氨甲酰基转移酶Asm21在安丝菌素合成中的双重催化功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
美登素是强力抗癌药物,通过破坏微管组装发挥其细胞毒性。与抗体结合的靶向美登素分子的肿瘤选择性更强,半衰期更长,目前处于不同的临床实验期,发展势头良好。Actinosynnema pretiosum ssp. auranticum ATCC 31565产生的安丝菌素是微生物来源的美登素分子。在多个不同组分中,安丝菌素P-3是活性最强的主要组分,它的生物合成途径以3-氨基-5-羟基苯甲酸(AHBA)作为起始单元,随后在I型聚酮合酶的催化下加载7个延伸单元得到19元大环内酰胺proansamitocin,最后经过氯代、甲基化、酰基化、氨甲酰化、环氧化等一系列的后修饰反应得到安丝菌素。
     近年来,从ATCC 31565的固体发酵产物中分离到了一系列安丝菌素糖苷AGP-1、AGP-2和AGP-3,它们在酰胺N的位置携带了β-D-葡萄糖基团。与此同时,Snipes等从Amycolatopsis sp. CP2808中也分离到了一系列携带氨甲酰化葡萄糖基的极性安丝菌素糖苷。最近,我们的合作者在ATCC 31565中同样发现了葡萄糖基C-4羟基发生氨甲酰化的安丝菌素糖苷(ACGP-3)。本研究组已经证实该糖基化反应是由N-糖基转移酶Asm25负责的,而这一系列氨甲酰化糖苷新产物的发现,促使我们去寻找负责葡萄糖氨甲酰化的基因和酶。
     利用本研究组积累的多个安丝菌素生物合成基因缺失突变株,通过静息细胞转化实验,我们可以初步确定,糖苷葡萄糖基的氨甲酰化是由氨甲酰基转移酶Asm21来负责的。而在前期的研究中,通过序列同源性比对以及基因缺失实验,已经初步证明位于安丝菌素生物合成基因簇中的asm21负责C-7氨甲酰化和噁嗪环的形成。那么在安丝菌素的生物合成中,Asm21就具有双重催化的功能,不仅催化骨架的氨甲酰化,同时也催化葡萄糖基上的氨甲酰化,与其他次级代谢中的氨甲酰基转移酶有很大的不同,因此本研究对它进行了全面的研究。
     通过基因失活和一系列的回补实验,不仅证明asm21确实参与了安丝菌素的合成,而且重新定义了asm21功能基因的长度。除了之前已经报道过的19-chloroproansamitocin之外,我们从asm21基因缺失突变株(BLQ16)的固体培养物中还分离得到了三个新的中间产物,并通过核磁共振分别确定了它们的结构。这三个新化合物分别为14-β-hydroxy-20-O-methyl-19-chloroisoproansamitocin、14- -hydroxy- 20-O-methyl-19-chloroisoproansamitocin和20-O-methyl-19- chloroproansamitocin,它们都缺失了C-7氨甲酰基。其中20-O-methyl- 19-chloroproansamitocin是主要产物,并被用作底物来检验异源表达的Asm21蛋白的酶学性质。以氨甲酰磷酸作为供体,在Mg2+和ATP存在的情况下,确定Asm21的最适温度、pH及金属离子分别为37℃、pH 8.5和10 mM Mg2+。Asm21对20-O-methyl-19-chloroproansamitocin和19-chloroproansamitocin的Km值分别为25.2±8.7μM和78.7±18.8μM,表明它对主要产物20-O-methyl-19-chloroproansamitocin的亲和力更强,以它为天然底物。
     前期研究通过包涵体复性得到了Asm25的蛋白,而我们通过使用新的载体和表达条件,纯化得到了N-糖基转移酶Asm25的可溶活性蛋白,并通过酶促反应催化从N-去甲基安丝菌素P-3(PND-3)制备得到AGP-3,以此作为Asm21体外反应的底物。纯化的Asm21蛋白同样也可以催化AGP-3的氨甲酰化从而得到ACGP-3。Asm21对糖苷AGP-3的Km值为135.3±38.4μM,远远高于另外两个底物,表明Asm21更倾向与聚酮骨架结合。然而,Asm21对于糖苷的整体催化效率要高于聚酮骨架底物。最后,我们不仅在体外实现了Asm21的双重催化以及它与Asm25的串联催化,而且通过静息细胞体系将20-O-methyl-19-chloroproansamitocin同时转化为安丝菌素P-3及氨甲酰化的糖苷ACGP-3,在体内天然条件下也重现了这个过程。
