdx)0.7Sr0.3MnO3-δ as cathode materials for IT-SOFC [J], J. Power Sources 176 (2008) 107-111.
    [46]刘铭飞.中温陶瓷膜燃料电池制备科学研究与性能表征[D].中国科学技术大学博士学位论文,2008.
    [47]L. Yang, S. Wang, K. Blinn, M. Liu, Z. Liu, Z. Cheng, M. Liu, Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs:BaZr0.1Ce0.7Y0.2-x-YbxO3-δ [J], Science 326 (2009) 126-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700