梯度金属陶瓷与金属电场辅助扩散连接的机理及界面性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电场激活和压力辅助燃烧合成技术(Field Activated and Pressure Assisted Synthesis, FAPAS)是在多物理场(电场、机械场、温度场、化学场)耦合条件下的新材料合成新技术,具有温度高、升温速度快、高效和节能等优点,已经成为耐高温纳米块体材料合成的关键技术之一。将机械合金化(Mechanical alloying, MA)与FAPAS工艺用于一步法完成陶瓷的原位合成及其与金属的扩散连接,为异种材料的固相连接开辟了新途径。
     本研究采用MA-FAPAS工艺,借助中间层Ni3Al和TiAl的燃烧反应放热,一步完成(TiB2)pNi/Ni3Al/Ni、(TiC)pNi/TiAl/Ti和(TiB2-TiC)pNi/TiAl/Ti连接结构的梯度金属陶瓷层的合成以及各层之间的扩散连接。研究了不同放热体系、温度和电场强度等物理参数对材料燃烧合成过程和扩散连接界面形成机制的影响。利用最小Gibbs自由能原理对各反应体系的热力学特征进行计算;利用SEM、FE-SEM、TEM、EDS和XRD等手段对各层及连接界面的微观结构和相组成以及电场作用下各连接界面元素扩散特征进行分析;利用Thomas-Fermi方程对外加电场作用下异种材料连接界面扩散原子物态的变化进行计算分析;采用显微硬度压痕法和磨料磨损试验对合成梯度金属陶瓷层的断裂韧性和表明耐磨性进行分析;采用三点弯曲法、剪切法和冷淬法表征各连接界面结构特征对连接强度和抗热震性能的影响;利用ANSYS有限元数值模拟法分析各界面的应力应变和等效残余应力分布特征。
     研究认为,Ni-Al、Ti-Al、Ni-Ti-C和Ni-Ti-B4C不同反应体系的Tad和ΔG均随T0的增加而上升,在相应T0时具有获得目标产物的可行性。燃烧合成Ni3Al、TiAl和50wt%TiC-Ni的T0分别不低于600K、450K和600K,其余反应体系均可不进行预热;在对反应体系施加电场的条件下,对应的T0可以进一步降低。
     梯度金属陶瓷微观组织分析表明,合成的(TiB2)PNi、(TiC)pNi和(TiC-TiB2)pNi金属陶瓷均反应充分、组织致密且层间没有明显分界。以化学计量比混合的中间层Ni-Al粉体和Ti-Al粉体在燃烧合成中发生充分反应,分别形成细小均匀的单相Ni3Al等轴晶和TiAl等轴晶,并分别与梯度金属陶瓷层和金属层之间结合良好,连接界面处存在强烈的元素交互扩散,成分浓度呈梯度分布。
     连接界面扩散动力学分析认为,温度、电流和通电时间是影响各层间扩散连接界面形貌和结构的主要因素。随通电电流和时间的增大,Ni3Al/Ni和TiAl/Ti的扩散连接界面均变宽,且扩散层宽度的平方根与电流平方和时间的乘积呈线性关系。在外加电场和温度场耦合作用下,界面原子扩散由以晶格扩散机制为主转变为界面反应机制,最后为晶界扩散机制。增大电流和延长通电时间均会提高连接界面元素扩散系数并降低扩散激活能。
     外加电场对TiAl/Ti连接界面处Ti-Al交互扩散的影响大于对Ni3Al/Ni连接界面处Ni-Al交互扩散的影响,电场方向对Ti/TiAl/Ti连接结构的界面扩散动力学的影响存在差异性。外加电场作用下原子能量变化的计算分析认为,原子动能随着电流的升高而增大,外加电场通过增加扩散原子的动能促进原子扩散。
     力学性能分析结果表明,合成的三种金属陶瓷具有较高的硬度、表面耐磨性能和断裂韧性;三种结构的连接界面均具有较强的抗剥离性能和抗剪切强度,(TiC)PNi/TiAl/Ti连接结构的最大剪切强度为70.98MPa,(TiC)PNi/TiAl界面为接头的薄弱环节。
     ANSYS有限元数值分析结果表明,金属化合物中间层的存在有效减小了陶瓷和金属在冷却过程中产生的变形差异,三种连接结构中的热膨胀系数失配率分别为132.1%、10.8%和47.2%,相应产生的最大等效残余应力分别为38.74MPa、10.51MPa和17.93MPa。
Field Activated and Pressure Assisted Synthesis, FAPAS, as a new process that is carried out in the condition of multi-fields including electric field, mechanical field, temperature field and chemical field, has become one of key technologies to prepare heat-resisting bulk materials with nano-structure for its characterization of high temperature, fast heating-up, efficiency and energy saving. A new approach is brought forward by the mechanical alloying assisted FAPAS process (MA-FAPAS) to have cermets in-situ synthesized and diffusion bonded with metals simultaneously.