     本研究是第一次对具有高度底物灵活性的抗生素O-氨甲酰基转移酶进行的深入的生化研究,并在体内和体外同时实现了氨甲酰基转移酶的双重催化以及它与糖基转移酶的串联催化。值得注意的是,这个酶不仅催化大环内酰胺骨架上的C-7氨甲酰化,接受类似的安丝菌素中间产物为底物,同时也负责安丝菌素糖苷的C-4羟基的氨甲酰化。因此,安丝菌素的生物合成途径通过N-糖基转移酶Asm25和O-氨基甲酰转移酶Asm21的串联催化得到了延伸。由于其广泛的底物范围及氨甲酰基对于抗生素活性的重要性,Asm21可能被用来得到新的氨甲酰化抗生素衍生物,从而为新药物的开发提供工具。
     安莎类抗生素及其他来源于AHBA(3-氨基-5-羟基苯甲酸)的抗生素在临床上具有非常重要的意义,它们分别具有很强的抗细菌、抗真菌或者抗肿瘤活性。在重要抗结核药物利福霉素的生物合成研究中,AHBA的合成途径得到了全面而深入的研究。其中AHBA合酶RifK催化最后一步从aDHS到AHBA的转化,而且这个蛋白与其他安莎类抗生素生物合成基因簇中的同源蛋白的相似性非常高。另一方面,以抗糖尿病药物阿卡波糖和抗真菌抗生素井冈霉素(有效霉素)为代表的C7N氨基环醇家族天然产物,它们都含有C7N氨基环醇的核心结构。这些化合物的生物合成途径共同起始于7-磷酸景天庚酮糖到2-表-5-表-有效醇酮的环化(2-epi-5-epi-valiolone),这个反应是由磷酸糖环化酶(井冈霉素中为ValA,阿卡波糖中为AcbC)催化的,之后2-表-5-表-有效醇酮经由不同的催化路径被转化为不同的终产物。不同基因簇中AHBA合酶和环化酶序列之间高度的保守性使得我们可以根据CODEHOP原则设计简并引物,然后从放线菌菌种库中筛选潜在的基因资源,为进一步得到新活性抗生素提供条件和基础。最终,从实验室小型菌种库中共获得7株AHBA合酶基因阳性菌株,3株环化酶基因阳性菌株,并通过克隆测序验证了扩增序列的正确性,比较了与已知基因的同源性。
     从环化酶基因阳性菌株之一Streptomyces sp. CS中扩增得到的DNA片段所编码的氨基酸序列与ValA及AcbC的同源性都比较高,分别为58 %和52 %。随后,通过构建基因组文库和筛选,得到了13个包含环化酶探针片段的相互重叠的阳性fosmids。其中,选择16H9进行测序,通过Frameplot 3.0和BLASTp分别预测编码框和比对蛋白同源性,发现了20多个开放阅读框(ORF)。令人感兴趣的是,ORF16 - 20聚集成簇排列,分别与AcbC、AcbM、AcbL、AcbN及AcbO存在较高同源性,同时与这五个基因在阿卡波糖生物合成基因簇中的成簇分布是一样的。这五个基因催化阿卡波糖生物合成途径的前五步反应,也就是从7-磷酸景天庚酮糖合成7-磷酸-1-表-有效烯醇。7-磷酸-1-表-有效烯醇与先前报道的CS链霉菌中分离得到的C7多羟基环己烷衍生物CSS的结构非常接近。将基因簇中的CS-valA基因敲除后,CSS不再产生,表明这个基因簇可能负责它的生物合成。携带整个基因簇的18.3 kb基因片段在白色链霉菌中异源表达成功,进一步为该基因簇的功能提供了证据。从基因到天然产物的挖掘策略为新活性抗生素的挖掘提供了一条全新且可行的途径。
Maytansinoids are potent antitumor agents that exert their cytotoxicity by disrupting microtubule assembly. Antibody conjugates of maytansinoids exhibit increased tumour selectivity and longer circulation half-life and are currently in different stages of clinical development. Ansamitocins, produced by Actinosynnema pretiosum ssp. auranticum ATCC 31565, are maytansinoids of microbial origin. In the biosynthesis of ansamitocin P-3, 3-amino-5-hydroxybenzoic acid (AHBA) is used as a starter unit, and the incorporation of seven PKS extender units gives a 19-membered macrolactam, proansamitocin, which further undergoes a series of post-PKS modifications, including O- and N-methylation, chlorination, epoxidation, O-carbamoylation, and O-acylation.
