ZrO_2/LaPO_4复相陶瓷的抗热震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对氧化锆陶瓷的耐侵蚀性能与抗热震性能在拓展其应用方面的矛盾,以及传统抗热震理论的不足,以三种具有不同相组成的氧化锆(3Y-TZP、4Y-TZP和Mg-PSZ)为基体材料,加入LaPO_4组分,探索利用片晶LaPO_4的解理以及LaPO_4与ZrO2之间的弱界面对裂纹扩展能量的耗散,在不明显降低氧化锆陶瓷优良力学性能、致密度(以保证其抗侵蚀性能)的条件下,改善其抗热震性能的可能性。在力学性能、热学性能、显微结构及裂纹扩展状态研究的基础上,分别用淬冷-强度法和压痕-淬冷法,较系统地研究了ZrO2/LaPO_4复合陶瓷的抗热震性能及相关机理,主要得出如下结论:
     4Y-TZP陶瓷的抗热震性能随LaPO_4加入量的增加而升高。4Y-TZP/30vol% LaPO_4复合陶瓷的临界抗热震温差比单一4Y-TZP陶瓷提高了400 oC。
     氧化锆粒度为0.5μm和1.5μm时,对于单一4Y-TZP,粒度小的抗热震性较好;LaPO_4加入量小于15vol%时,两种粒度氧化锆陶瓷的抗热震性能相近;LaPO_4加入量为20vol%时,氧化锆粒度大的材料抗热震性较好。
     LaPO_4加入量保持15vol%不变, 1470 oC保温2h烧结时,加入粒度为13μm或35μm LaPO_4的3Y-TZP/LaPO_4复相陶瓷的抗热震性能较高;1470 oC保温3h烧结时,加入2.5μm的LaPO_4,3Y-TZP/LaPO_4复相陶瓷的抗热震性能最好,其空气淬冷下的临界抗热震温差为1300 oC。
     LaPO_4的添加促进了Mg-PSZ材料的致密化,并改善了其抗热震性能。Mg-PSZ/10 vol%LaPO_4复相材料的水淬临界抗热震温差比单一Mg-PSZ材料提高了100oC。Mg-PSZ/15 vol%LaPO_4复相材料的强度随热震温差的提高没有明显下降,表现了很好的抗热震损伤能力。
     相同热震条件下,加入15vol%、40μm LaPO_4的3Y-TZP/LaPO_4复相陶瓷,其裂纹扩展数量百分比和裂纹扩展长度百分比都最小。而加入30 vol%、13μm LaPO_4的3Y-TZP/LaPO_4复相陶瓷的相应值都最大。
     ZrO2/LaPO_4复相陶瓷的抗热震性能不能由传统抗热震参数的大小来准确预测。弱界面开裂、裂纹在弱界面处的偏转、分叉以及LaPO_4的解理等分散了热应力、耗散了热震作用积聚在陶瓷体内的弹性应变能,这是ZrO2/LaPO_4复相陶瓷具有较高抗热震性能的主要原因。
Considering the contradiction between corrosion resistance and thermal shock resistance of Zirconia ceramics in expanding their application, and the insurfficiency of traditonal theory on evaluating the thermal shock resistance of ceramics, three different Zirconia ceramics--3Y-TZP, 4Y-TZP and Mg-PSZ were used to be the matrix to prepare ZrO2/LaPO_4 composites, the possibility of improving the thermal shock resistance of Zirconia ceramics by the elastic energy dissipation resulted from the LaPO_4 debonding and crack branching or bridging at the weak interface was investigated. Based on the study on the mechanical properties, microstructures and the growth behavior of microcracks, the thermal shock resistance of ZrO2/LaPO_4 composites was investigated systematically. The main conclusions are as follows:
     The thermal shock resistance of 4Y-TZP was improved with increasing the content of LaPO_4. Under the condition of air quenching,ΔTc of 4Y-TZP/LaPO_4 was 400oC higher than that of pure 4Y-TZP.
     In the particle size range from 0.5μm to 1.5μm, the monolithic 4Y-TZP ceramics with fine particle size had a higher thermal shock resistance. But for 4Y-TZP/LaPO_4 composites, when the content of LaPO_4 was up to 20 vol%, the thermal shcok resistance of the composites with coarser particle size was better.