     MA-FAPAS was employed to prepare (TiB2)pNi/Ni3Al/Ni ,(TiC)pNi/TiAl/Ti and (TiB2-TiC)pNi/TiAl/Ti joining structures by diffusion bonding and in-situ synthesis with Ni3Al and TiAl as exothermal media layer, respectively. The effect of different reaction system, temperature and current on the combustion synthesis and formation mechanism of the diffusion interfaces was analyzed. Thermodynamic properties of the different reaction systems were calculated based on the theory of the minimum Gibbs free energy. The microstructure and phases of each layer and the distribution of elements across the interfaces were determined by SEM, TEM, XRD, and EDS. The change of state of the atoms in interfaces was calculated by Thomas-Fermi equations under the action of the electric field. The hardness, tenacity, fracture toughness, and wear resistance of the surface of the synthesized gradient cermets were tested by means of micro-indent testing and friction testing. The bonding strength and thermal shock resistance were evaluated by the three-point bend testing, shearing testing and quenching testing, respectively. The residual stress in the boding interfaces was simulated by ANSYS finite element method.
     It is concluded that the adiabatic temperature Tad and Gibbs free energyΔG increase with T0 for Ni-Al, Ti-Al, Ni-Ti-C and Ni-Ti-B4C reaction systems, and it is feasible to obtain the target products by combustion synthesis. It is necessary to preheat not less than 600K, 450K, and 600K for Ni3Al, TiAl, and 50wt%TiC-Ni reaction systems, respectively, and that would be less when the electric field was applied.
     During the combustion synthesis, the powder elements for synthesis of the gradient cermets of (TiB2)PNi, (TiC)pNi and (TiC-TiB2)pNi get reacted completely to form compact products and no interface is observed between the gradient layers. The element powder mixtures of Ni-Al and Ti-Al with stoichiometric ratio got reacted completely to form Ni3Al and TiAl intermetallic with equiaxial polygonal grains and got bonded with the metal plates and gradient cermets well, respectively. The EDS analysis results showed that the elements across the interfaces distribute in grade by intense diffusion to each other.
     It is concluded by the diffusion kinetics that the temperature, current and time are the most important factors that determine the microstructure of the interfaces during the diffusion bonding. The thickness of the diffusion interfaces between Ni/Ni3Al and between TiAl/Ti increases with the current and time and its square root is in exact ratio to I2·t. Under the action of the electric field and temperature field, the movement of atoms in the interface is controlled by the lattice diffusion mechanism mainly at first and then shift to interface reaction mechanism and then to grain boundary diffusion mechanism. The coefficient of diffusion of the atoms increases and the activation energy of diffusion in the interfaces decreases with the increase of current and time during the diffusion bonding process.
     The effect of the electric field on the diffusion of TiAl/Ti bonding interface is stronger than that of Ni3Al/Ni bonding interface. The current promotes the atoms to migrate across interface by increase their kinetic energy. The direction of the current had different effect on the migrating of Al atom in the interface between Ti/TiAl/Ti.
     The results of the mechanical properties tests indicate that the in-situ synthesized cermets own excellent surface hardness, wear-resistance, and fracture toughness. The interfaces of the bonded structures had higher shearing strength and that of the (TiC)PNi/TiAl/Ti reaches to 70.98MPa.
     The analysis results of the residual stress of the samples simulated by ANASYS shows that the existence of the media layer of the intermetallic compound lowers the differences of the deformations between the layers. The mismatch rate of the coefficients of thermal expansion are 132.1%, 10.8% and 47.2%, respectively, and corresponding equivalent stress are 38.74MPa, 10.51MPa and17.93MPa。
引文
[1]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,2004:1-2.
    [2]冯吉才,靖向萌,张丽霞等. TiC金属陶瓷/钢钎焊接头的界面结构和连接强度[J].焊接学报. 2006, 27(1):5-9.
    [3]王全兆,刘越,张玉政等. TiC/NiCr金属陶瓷与1Cr13不锈钢的真空钎焊[J].焊接学报. 2006, 27(8): 430-47.
    [4]李卓然,曹健,冯吉才. TiB2金属陶瓷与TiAl金属间化合物的扩散连接[J].焊接学报. 2003, 24(2):4-8.
    [5] Robert W., Messler. Joining advanced materials, Advanced Materials & Processes [J]. 1995, 147(2): 47-49.