     Recently, ansamitocinosides P-1, P-2 and P-3 (AGP-1, AGP-2 and AGP-3) were isolated from A. pretiosum, which carry aβ-D-glucosyl moiety attached to the amide nitrogen in place of the N-methyl group of ansamitocins. Meanwhile, a series of polar ansacarbamitocins with a glucosyl moiety and three carbamoyl groups were isolated from Amycolatopsis sp. CP2808. Moreover, two new ansamitocin derivatives produced by mutational biosynthesis were assigned to be N-β-D-glucopyranosylated at the macrolactam amide. In addition, a novel ansamitocinoside with carbamoyl substitution at the C-4 hydroxyl group of the N-β-D-glucosyl moiety (ACGP-3) was identified from Actinosynnema pretiosum by our co-workers. Asm25 has been proved to be the dedicated N-glycosyltransferase for the sugar attachment. All these findings raised the question which genes and enzymes are responsible for the carbamoylation of the glucose hydroxyl group.
     The construction of numerous mutants of A. pretiosum ATCC 31565 in the previous work allowed convenient identification ofthe relevant functional carbamoyltransferase gene(s). Through biotransformation, the carbamoyltransferase gene asm21 was suggested to be responsible for the carbamoylation of the glucosyl moiety. Moreover, based on sequence homology, gene asm21 in the biosynthetic gene cluster of ansamitocin was assigned the putative function of introducing the cyclic carbinolamide group. Therefore Asm21 was proved to have dual carbamoylation activityon both the polyketide backbone and the glucosyl moiety in the biosynthesis of ansamitocin. This is quite unique and interesting because the dual actions by one carbamoyltransferase have not been reported before.
     Through gene inactivation and complementation, the involvement of asm21 in ansamitocin biosynthesis was confirmed. Besides, the functional length of gene asm21 was refined based on complementation results. In addition to the previously identified 19-chloroproansamitocin, three novel compounds (14-β-hydroxy-20-O-methyl-19-chloroiso proansamitocin,14- -hydroxy-20-O-methyl-19-chloroisoproansamitocin and 20-O-methyl-19-chloroproansamitocin) lacking the C-7 carbamoyl group were isolated from the culture of BLQ16 (asm21 mutant) on solid YMG medium and characterized by NMR. Among them, 20-O-methyl- 19-chloroproansamitocin was the major product and chosen to examine the enzymatic properties of Asm21 using carbamoyl phosphate as another substrate in the presence of Mg2+ and ATP.Asm21 was optimally active at 37oC and pH 8.5 - 9.0 and showed the highest activity when supplied with 5 - 10 mM Mg2+. It showed higher affinity towards 20-O-methyl- 19-chloroproansamitocin with a Km of 25.2±8.7μM compared to 19-chloroproansamitocinwith a Km of 78.7±18.8μM, indicating that 20-O-methyl-19- chloroproansamitocin is a preferred substrate for Asm21.
     Asm25 was obtained as inclusion body in the previous report, and herein this study, soluble protein was expressed and purified with a different vector. Pure AGP-3 was therefore prepared through large scale incubation of PND-3 and UDP-glucose catalyzed by purified Asm25. Purified Asm21 also catalyzed the conversion of AGP-3 into ACGP-3, verifying that it does have dual carbamoylation activity on both the polyketide backbone and the sugar moiety. Moreover, Asm21 has a Km of 135.3±38.4μM for AGP-3, much higher than those for 20-O-methyl- 19-chloroproansamitocin or 19-chloroproansamitocin, which indicates a favored binding toward the polyketide backbone rather than the glucosyl moiety in the reaction site of Asm21. However, the overall catalytic efficiency (kcat /Km) for AGP-3 is higher than the other two substrates. Hence, the catalytic constants indicate that Asm21 displays a preference for carbamoylation of the glucosyl moiety over the polyketide backbone. Furthermore, the dual carbamoylations and N-glycosylation were precisely demonstrated in vivo.