     When LaPO_4 content was kept 15vol%, the composites containing 13μm or 35μm LaPO_4 and sintered at 1470 oC /2h has better thermal shock resistace; Under condition of 1470 oC /3h, LaPO_4 particle size was 2.5μm, theΔTc of the composites was 1300 oC under condition of air quenching,.
     The density and thermal shock resistance of Mg-PSZ/LaPO_4 ceramics increased with increasing the LaPO_4 content. Under water quench condition, the thermal shock resistance of Mg-PSZ/10wt% LaPO_4 composites was 100 oC higher than pure Mg-PSZ. The composites containing 15 wt % LaPO_4 behaves as a low strength refractory ceramic and has a good thermal shock damage resistance.
     Under the same thermal shock condition, the fraction of crack propagation and crack extension was the lowest for 3Y-TZP/LaPO_4 containing 15vol%、40μm LaPO_4, and the highest for that containing 30vol%、13μm LaPO_4.
     The thermal shock resistance of ZrO2/LaPO_4 composites can not be predicted accurately by the value of traditional thermal shock parameters. The partial relief of the elastic strain energy resulted from crack initiation, crack branching at weak interfaces and cleavage fracture of LaPO_4 grains was the main reason for the improvement of their thermal shock resistance.
引文
[1]尹衍升,陈守刚,李嘉,先进结构陶瓷及其复合材料,北京:化学工业出版社, 2006,10,1~10
    [2]胡宝玉,张宏达,李丹,氧化锆特种耐火材料在工业中的应用,稀有金属快报,2004,23(6):31~35
    [3]尹衍生,李嘉,氧化锆陶瓷及其复合材料,化学工业出版社,2004,1~7
    [4] P. Pernilla, M. Johnsson, Thermal shock properties of alumina reinforced with Ti(C, N) whiskers, Journal of the European Ceramics Society, 2003, 23: 309~313
    [5] H. Mei, L. Cheng, L. Zhang, et al, Effect of fiber architectures on thermal cycling damage of C/SiC composites in oxidizing atmosphere. Materials Science & Engineering, 2007, A460~461: 306~313
    [6] X. Zhang, X. Liu, S. Du, et al., Thermal shock behavior of SiC-whisker- reinforced diboride ultrahigh-temperature ceramics. Scripta Materialia, 2008, 59: 55~58
    [7]张芳,王介强,辛宁,Al2O3/20%Ni网状复合材料抗热震性研究,金属学报,2001,37(5):551~553
    [8] N. Rendtorff, L. Garrido, E. Aglietti, Mullite–zirconia–zircon composites: Properties and thermal shock resistance, Ceramics International, 2009,35: 779-786
    [9] X. Zhang, Z. Wang, X. Sun, et al., Effect of graphite flake on the mechanical properties of hot pressed ZrB2-SiC ceramics, Materials Letters, 2008, doi:10.1016/j.matlet.2008.07.027
    [10] Si T, Liu N, Zhang Q, et al, Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics. Rare metal, 2008, 27: 308~314
    [11] M. Paverse, P. Fino, A. Ortona, et al., Potential of SiC multilayer ceramics for high temperature applications in oxidising environment, Ceramics International, 2008,35: 197-203
    [12]王志,季英瑞,史国普,Ti/Al2O3梯度功能材料抗热震性能评价,济南大学学报(自然科学版), 2006,20(2):95~97
    [13] T. Sadowski, M. Boniecki, Z. Librant, et al, Theoretical prediction and experimental verification of temperature distribution in FGM cylindrical plates subjected to thermal shock,International Journal of Heat and Mass Transfer, 2007, 50: 4461~4467
    [14] P. E. D. Morgan, D. B. Marshall, Ceramic Composites of Monazite and Alumina, Journal of the American Ceramics Society, 1995, 78(6): 1553~1563
    [15] P. E. D. Morgan, D. B. Marshall, R. M. Housley, High Temperature Stability of Monazite-Alumina Composites, Materials Science & Engineering, 1995, A195, 215~221