    [6] Signh M. Ceramic joining technology [J]. Advanced Materials & Porcesses. 1998, 154(4): 89-90.
    [7]段辉平,李树杰,刘登科等. SiC陶瓷与GH128镍基高温合金反应连接研究[J].航空学报. 2000, 21(增刊):72-75.
    [8]段辉平,李树杰,张永刚等. SiC陶瓷与镍基高温合金的热压反应烧结连接[J].稀有金属. 1999, 23(5): 326-330.
    [9]李卓然,曹健,冯吉才等.中间层成分对TiAl/TiB2金属陶瓷SHS连接的影响[J].焊接学报. 2006, 27(4):29-33.
    [10] Moore J. J., Feng H. J. Combustion synthesis of advanced materials: Part I. Reaction parameters [J]. Materials Science. 1995, 39: 243-273.
    [11] Merzhanov A. G., Shkiro V. M., Borovinskaya I. P. A Method for Synthesizing Refractory Compounds [P]. USSR Inventor Certificate, 255221, 1967
    [12] http://www.sunnysteel.com/material.aspx
    [13] Meng Q.S. , Chen S.P., Munir Z.A. Microstructure and mechanical properties ofmultilayer-lined composite pipes prepared by SHS centrifugal-thermite process [J],Materials Science and Engineering A. 2007, 456(1-2): 332-336.
    [14]殷声.燃烧合成[M].北京:冶金工业出版社,1999.
    [15] Munir Z. A., Umberto R. Self - propagating exothermic reactions: The synthesis of high - temperature materials by combustion [J]. Materials Science Reports 3. 1989,277-365.
    [16]张浩.离心自蔓延复合管金属过渡层微观结构及力学性能研究[D],太原:太原理工大学,2006.
    [17] Orru R., Cao G. Field-activated combustion synthesis of titanium aluminides [J]. Metallurgical and Materials Transactions A. 1999, 30A (4): 1101-1108.
    [18] Orru R. Mechanistic investigation of the field-activated combustion synthesis (FACS) of titanium aluminides [J]. Chemical Engineering Science. 1999, 54(15-16): 3349-3355.
    [19] Feng A., Munir Z.A. The effect of an electric field on self-sustaining combustion synthesis: PartⅠ. Modeling studies [J]. Metallurgical and Materials Transactions. 1995, 26B(3):581-586.
    [20] Feng A., Munir Z.A. The effect of an electric field on self-sustaining combustion synthesis: PartⅡ. Field-sssisted synthesis ofβ-SiC [J]. Metallurgical and Materials Transactions. 1995, 26B(3):587-593.
    [21] Yang W.Y., Weatherly G. C. A study of combustion synthesis of Ti-Al intermetallic compounds [J]. Journal of Materials Scinece. 1996, 31:3707-3713.
    [22] Munir Z. A. Electrically Stimulated SHS [J]. International Journal of Self-propagating High-Temperature Synthesis. 1997, 6 (20): 165-186.
    [23] Shon I.J., Kim H.C., Rho D.H., Munir Z.A. Simultaneous synthesis and densification of Ti5Si3 and Ti5Si3-20vol% ZrO2 composites by field-activated and pressure-assisted combustion [J]. Materials Science and Engineering A. 1999, 269: 129-135.
    [24] Xie G Q, Ohashi O, Song M H, et al. Reduction mechanism of surface oxide films and characterization of formations on pulse electric-current sintered Al-Mg alloy powders [J]. Applied Surface Science. 2005, 241(1-2):102-106.
    [25] Goldberger W. M., Merkle B. and Boss D., Making dense near-net shaped parts by electro consolidation [J]. Advanced Powder Metallurgy Particulate Materials. 1994, 6:91-102.
    [26] Hlavacek V., Puszynski J. A. Combustion synthesis of transition metal nitrides[R]. In The Chemistry of Transition Metal Carbides and Nitrides, Blackie Academic & Professional: Glasgow, 1996; pp 233-251.
    [27] Puszynski J. A., Majorowski S., Hlavacek V. Densification of aluminum nitride-based ceramic materials synthesized by combustion of aluminum in air [J]. Chemistry Engineering Communications. 1996, 152–153: 75-85.
    [28] Margolis S. B., Kaper H. G., Leaf G. K., et al. Bifurcation of pulsating and spinning reaction fronts in condensed two-phase combustion [J]. Combustion Science & Technology. 1985, 43: 127-165.
    [29] Chen W., Anselmi-Tamburini U., Garay J.E., et al. Fundamental investigations on the spark plasma sintering/synthesis process I. Effect of dc pulsing on reactivity [J]. Materials Science and Engineering A, 2005, 394: 132-138.