     This work represents the first biochemical characterization of an O-carbamoyltransferase with very high substrate flexibility during ansamitocin biosynthesis. Remarkably, the enzyme catalyzes not only the C-7 carbamoylation of the macrolactam backbone, accepting a variety of ansamitocin structures as substrates, but also the carbamoylation of the C-4 hydroxyl group of the N-glucosyl moiety in ansamitocinoside P-3. Thus, the ansamitocin biosynthetic pathway could be extended through the tandem catalysis of the N-glycosyltransferase Asm25 and the O-carbamoyltransferase Asm21 by cultivating the strain on solid medium. Due to its broad substrate range, Asm21 can be used to generate O-carbamoylated derivatives of many ansamycins as potential drug candidates.
     The clinically important family of AHBA (3-amino-5-hydroxybenzoic acid) containing natural products, including ansamycins or other antibiotics, possesses potent antibacterial, antifungal or antitumor activities. The biosynthetic pathway of AHBA has been disclosed in the biosynthesis of rifamycin. AHBA synthase RifK catalyzes the last step converting aminoDHS into AHBA, and this protein shares high identity with its homologs in other ansamycin producers. On the other hand, the C7N-aminocyclitol family of natural products, exemplified by anti-diabetic acarbose and anti-fungal validamycin A, contain a C7N aminocyclitol in their core structure. The biosynthesis of these compounds is universally initiated with the cyclization of sedoheptulose 7-phosphate, catalyzed by a sugar phosphate cyclase (ValA for validamycin A and AcbC for acarbose), to give 2-epi-5-epi-valiolone, which then undergoes different routes to yield various final products. The high similarities shared by AHBA synthases and cyclases isolated from different gene clusters enabled us to design degenerate primers using CODEHOP to screen a pool of Actinomycete strains. As a result, seven AHBA positive and three cyclase positive strains were obtained from the laboratory library. The amplified DNA fragments were cloned and sequenced to confirm the correctness and homology with the probe。
     The deduced animo acid sequence of onecyclase positive strain, Streptomyces sp. CS, showed high similarity to ValA and AcbC. Subsequently a fosmid genomic library was constructed and 13 fosmids were fished out with the cyclase primers. One of them (16H9) was fully sequenced, and more than 20 ORFs were identified using Frameplot 3.0 and BLASTp. Interestingly, ORF16 - 20, which showed high homology to AcbC, AcbM, AcbL, AcbN, and AcbO respectively, are clustered as in acarbose biosynthetic gene cluster. These five enzymes probably catalyze the first five reactions of the biosynthesis of acarbose to generate 1-epi- valienol 7-phosphate, whose chemical structure is quite similar to CSS, a polyhydroxyl derivative of C7 cyclohexane previously isolated from Streptomyces sp.CS. The production of CSS was abolished by inactivation of CS-valA, indicating that this gene cluster is responsible for its biosynthesis. This was further confirmed by a successful heterologous expression of the CSS gene cluster in S. albus J1074. This gene to compound mining strategy provides a new and pratical way for the discovery of new antibiotics.
引文
[1] TUCHMAN M, JALEEL N, MORIZONO H, et al. Mutations and polymorphisms in the human ornithine transcarbamylase gene [J]. Hum Mutat, 2002, 19(2): 93-107.
    [2] CLIMENT C, RUBIO V. Identification of seven novel missense mutations, two splice-site mutations, two microdeletions and a polymorphic amino acid substitution in the gene for ornithine transcarbamylase (OTC) in patients with OTC deficiency [J]. Hum Mutat, 2002, 19(2): 185-6.
    [3] AZEVEDO L, CLIMENT C, VILARINHO L, et al. Evidence for mutational cis-acting factors affecting mutagenesis in the ornithine transcarbamylase gene [J]. Hum Mutat, 2004, 24(3): 273.
    [4] LUKSAN O, JIRSA M, EBEROVA J, et al. Disruption of OTC promoter-enhancer interaction in a patient with symptoms of ornithine carbamoyltransferase deficiency [J]. Hum Mutat, 2010, 31(4): E1294-303.
    [5] LABEDAN B, XU Y, NAUMOFF D G, et al. Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase [J]. Mol Biol Evol, 2004, 21(2): 364-73.
    [6] DE VOS D, XU Y, AERTS T, et al. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP [J]. Biochem Biophys Res Commun, 2008, 372(1): 40-4.