    [16] J.B. Davis, D.B. Marshall, R.M. Housley, et al. Machinable Ceramics Containing Rare-Earth Phosphates. Journal of the American Ceramics Society, 1998,81(8): 2169~2175
    [17] J.B. Davis, D.B. Marshall, P.E.D. Morgan. Monazite-containing oxide/oxide composites. Journal of the European Ceramics Society, 2000, 20: 583~587
    [18] X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings, Journal of the European Ceramics Society, 2004, 24: 1~10
    [19] P.V. Ananthapadmanabhana, K.P. Sreekumara, T.K. Thiyagarajana, et al, Plasma spheroidization and high temperature stability of lanthanum phosphate and its compatibility with molten uranium, Materials Chemistry and Physics, 2009, 113: 417~421
    [20] M. Berbon, J.B. Davis, D.B. Marshall, et al, High temperature creep of La-monazite. International Journal of Materials Research, 2007, 98(12): 1244~1249
    [21] D. Bregirou, F. Audubert, B.A. Didier, Densification and grain growth during solid state sintering of LaPO4. Ceramics International, 2009, 35: 1115~1120
    [22]邱世鹏,刘家臣,刘志锋,等,CePO4/Ce-ZrO2可加工陶瓷加工机理的研究,硅酸盐学报,2003,31(4):341~345
    [23] A. Yu, L. Zhong, J. Liu, et al. Cutability Evaluation of oxide ceramics containing rare earth phosphates, Journal of Rare Earths, 2003, 21, suppl: 93~99
    [24]刘志锋,刘家臣,邱世鹏,等,一种新型可加工陶瓷材料Ce-ZrO2/CePO4,硅酸盐学报,2003,31(6):538~546
    [25]王丽娟,刘家臣,王凯利,等, CePO4的煅烧温度对Ce-ZrO2/CePO4材料的结构与性能影响,硅酸盐通报,2004,5:99~105
    [26]刘志锋,刘家臣,邱世鹏,等,可加工Ce-ZrO2/CePO4陶瓷材料的裂纹扩展及加工损伤.材料工程,2003,7:14~19
    [27]葛志平,刘志锋,刘家臣等,可加工Ce-ZrO2/CePO4陶瓷的“塑性化”及其机理,天津大学学报,2004,37(2):126~129
    [28] Y. Zhu, J. Liu, H. Liu, et al, Investigation of Microstructure of Al2O3/LaPO4 Ceramic Composites, J. Rare. Earth., 2005, 23, suppl., 197~199
    [29]李嘉,铁铝金属间化合物-四方氧化锆陶瓷基复合材料的研究,博士论文,山东大学,2003
    [30] K.T. Faber, M.D. Huang, A.G. Evans, Quantitatives studies of thermal shock in ceramics based on a novel test technique, Journal of the American Ceramics Society, l981, 64: 296~301
    [31] W. D. Kingery, Factors affecting thermal shock resistance of ceramic materials, Journal of the American Ceramics Society, l955, 38(1): 3~15
    [32] D.P.H.Hasselman, Elastic energy at fracture and surface energy as design criteria for thermal shock, Journal of the American Ceramics Society, l963, 6(11): 535~540
    [33] D.P.H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics, Journal of the American Ceramics Society, 1969, 2(11): 600~604
    [34] W. Buessem, Ring test and its application to thermal shock problems, O. A. R. Report, Wright-Patterson Air Force Base, Dayton, OH, 1950
    [35] S. S, Manson Behavior of materials under conditions of thermal stress, N. A. C. A. Technical Note 2933, Washington DC, 1953
    [36] A.G. Evans, E.A. Charles, Structural integrity in severe thermal environments, Journal of the American Ceramics Society, 1977, 50(1~2): 22~28
    [37] A.F. Emery, Thermal stresses in severe environment, Edited by D.P.H. Hasselman and R.A. Heiler, Plenun Press, New York, (1980): 95~121
    [38]徐利华,连芳,李文超,等,不同形态ZrO2复合Al2O3陶瓷的抗热震性设计与表征,硅酸盐学报,2000,28(5):412~418
    [39]吕珺,郑治祥,金志浩,等,晶须及颗粒增韧氧化铝基陶瓷复合材料的抗热震性能,材料工程,2000,12:15~19
    [40]吕珺,郑治祥,金志浩,氧化铝基陶瓷复合材料的阻力曲线行为及其抗热震性能,复合材料学报,2001,18(4):76~81
    [41] Z. Zhao, M. Johnsson, Z. Shen, Microstructure and mechanical properties of titanium carbonitride whisker reinforcedβ-sialon matrix composites, Materials Research Bulletin, 2002, 37: 1175~87.