    [30] Munir Z. A., Anselmi-Tamburni U.. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. Journal of Materials Science, 2006, 41:763-777.
    [31] Huntington H. B., Nowick A. S., Burton J. J. Diffusion in Solids [M]. New York: Academic Press, 1975: 306.
    [32]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社,2002:520-522.
    [33]陈信文.电流效应对无铅焊点的影响[R],台湾:行政院国家科学委员会专题研究计划成果报告,国立清华大学化学工程系,1995.
    [34] Hlavacek V., Puszynski J. A. Combustion synthesis of transition metal nitrides[R]. In The Chemistry of Transition Metal Carbides and Nitrides, Blackie Academic & Professional: Glasgow, 1996; pp 233–251.
    [35] Puszynski J. A., Majorowski S., Hlavacek V. Densification of aluminum nitride-based ceramic materials synthesized by combustion of aluminum in air [J]. Chemistry Engineering Communications. 1996, 152–153: 75-85.
    [36] Puszynski J. A. Thermochemistry and kinetics. In Carbide, Nitride, and Boride Materials [M]. New York: Chapman & Hall: 1990.
    [37] Puszynski J. A., Dargar S. R., Liebig B. E. Combustion synthesis of ceramiccomposites and solid solutions from nanoreactants [J]. Ceramic Transactions. 2004, 166: 11-21.
    [38] Puszynski J. A. Recent advances in synthesis and densification of nanomaterials in self-propagating high-temperature regime [J]. Advances in Science and Technology. 2006, 45: 994-1003.
    [39] Spriggs R. M., Hasselman D. P. H., Notis M. R., et al. kinetics and Mechanisms of Synergetic Pressure-Sintering and Mechanical Behavior of High-Strength Ceramics [R]. 1972, 1-55
    [40] Khor K.A., Yu L.G., Munir Z.A. Spark plasma reaction sintering of ZrO2/mullite composites from plasma spheroidized zircon/alumina powders [J]. Materials Science and Engineering A, 2003, 339: 286-296.
    [41] Woolman J.N.,Petrovic J.J.,Munir Z.A. Incorporating Mg into the Si sub-lattice of molybdenum [J]. Disilicide Scripta Materialia, 2003, 48: 819-824.
    [42] Kim H. C.,Shon I. J.,Garay J.E.,et al. Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering [J]. International Journal of Refractory Metals & Hard Materials. 2004, 22: 257-264.
    [43] Honga S. H., Kima B. K., Munir Z. A. Synthesis and consolidation of nanostructured W-10-40wt.% Cu powders [J]. Materials Science and Engineering A. 2005, 405: 325-332.
    [44] Strutt E. R., Radetic T., Olevsky E.A., et al. Combustion synthesis/quasi-isostatic pressing of TiC0.7-NiTi cermets: microstructure and transformation characteristics [J]. Journal of Materials Science. 2008, 43(17):5905-5923.
    [45] Vecchio K. S., LaSalvia J. C., Meyers M. A., et al. Microstructural characterization of self-propagating high-temperature synthesis/dynamically compacted and hot pressed titanium carbides [J]. Metal Transaction A. 1992, 23A: 87-98.
    [46] Olevsky E. A., Kristofetz E. R., Meyers M. A. Controlled net shape, density, and microstructure of TiC-NiTi cermets using quasi-isostatic Pressing [J]. International Journal of Combustion Synthesis.1998, 7: 517-528.
    [47] Niedzialek S. E., Stangle G. C., Kaieda Y. Combustion-synthesized functionally gradient refractory materials [J]. Journal of Materials Research. 1993, 8 (8):2026-2034.
    [48] Makino A., Law C. K. Self-propagating gigh-temperature synthesis flammable range and dominant parameters for synthesizing several ceramics and intermetallic compounds under heat loss conditions [J]. Journal of American Ceramic Sociery. 1996, 79: 3097-3102.
    [49] Makino A., Law C. K. SHS combustion characteristics of several ceramics and intermetallic compounds [J]. Journal of American Ceramics Society. 1994, 77: 778-786.
    [50] Kumar S., Puszynski J. A., Hlavacek V. Combustion characteristics of solid-solid systems[M] Experiment and modeling in combustion and plasma synthesis of temperature materials. VCH Publisher, 1990: 273–280.
    [51] Dandekar H., Puszynski J. A., Hlavacek V. Modeling of transition metal nitridation in combustion regime[J]. Materials Science Monographs. 1991, 66B: 1207-.1211
    [52] Anselmi-Tamburini U., Gennari S., Garay J.E., Munir Z.A.. Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions [J]. Materials Science and Engineering A, 2005, 394: 139-148.