    [42]马伟民,修稚萌,闻雷,等,不同含量Y2O3的ZrO2对Al2O3复合陶瓷热震稳定性的影响,中国稀土学报,2004,22(2):229~233
    [43]孔德玉,杨辉,王家邦,等,莫来石/刚玉复相陶瓷热断裂特性研究,硅酸盐通报,2004,5:32~35
    [44]贺智勇,洪彦若,李林,等,氧化锆对刚玉-尖晶石浇注料热震稳定性的影响,耐火材料,2004,38(2):73~75
    [45] J. Eichler, M. Hoffman, U. Eisele, et al, R-curve behaviour of 2Y-TZP with submicron size, Journal of the European Ceramics Society, 2006, 26: 3575~3582
    [46] E.H. Lutz, M.V. Swain, Interrelation between flaw resistance, R-cureve behavior and thermal shock strength degradation in ceramics, Journal of the American Ceramics Society, 1991, 74(11): 2859~2868
    [47] E.H. Lutz, M.V. Swain, Stress-Strain behavior of alumina, Magnesia-Patially-Stabilized Zirconia, and duplex ceramics and its relevance of flaw resistance, Kr-curve behavior and thermal shock behavior, Journal of the American Ceramics Society, 1992, 75(11): 3058~3068
    [48] R.F. Cook, D.R. Clarke, Fractuer stability and strength variability, Metal, 1988, 3693~3703
    [49] Z. Zhou, P. Ding, S. Tan, et al, A new thermal-shock-resistance model for ceramics: Establishment and validation, Materials Science & Engineering, 2005, A405: 272~276
    [50]关振铎,张中太,焦金生,无机材料物理性能,清华大学出版社,2000,6:42~47
    [51]贾德昌,周玉,陶瓷材料抗热震性研究进展,材料科学与工艺,1993,1(4):96~103
    [52] V.N. Gurarie, P.H. Otsuka, Thermal shock resistance of aluminium oxide single crystals with different crystallograghic faces, Materials Chemistry and Physics, 2002, 75: 246~251
    [53] O. Sbaizem, G. pezzotti, Influence of molybdenum particles on thermal shock resistance of alumina matrix ceramics, Materials Science & Engineering, 2003, A343: 273~281
    [54] G. Lin, T. Lei, Microstructure, mechanical properties and thermal shock behavior of Al2O3+ZrO2+SiCw composites, Ceramics International, 1998, 24: 313~326
    [55] S. Maensiri, S.G. Roberts, Thermal shock of ground and polished alumina and Al2O3/SiC nanocomposites, Journal of the European Ceramics Society, 2002, 22: 2945~2956
    [56] J. Deng, T. Lee, Effect of ultrasonic surface finishing on the strength and thermal shock behavior of the EDMed ceramic composite, International Journal of Machine Tools & Manufacture, 2002, 42: 245~250
    [57] D. Sherman, D. Schlumm, Thickness effect in thermal shock of alumina ceramics, Scripta Materialia, 2000, 42: 819~822
    [58] P.K. Panda, T.S. Kannan, J. Dubois, et al, Thermal shock and thermal fatigue study of alumina, Journal of the European Ceramics Society, 2002, 22(13): 2187~2196
    [59]金格瑞,陶瓷导论,北京:中国建筑工业出版社,1982,829~834
    [60]时清海,施季春,含莫来石-氧化锆的铝质耐火材料热力学性能评价,国外耐火材料,1996,10:49~52
    [61] G.M. Gravie, Designing Advanced Refractories with Monoclinic Zirconia Polycrystals, Materials Science Forum, 1988, 34~36: 681~688
    [62] M.V. Swain, R-Curve Behavior and Themml Shock Resistance of Ceramic, Journal of the American Ceramics Society, 1990,73(3): 621~628
    [63]隋万美,黄勇,微裂纹复相陶瓷的抗热震机制,材料导报,2000,14(2):34~35
    [64] H.E. Lutz, M.V. Swain, T.N. Claussen, Thermal shock behavior of duplex ceramics. Journal of the American Ceramics Society, 1991, 74(1): 19~24
    [65] R. Knesans, R. Steinbrech, Memory efect of crack resistance during slow crack growth in notched bend strength, Journal of Materials Science Letters, 1982, 1: 327~329
    [66] M. Sakai, R-Curve Behavior of a Polycrystaline Graphite: Micro-cracking and Grain Bridging in the Wake Region, Journal of the American Ceramics Society, 1988, 71(8): 468~473
    [67] E.B. Paull, Influence of Reinforcement Content and Diameter on the R-Curve Response in SiC-Whisker-Reinforced Alumina, Journal of the American Ceramics Society, 1988, 71(8): 609~616
    [68]宋桂明,周玉,孙毅,等,晶须增韧陶瓷基复合材料裂纹扩展行为模型,材料研究学报,1998,12(1):31~36
    [69] T.N. Tiegs, P.F. Beeher, Thermal Shock Behavior of Alumina-SiC Whisker Composite, Journal of the American Ceramics Society, 1987, 70(5): 109~111
    [70] L. Wang, J. Shi, G. Gao, Influence of tungsten carbide particles on resistance of alumina matrix ceramics to thermal shock, Journal of the European Ceramics Society, 2001, 21: 1213~1217
    [71] A.P. Bayuseno, B.A. Latella, B.H. O’Connor, Resistance of Alumina Ceramics to Thermal Shock, Journal of the American Ceramics Society, 1999,82(4) : 819~824
    [72] S. Mezquita, R. Uribe, R. Moreno, et al, Influence of mullite additions on thermal shock resistance of dense alumina materials, Part II: thermal properties and thermal shock behaviour, British Ceramics Transaction, 2001, 100(6): 246~250
    [73] R. Uribe, C. Baudin. Influence of a Dispersion of Aluminum Titanate Particles of Controlled Size on the Thermal Shock Resistance of Alumina, Journal of the American Ceramics Society, 2003, 86 (5): 846~850
    [74]薛明俊,孙承绪,改善氧化铝陶瓷抗热震性初探,华东理工大学学报,2001,27(6):701~704
    [75] C.G. Aneziris, W. Scharfl, B. Ullrich, Microstructure evaluation of Al2O3 ceramics with Mg-PSZ and TiO2-additions, Journal of the European Ceramics Society, 2007, 27: 3191~3199
    [76] M. Aldridge, J.A. Yeomans, The thermal shock behavior of ductile particle toughened alumina composites, Journal of the European Ceramics Society, 1998, 19: 1769~1775
    [77] L. Wang, J. Shi, M. Lin, et al, The thermal shock behavior of alumina-copper composite, Materials Research Bulletin, 2001, 36: 925~932
    [78] M.I. Nieto, R. Mart?′nez, L. Mazerolles, et al, Improvement in the thermal shock resistance of alumina through the addition of submicron-sized aluminium nitride particles, Journal of the European Ceramics Society, 2004, 24: 2293~2301
    [79] E.C. Subbarrao, Advances in Ceramics, 3, 16, Edited by A.H. Heuer and L.W. Hobbs. Am. Ceram. Soc. Inc. Columbus, Ohio, 1981
    [80] R.C. Garvie, High Temperature Oxides, 5-II, 121, Edited by Allen M. Alper, Academic Press, New York and London. 1970
    [81] G.M. Wolten, Diffusionless Phase Transformation in Zirconia and Hafnia, Journal of the American Ceramics Society, 1963, 46: 48
    [82] H.S. Maiti, K.V. Gokhale, E.C. Subbarao, Kinetics and Burst Phenomenon in ZrO2 Transformation, Journal of the American Ceramics Society, 1972, 55: 317
    [83] R.C. Garvie, High Temperature Oxides. 5-II, 155, Edited by Allen M. Alper. Academic Press, New York and London, 1970
    [84] S. Maschio, G. Farne, Thermal shock resistance of materials based on CeO2-stabilized tetragonal Zirconia polycrystals, Materials Chemistry and Physics, 1994, 37: 136~140
    [85]赵世柯,黄校先,施鹰,等,改善氧化锆陶瓷材料抗热震性的探讨,陶瓷学报,2000,21(1):41~45
    [86]安胜利,氧化镁部分稳定氧化锆的相变与抗热震性能研究,包头钢铁学院学报,2003,22(4) :305~309
    [87] Q. Liu, S. An, W. Qiu. Study on thermal expansion and thermal shock resistance of MgO-PSZ, Solid State Ionics, 1999, 121: 61~65
    [88]郭密,谢光远,李平生,等,热处理工艺对MgO-PSZ固体电解质抗热震性的影响,武汉科技大学学报(自然科学版),2006,29(5):452~454
    [89]周泽华,丁培道,陈蓓,等,相含量的变化对氧化锆陶瓷性能的影响,材料热处理学报,2002,23(1):43~45
    [90] W.J. Wei, Y.P. Lin, Mechanical and thermal shock properties of size graded MgO-PSZ refractory, Journal of the European Ceramics Society, 2000, 20: 1159~1167