    [53] Anselmi-Tamburini U., Garay J.E., Munir Z.A.. Fundamental investigations on the spark plasma sintering/synthesis process III. Current effect on reactivity [J]. Materials Science and Engineering A, 2005, 407: 24-30.
    [54] Lau C., Mukasyan A. S., Varma A. Materials synthesis by reduction-type combustion reaction: influence of gravity [J]. Proceedings of the Combustion Institute. 2002, 29: 1101-1108.
    [55] Martirosyan K. S., Luss D.. Carbon combustion synthesis of ferrites: synthesis and characterization [J]. Industrial & Engineering Chemistry Research. 2007, 46: 1492-1499.
    [56] Martirosyan K. S., Chang L., Rantschler J., et al. Carbon combustion synthesis and magnetic properties of cobalt ferrite nanoparticles[C]. IEEE Transactions on Magnetics 2007, 43 (6): 3118-3120.
    [57] Dinka P., Mukasyan A. In situ preparation of the supported catalysts by solutioncombustion synthesis [J]. Journal of Physical. Chemistry, 2005, 109 (46): 21627-21633.
    [58] Mukasyan A. S., Dinka P. Novel Approaches for Solution Combustion Synthesis of Nano-Materials [J]. International Journal of Self-propagating High-Temperature Synthesis. 2007, 1: 23-35.
    [59] Liu Bing, Zhao Zhi-long, Wang Yong-xin,et al. The solidification of Al-Cu binary eutectic alloy with electric fields [J]. Journal of Crystal Growth, 2004, 271: 294-301.
    [60]刘兴江,陈绍红.脉冲电场对FeMnSiCr形状记忆合金凝固组织及形状记忆效应的影响[J].功能材料, 2007, 10(38): 1661-1663.
    [61]刘北兴,冯海波,李仁顺等.电场固溶处理对1420铝锂合金组织和性能的影响[J].材料科学与工艺, 2000, 8(2): 21-24.
    [62] Liu Bing, Chen Zheng, Wang Yong-xin, et al. The effect of an electric field on the mechanical properties and microstructure of Al-Li alloy containing Ce [J]. Materials Science and Engineering A, 2001, 313: 69-74.
    [63] Liu W, Liang K M, Zhang Y K, et al. Study of the diffusion of Al-Li alloys subjected to an electric field [J]. Journal of Materials Science, 1998, 33:1043-1047.
    [64] Liu W, Wu T K, Liu Q. Effects of electric field treatment on recrystallization of copper single crystal [J]. Scripta Materialia, 2005, 52(6): 495-499.
    [65] Liu W, Cui J. Z. The effect of electric field on the recrystallization of 209l Al-Li alloy [J]. Journal of Materials Science Letter, 1997, 16:1400-1401.
    [66] Liu W., Cui J. Z. Effect of the homogenization treatment in an electric field on T1 precipitation in 2091 Al-Li alloy [J]. Scripta Metallurtgica et Materialia, 1995, 33(4):623-626.
    [67] Holland T. B., Loffler J. F., Munir Z. A. Crystallization of metallic glasses under the influence of high density DC currents [J]. Journal of Applied Physics. 2004 95(5):2896-2899.
    [68] Hans Conrad. Effects of electric current on solid state phase transformations in metals [J]. Materials Science & Engineering A. 2000, 287(2 )227-237
    [69] Bertolino N., Garay J., Anselmi-Tamburini U. et al. Electromigration eEffects in Al-Au mMultilayers [J]. Scripta Materialia, 2001, 44: 737-742.
    [70] Garay J.E., Anselmi-Tamburini U., Munir Z.A.. Enhanced growth of intermetallic phases in the Ni-Ti system by current effects [J]. Acta Materialia, 2003, 51: 4487-4495.
    [71] Chen W., Anselmi-Tamburini U., Garay J.E., et al.. Fundamental investigations on the spark plasma sintering/synthesis process III. Current effect on reactivity [J]. Materials Science and Engineering A,2005,407: 25-30.
    [72] Friedman J. R., Garay J. E., Anselmi-Tamburini U. Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC current[J]. Intermetallics, 2004,12(16): 589-597.
    [73] Bertolino N., Garay J., Anselmi-Tamburini U., et al. High-flux current effects in interfacial reactions in Au-Al multilayers [J]. Philosophical Magazine B,2002, 82(8): 969-975.
    [74] Garay J. E., Glade S. C., Anselmi-Tamburini U. et al. Electric current enhanced defect mobility in Ni3Ti intermetallics [J]. Applied Physics Letters, 2004, 85:573-575.