    [91] C.G. Aneziris, E.M. Pfaff, H.R. Maier, Fine grained Mg-PSZ ceramics with titania and alumina or spinel additions for near net shape steel processing, Journal of the European Ceramics Society, 2000, 20: 1729~1737
    [92]李嘉,尹衍生,谭训彦,ZrO2(3Y)/Fe3Al复合材料的显微结构及性能,无机材料学报,2004,19(1):189~196
    [93] J. Li, Y.S.Yin, X.Y. Tan, et al, A ZrO2 (3Y) Matrix Composite Toughened with Fe3Al Intermetallic, Journal of the American Ceramics Society, 2005, 88 (1): 235–238
    [94]李嘉,尹衍升,刘强,等,压痕-淬冷技术表征氧化锆-铁铝复合材料的抗热震性能,复合材料学报,2004,21(4):104~109
    [95]王志发,王榕林,王瑞生,等,Al2TiO5-ZrO2复相材料中ZrO2的相变特性,耐火材料,2004,38(6):410~413
    [96]高里存,张永治,钱跃进,锆质定径水口热震稳定性的研究,硅酸盐通报,2006,25(3):204~207
    [97]邓雪萌,张宝清,林旭平,添加剂对氧化锆陶瓷抗热震性能的影响,稀有金属材料与工程,2007,36,suppl(1):391~394
    [98] X.H. Zhang, R.B. Zhang, G.Q. Chen, et al, Microstructure, mechanical properties and thermal shock resistance of hot-pressed ZrO2(3Y)-BN composites, Materials Science & Engineering, 2008, A497: 195~199
    [99] P. He, T.J. Lu, W.J. Clegg, The cracking of zirconia refractory tubes under hot shock, Journal of Materials Science, 2000, 35: 2443~2449
    [100] N.M. Rendtorff, L.B. Garrido, E.F. Aglietti, Thermal shock behavior of dense mullite-zirconia composites obtained by two processing routes, Ceramics International, 2008, 34: 2017~2024
    [101] A. Gilbert, K. Kokini, S. Sankarasubramanian, Thermal fracture of zirconia-mullite composite thermal barrier coatings under thermal shock: An experimental study, Surface & Coatings Technology, 2008, 202: 2152~2161
    [102] A.J. Sanchez-Herencia, C. Pascual, J. He, et al., ZrO2/ ZrO2 layered composites for crack bifurcation, Journal of the American Ceramics Society, 1999, 82(6): 1512-1518
    [103] W. J. Clegg, Design of Ceramic Laminates for Structural Applications, Materials Science and Technology, 1998, 14: 483~495
    [104] L.J. Vandeperre, A. Kristofferson, E.Carlstrom, et al., Thermal shock of layered ceramic structures with crack-deflection interfaces, Journal of the American Ceramics Society, 2001, 84 (1): 104~110
    [105]陈蓓,丁培道,程川,等,压痕法研究ZrO2层状复合陶瓷的抗热震性,耐火材料,2004,38(4):234~237
    [106]陈蓓,丁培道,程川,等,Al2O3 + ZrO2单层和层状陶瓷的表面抗裂纹行为和抗热震性能,硅酸盐学报,2004,32(6):718~722
    [107] M. Pavese, P. Fino, A. Ortona, et al., Potential of SiC multilayer ceramics for high temperature applications in oxidising environment, Ceramics International, 2008, 34(1): 197~203
    [108] P. Hvizdos, D. Jonsson, M. Anglada, et al. Mechanical properties and thermal shock behaviour of an alumina/zirconia functionally graded material prepared by electrophoretic deposition, Journal of the European Ceramics Society, 2007, 27(2~3): 1365~1371
    [109]朱景川,ZrO2-Ni功能梯度材料的热冲击与热疲劳行为,材料科学与工艺,2001,9(4):387~392
    [110] J. Zhao, X. Ai, J. Deng, et al., Thermal shock behavior s of functionally graded ceramic tool materials, Journal of the European Ceramics Society, 2004, 24: 847~854
    [111] M. K.Carron, C. R.Naeser, H.J. Rose, et al., Fractional precipitation of rare earth with phosphoric acid, United States Geological Survey Bulletin, 1958, 1036: 253~275
    [112] Y. Ni, J.M. Hughes, A.N. Mariano, Crystal chemistry of the monazite and xenotime structures, American Mineral, 1995, 80: 21~26
    [113] Y. Hikichi, T.Nomura, Melting temperatures of monazite and xenotime, Journal of the American Ceramics Society, 1987, 70(10): 252~253
    [114]王瑞刚,潘伟,蒋蒙宁,等,层片状LaPO4陶瓷的力学性能与显微结构,硅酸盐学报,2003,18(1):110~115
    [115] M.V. Swan,陶瓷的结构与性能,科学出版社,1998:93~95
    [116] G. Fargas, D. Casellas, L. Llanes, et. al., Thermal shock resistance of yittria-stabilized zirconia with Palmqvist indentation cracks, Journal of the European Ceramics Society, 2003, 23: 107~114
    [117] F. Tancret, Comments on“Thermal shock resistance of yittria-stabilized zirconia with Palmqvist indentation cracks”by G. Fargas, D. Casellas, L. Llanes, M. Anglada [J.Eur. Ceram. Soc. 23 (2003) 107~114], Journal of the European Ceramics Society, 2006, 26: 1517~1522
    [118] G.Fargas, D. Casellas, L. Llanes, ea al., Reply to the paper entitled“Comments on thermal shock resistance of yittria-stabilized zirconia with Palmqvist indentation cracks by G. Fargas, D. Casellas, L. Llanes, M. Anglada”by F. Tancret [Journal of the European Ceramics Society 23(2003)107~114], Journal of the European Ceramics Society, 2006, 26: 1523~1524
    [119]尹邦跃,王零森,ZrO2基陶瓷压痕断裂韧性的测定,粉末冶金材料科学与工程,2001,6(1):78~82
    [120] K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of KIC of brittle solid by the indentation method with low crack-to-indent ratios, Journal of Materials Science Letters, 1982, 1(1): 13~16
    [121] H. Toraya, M. Yoshimura, S. Somiya, Effect of YO1.5 dopant on unit-cell parameters of ZrO2 at low contents of YO1.5, Journal of the American Ceramics Society, 1989, 72(4): 662~664
    [122] R. Morrell, Handbook of Properties of Technical & Engineering Ceramics, Part 1: An Introduction for the Engineer and Designer. HMSO, London, 1985
    [123]杜海燕,刘家臣,王惠,等,Y2O3加入方式对Y-TZP材料结构与性能的影响,硅酸盐学报,2000,6:553~556
    [124] D.B. Marshall , A.G. Evans, Failure mechanisms in ceramic-fiber-matrix composites, Journal of the American Ceramics Society, 1985, 68(5): 225~231
    [125] Z. Shi, J. Wang, G. Qiao, et al., Effects of weak boundary phases (WBP) on the microstructure and mechanical properties of pressureless sintered Al2O3/h-BN machinable composites, Materials Science & Engineering 2008, A492: 29~34
    [126] R. Wang, W. Pan, J. Chen, et al., Synthesis and sintering of LaPO4 powder and its application, Materials Chemistry and Physics, 2003, 79: 30~36
    [127] G. Gong, B. Zhang, H. Zhang, et al., Pressureless sintering of machinable Al2O3/LaPO4 composites in N2 atmosphere, Ceramics International, 2006, 32: 349~352
    [128] D.B. Mashall, P.E.D. Morgan, R.M. Housley, Debonding in multilayered composites of zirconia and LaPO4, Journal of the American Ceramics Society, 1997, 80(7): 1677~1683
    [129] P. Ramaswamy, B. H.Narayana, S. Vynatheya, Thermomechanical and microstructural evaluation of high temperature sintered (Mg, Mg-Ti)-PSZ, Ceramics International, 1996, 22: 287~293
    [130] R.H.J. Hannink, R.C. Garvie, Subeutectoid aged Mg-PSZ alloy with enhanced thermal up-shock reistance, Journal of Materials Science, 1982, 17: 2637~2640
    [131] H. E. Lutz, V. M. Swain, N. Claussen, Thermal shock behavior of duplex ceramics, Journal of the American Ceramics Society, 1991, 74(1): 19~24
    [132] B. Cotterell, S.W. Ong, C. Qin, Thermal shock and size effects in castable refractories, Journal of the American Ceramics Society, 1995, 78(8): 2056~2064
    [133] S.Schon, H. Prielipp, R. Janssen, et al., Effect of micro-structural scale on thermal shock resistance of aluminum-reinforced alumina, Journal of the American Ceramics Society, 1994, 77(3): 701~704
    [134] C. Aksel, F.L. Riley, Effect of the particle size distribution of spinel on the mechanical properties and thermal shock performance of MgO-spinel composites, Journal of the European Ceramics Society, 2003, 23: 3079~3087