    [75] Asoka-Kumar P, Obrien K, Lynn K G, et al. Detection of current-induced vacancies in thin aluminum-copper lines using positrons [J].Applied Physics Letters, 1996,68(3): 406-410.
    [76] Friedman J. R., Garay J. E., Anselmi-Tamburini U., Munir Z.A.. Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC current [J]. Intermetallics, 2004,12(16): 589-597.
    [77] Feng A., Graeve O.A., Munir Z.A.. Modeling solution for electric Field-activated combustion Synthesis [J]. Computational Materials Science, 1998, 12: 137-155.
    [78] Braunovic M, Aleksandrov N. Evaluation of different contact aid compounds for aluminum-to-copper connections [J]. IEEE Trans Components, Hybrids Manufacture Technology, 1992, 15(2):216-224.
    [79] Braunovic M, Alexandrov N. Intermetallic compounds at aluminum-to-copper electrical interfaces: effect of temperature and electric current [J]. IEEE Trans Components Packaging, Manufacture Technology, Part A, 1994,17(1): 78-85.
    [80]陈铮,刘兵,王永欣等.电场处理的强化晶界效应与唯象理论[J].稀有金属材料与工程,2001, 30 (5): 331-334.
    [81]张久兴,岳明,宋晓艳等.放电等离子烧结技术与新材料研究[J].功能材料,2004, 35: 94-105.
    [82] Anselmi-Tamburini U., Gennari S., Garay J.E., Munir Z.A.. Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions [J]. Materials Science and Engineering A, 2005, 394: 139-148.
    [1]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社. 2004:1-2.
    [2]任家烈,吴爱萍.先进材料的连接[M].北京:机械工业出版社. 2000:269.
    [3] Meng Jie, Jia Chengchang, Wang Kaiming. Review of formation of Ni3Al intermetallics compounds by mechanical alloying [J]. Powder metallurgy technology. 2006, 24(4): 299-303.
    [4]张永刚,韩雅芳,陈国良等.金属间化合物结构材料[M].北京:国防工业出版社. 2003.
    [5] Niihara K, Morena R, Hasselman D P H. Evaluation of KIC of britle solid by the indencation method with low crack-to-indent ratios. Journal of Materials Science Letter, 1982, 1(1):13-16.
    [6]殷声.燃烧合成[M].北京:冶金工业出版社. 1999:54.
    [1]殷声.燃烧合成[M].北京:冶金工业出版社. 1999: 50-53.
    [2]叶大伦,胡建华.实用无机物热力学数据手册(第2版)[M].北京:冶金工业出版社. 2002
    [3] Munir Z. A., Umberto R. Self - propagating exothermic reactions: The synthesis of high - temperature materials by combustion [J]. Materials Science Reports 3. 1989,277-365.
    [4] Nishimura C, Liu C T. Reaction sintering of Ni3Al under compression. Acta Metall. Mater., 1991, 41(3):113.
    [5]郭建亭.有序金属间化合物镍铝合金[M].北京:科学出版社. 2003.
    [6]王振洋. Al-Ti-C中间合金的燃烧合成[D].甘肃:甘肃工业大学. 2003
    [7]张永刚,韩雅芳,陈国良等.金属间化合物结构材料[M].北京:国防工业出版社. 2003.
    [8] Binary alloy phase diagrams, second edition plus updates. The materials informationsociety, ASM Interantional.
    [9] http://www.crct.polymtl.ca/FACT/documentation/.
    [10] CHEN Shaoping, MENG Qingsen. Structure and mechanical properties of joining interface of composite-lined pipes with FeNi alloy transition layer prepared by SHS[C]. The Proceedings of the China Association for Science and Technology. 2006, 13(2): 311-314.
    [11]申艳丽,孟庆森, Munir Z A.等. FASHS技术制备TiB2-Ni/Ni3Al/405不锈钢梯度材料[J].焊接学报. 2007, 28(8):25-30.
    [12] Meng Q. S., Chen S. P., Shen Y.L., et al. Microstructure and Mechanical Properties of Graded Materials Prepared by Field-Activated and Pressure-Assisted Combustion Synthesis [J]. Key Engineering Materials. 2008, 368-372:1876-1878.
    [1]殷声.燃烧合成[M].北京:冶金工业出版社.1999
    [2] Munir Z. A., Umberto R. Self - propagating exothermic reactions: The synthesis of high - temperature materials by combustion [J]. Materials Science Reports 3. 1989,277-365.
    [3]孟杰,贾成厂.机械合金化金属基化合物Ni3Al研究现状[J].粉末冶金技术. 2006, 24(4): 299-303.
    [4] William F. Smith. Foundation of materials science and engineering [B], China Machine Press, 2006.