    [135] M. Kalantar, G. Fantozzi, Thermo-mechanical properties of ceramics: Resistance to initiation and propagation of crack in high temperature, Materials Science & Engineering, 2008, A472: 273~280
    [136] S.K. Lee, J.D. Moretti, M.J. Readey, Thermal shock resistance of silicon nitrides using an indentation-quench test, Journal of the American Ceramics Society, 2002, 85(1): 279~281
    [137] M. Ishitsuka, T. Sato, T. Endo, et al., Grain-size dependence of thermal shock resistance of yttria-doped tetragonal zirconia polycrystals, Journal of the American Ceramics Society, 1990, 73(8): 2523~2525
    [138] T. Masaki, Mechanical properties of toughened ZrO2-Y2O3 ceramics, Journal of the American Ceramics Society, 1986, 69(8): 634~640
    [139] T.Sato, S.Ohtake, M. Shimada, Transformation of yiittria partially stabilized zirconia by low temperature annealing in air, Journal of Materials Science, 1985, 20: 1466~1470
    [140] Y. Ma, E.H. Kisi, In situ neutron diffraction study of a liquid nitrogen-quenched Mg-PSZ under load: A microcrack dominated system? Journal of the American Ceramics Society, 2005, 88(9): 2510~2514
    [141] P.R. Krishnamoorthy, P. Ramaswamy, B.H. Narayana, Thermal shock behaviour of titania-destabilized Mg-PSZ, Ceramics International, 1990, 16(3): 129~134
    [142] M. Collin, D. Rowcliffe, Analysis and prediction of thermal shock in brittle materials, Acta Materialia, 2000, 48: 1655~1665
    [143] X. Zhang, N. Liu, Microstructure, mechanical properties and thermal shock resistance of nano-TiN modified TiC-based cermets with different binders, International Journal of Refractory Metals and Hard Materials, 2008, 26(6): 575~582
    [144] R. Shi, Y. Yin, J. Li, D. Wang, Influence of cobalt phase on thermal shock resistance of Al2O3-TiC composites evaluated by indentation technique, Materials Reseach Bulletin, 2008, 43(10): 2544~2553
    [145] S. Maensiri, S.G. Roberts, Thermal shock resistance of sintered alumina/silicon carbide nanocomposites evaluated by indentation techniques, Journal of the American Ceramics Society, 2002, 85(8):1971~1978
    [146] E. Gondar, M. Rosko, J. Somorcik, Influence of individual thermal shock parameters on stress generated in silicon nitride and its prediction, Journal of the European Ceramics Society, 2007, 27: 2103~2110
    [147] T. Si, N. Liu, Q. Zhang, Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics, Rare Metal, 2008, 27(3): 308~314
    [148] P. Pettersson, Z. Shen, M. Johnsson, et al., Thermal shock resistance ofα/β-sialon ceramic composites, Journal of the European Ceramics Society, 2001, 21: 999~1005
    [149] T. Andersson, D.J. Rowcliffe, Indentation Thermal Shock Test for Ceramics, Journal of the American Ceramics Society, 1996, 79(6): 1509~1514
    [150] P. Pernilla, Z. Shen, J. Mats, et al., Thermal shock resistance ofβ-sialon ceramics, Journal of the European Ceramics Society, 2002, 22: 1357~1365
    [151] Y. Kim, W. J. Lee, E.D. Case, Themeasurement of the surface heat transfer coefficient for ceramics quenched into a water bath, Materials Science & Engineering, 1991, A 145: L7~ L11
    [152] M. Wu, K. Daimon, T. Matsubara, et al., Thermal and mechanical properties of sintered machinable LaPO4–ZrO2 composites, Materials Research Bulletin, 2002, 37: 1107~1115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700