    [5] Handbook of Ternary Alloy Phase Diagrams. ASM International. 1995. Electronic DataBooks. 5.1.2600.2180.
    [6] Binary alloy phase diagrams, second edition plus updates. The materials information society, ASM Interantional.
    [7] Badini C, Ubertalli G, Puppo D, et al. High temperature behavior of a Ti-6Al-4V/TiCp composite processed by BE-CIP-HIP method [J]. J Materials Science. 2000, 35: 3912-3916.
    [8]吕维洁,张小农,张荻等.原位合成TiC/Ti基复合材料增强体的生长机制[J].金属学报.1995, 35: 536-540.
    [9]方洪渊.材料连接过程中的界面行为[M].哈尔滨:哈尔滨工业大学出版社. 2005:192-193.
    [10] Cannillo V., Manfredini T., Siligardi C. Preparation and experimental characterization of glass-alumina functionally graded materials [J]. Journal of the European Ceramic Society, 2006, 26(6): 993-1001.
    [11] Yuji Kawakami; Fujio Tamai; Takashi Enjoji; Kazuki Takashima; Masaaki Otsu. Preparation of Tungsten Carbide / Stainless Steel Functionally Graded Materials by Pulsed Current Sintering [J]. Diffusion and Defect Data. Part B, Solid State Data, Solid State Phenomena. 2007, 127: 179-181.
    [12] Shen Bin, Mija Hubler; Glaucio H Paulino. Functionally-graded fiber-reinforced cement composite: Processing, microstructure, and properties [J]. Cement & concrete composites, 2008, 30(8): 663-671.
    [13]刘彬彬,谢建新,陈江华. W-Cu梯度功能材料的热物理性能[J].中国有色金属学报,2009,Vol.19(3):538-542.
    [14] E Celik; I Birlik; Y Karakas, Synthesis of NiCrAl/MgO-ZrO{sub}2 cermet powders by chemical method for functionally graded coatings, Journal of Materials Processing Technology, 2009,2:695-699.
    [15]张久兴,刘科高,周美玲.放电等离子烧结技术的发展和应用[J].粉末冶金技术,2002,20(3):129-134.
    [16] U Anselmi-Tamburini, J E Garay, Z A Munir. Fundamental investigation on the spark plasma sintering/synthesis processⅢ.Current effect on reactivity [J]. Materials science and engineering A, 2005, 407:24-30.
    [17] U Anselmi-Tamburini, J E Garay, Z A Munir, Fast low-temperature consolidation of bulk nanometric ceramic materials[J], Scripta Materialia, 2006,54:823-828.
    [18] Meng Jie,Jia Chengchang, Wang Kaiming. Review fo formation of Ni3Al intermetallics compounds by mechanical alloying [J]. Powder metallurgy technology,2006,24(4): 299-303.
    [19] Z A MUNIR, U ANSELMI-TAMBURINI. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. J MATER SCI. 2006, 41:763-777.
    [20] William F. Smith. Foundation of materials science and engineering [B], China Machine Press, 2006.
    [21]李智,苏旭平,贺跃辉,谭铮,尹付成. Zn/Fe及Zn/Fe-Si固态扩散偶中金属间化合物的生长[J]. 2008, 18(9): 1639-1644.
    [1]郭建亭.有序金属间化合物镍铝合金[M].北京,科学出版社,2003:30-33.
    [2] Munir Z. A., Anselmi-Tamburini U.. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. Journal of Mateirals Scinece, 2006, 41: 763-777.
    [3] Garay J.E., Anselmi-Tamburini U., Munir Z.A.. Enhanced growth of intermetallic phases in the Ni-Ti system by current effects [J]. Acta Materialia, 2003, 51: 4487-4495.
    [4] Chen W., Anselmi-Tamburini U., Garay J.E., et al.. Fundamental investigations on the spark plasma sintering/synthesis process III. Current effect on reactivity [J]. Materials Science and Engineering A,2005,407: 25-30.
    [5] Friedman J. R., Garay J. E., Anselmi-Tamburini U. Modified interfacial reactions in Ag-Zn multilayers under the influence of high DC current[J]. Intermetallics, 2004,12(16): 589-597.
    [6] Bertolino N., Garay J., Anselmi-Tamburini U., et al. High-flux current effects in interfacial reactions in Au-Al multilayers [J]. Philosophical Magazine B,2002, 82(8): 969-975.
    [7] Goldberger W. M., Merkle B. and Boss D., Making dense near-net shaped parts by electro consolidation [J]. Advanced Powder Metallurgy Particulate Materials. 1994, 6: 91-102.
    [8]陈信文.电流效应对无铅焊点的影响[R],台湾:行政院国家科学委员会专题研究计划成果报告,国立清华大学化学工程系,1995.
    [9]魏齐龙,陈铮,刘兵.固溶电场对铝锂合金析出动力学的影响[J].稀有金属材料工程. 2003,32(9): 723-726.
    [10]马建丽.无机材料科学基础[M].重庆:重庆大学出版社. 2008.
    [11] Bertolino N., Garay J., Anselmi-Tamburini U. et al. Electromigration eEffects in Al-Au mMultilayers [J]. Scripta Materialia, 2001, 44: 737-742.
    [12] Binary alloy phase diagrams, second edition plus updates. The materials information society, ASM Interantional.
    [13] Asoka-Kumar P, O’brien K, Lynn KG, et al. Detection of current-induced vacancies in thin aluminum–copper lines using positrons [J]. Appl Phys Lett, 1996, 68(3): 406-410.
    [14] Garay J, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA. Electric current enhanced defect mobility in Ni3Ti intermetallics [J]. Appl Phys Lett., 2004, 85(4):573-575.
    [15]刘晓涛,崔建忠.在电场中奥氏体化对低碳钢显微组织及淬透性的影响[J].钢铁研究学报, 2004, 16(4): 46-49.
    [16]李清斌,王晓春编译,徐景春校对.合金中的扩散性相变与合金热力学[M].辽宁,辽宁科学技术出版社. 1984: 27-48.
    [17]刘翠荣.玻璃(陶瓷)与金属阳极键合界面结构及力学性能[D].太原,太原理工大学.2008.
    [18]汤文辉.物态方程理论及计算概论[M].国防科技大学出版社, 1999.
    [19]杜正良.电场对AZ31B/Al连接界面扩散反应和扩散溶解层结构的影响[D].太原,太原理工大学.2008.
    [20] Meng Q.S., Chen S.P., Munir Z.A.,Microstructure and mechanical properties of multilayer-lined composite pipes prepared by SHS centrifugal-thermite process [J]. Materials Science and Engineering: A. 2007, 456(1-2): 332-336.
    [1]沃丁柱.复合材料大全[M].北京:化学工业出版社. 2001.
    [2]徐自立,魏伯康.浅谈梯度功能材料几种物性的推定[J].武汉科技学院学报. 2000, 13(1):1-5.
    [3]张永刚,韩雅芳,陈国良等.金属间化合物结构材料[M].北京:国防工业出版社. 2003.
    [4]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社. 2004:1-2.
    [5]梁光军.材料物理性能[M].天津:天津大学出版社. 2008.
    [6]姚为,吴爱萍,邹贵生,等. Ti/Al扩散焊的接头组织结构及其形成规律[J].稀有金属材料与工程. 2007, 36(4): 700-704.
    [7]尹邦跃,王零森. ZrO2基陶瓷压痕断裂韧性的测定[J].粉末冶金测量科学与工程. 2001, 6(1): 78-82.
    [8]金宗哲,包亦望.脆性测量力学性能评价与设计[M].北京:中国铁道出版社. 1996:148.
    [9]滕立东,王福明,李文超.梯度功能材料数值模拟进展[J].稀有金属. 1999, 23(4): 298-304.
    [10]陈楚.数值分析在焊接中的应用[M].上海:上海交通大学出版社. 1985.
    [11]上田幸雄,村川英一,麻宁绪,等.焊接变形和残余应力的数值计算方法与程序[M].成都:四川大学出版社. 2008.
    [12]许富明.梯度分布的SiC颗粒增强铝基复合材料的制备,组织和力学行为[D].大连:大连理工大学, 2003.
    [13] Alinia M.M, Ghannadpour S.A.M. Nonlinear analysis of pressure loaded FGM plates[J]. Composite Structures. 2008.
    [14] Wenchun Jiang, Jianming Gong, Shandong Tu, et al. Modeling of temperature field and residual stress of vacuum brazing for stainless steel plate-fin structure. [J]. Journal of Materials Processing Technology. 2009, 209(2): 1105-1110.
    [15] Pinto H, Corpas M, Guio J. A. Microstructure and Residual Stress Formation in Induction-Assisted Laser Welding of the Steel S690QL [J]. Steel Research. 2009, 80(1) :39-41.
    [16] Weizhi Luan, Chuanhai Jiang, Vincent Ji. Residual Stress Relaxation in Shot Penned Surface Layer on TiB2/Al Composite under Applied Loading [J]. Materials Transactions. 2009, 50(1): 2195-2202
    [17]余正刚,姜勇,巩建鸣.不同异种钢管道焊接接头残余应力的数值模拟[J].焊接学报. 2009, 30(8):69-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700