    [7] ALLEWELL N M. Escherichia coli aspartate transcarbamoylase: structure, energetics, and catalytic and regulatory mechanisms [J]. Annu Rev Biophys Biophys Chem, 1989, 18(71-92.
    [8] JIN L, STEC B, LIPSCOMB W N, et al. Insights into the mechanisms of catalysis and heterotropic regulation of Escherichia coli aspartate transcarbamoylase based upon a structure of the enzyme complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate at 2.1 A [J]. Proteins, 1999, 37(4): 729-42.
    [9] LIPSCOMB W N, KANTROWITZ E R. Structure and Mechanisms of Escherichia coli Aspartate Transcarbamoylase [J]. Acc Chem Res, 2011,
    [10] WILEY P F, JAHNKE H K, MACKELLAR F, et al. The structure of pactamycin [J]. J Org Chem, 1970, 35(5): 1420-5.
    [11] ITO T, ROONGSAWANG N, SHIRASAKA N, et al. Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues [J]. Chembiochem, 2009, 10(13): 2253-65.
    [12] THOMAS M G, CHAN Y A, OZANICK S G. Deciphering tuberactinomycin biosynthesis: isolation, sequencing, and annotation of the viomycin biosynthetic gene cluster [J]. Antimicrob Agents Chemother, 2003, 47(9): 2823-30.
    [13] MAMIOFE S M, OPARYSHEVA E F, GREBENIK M D, et al. [Isolation, Chemical Purification and Properties of Florimycin (Viomycin)] [J]. Antibiotiki, 1963, 22(895-900.
    [14] ROYAL BARTZ Q. [Isolation and chemical aspects of viomycin] [J]. Dia Med, 1953, 25(3): 57-9.
    [15] HAYDOCK S F, APPLEYARD A N, MIRONENKO T, et al. Organization of the biosynthetic gene cluster for the macrolide concanamycin A in Streptomyces neyagawaensis ATCC 27449 [J]. Microbiology, 2005, 151(Pt 10): 3161-9.
    [16] GELLERT M, O'DEA M H, ITOH T, et al. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase [J]. Proc Natl Acad Sci U S A, 1976, 73(12): 4474-8.
    [17] KINASHI H, SOMENO K, SAKAGUCHI K. Isolation and characterization of concanamycins A, B and C [J]. J Antibiot (Tokyo), 1984, 37(11): 1333-43.
    [18] STEFFENSKY M, MUHLENWEG A, WANG Z X, et al. Identification of the novobiocin biosynthetic gene cluster of Streptomyces spheroides NCIB 11891 [J]. Antimicrob Agents Chemother, 2000, 44(5): 1214-22.
    [19] CHEN C, SI S, HE Q, et al. Isolation and characterization of antibiotic NC0604, a new analogue of bleomycin [J]. J Antibiot (Tokyo), 2008, 61(12): 747-51.
    [20] KAWAGUCHI H, TSUKIURA H, TOMITA K, et al. Tallysomycin, a new antitumor antibiotic complex related to bleomycin. I. Production, isolation and properties [J]. J Antibiot (Tokyo), 1977, 30(10): 779-88.
    [21] SUBRAMANIAM-NIEHAUS B, SCHNEIDER T, METZGER J W, et al. Isolation and analysis of moenomycin and its biosynthetic intermediates from Streptomyces ghanaensis (ATCC 14672) wildtype and selected mutants [J]. Z Naturforsch C, 1997, 52(3-4): 217-26.
    [22] WALLHAUSSER K H, NESEMANN G, PRAVE P, et al. Moenomycin, a new antibiotic. I. Fermentation and isolation [J]. Antimicrob Agents Chemother (Bethesda), 1965, 5(734-6.
    [23] HIGASHIDE E, ASAI M, OOTSU K, et al. Ansamitocin, a group of novel maytansinoid antibiotics with antitumour properties from Nocardia [J]. Nature, 1977, 270(5639): 721-2.
    [24] MILLER T W, GOEGELMAN R T, WESTON R G, et al. Cephamycins, a new family of beta-lactam antibiotics. II. Isolation and chemical characterization [J]. Antimicrob Agents Chemother, 1972, 2(3): 132-5.
    [25] STEBBINS C E, RUSSO A A, SCHNEIDER C, et al. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent [J]. Cell, 1997, 89(2): 239-50.
    [26] SASAKI K, RINEHART K L, JR., SLOMP G, et al. Geldanamycin. I. Structure assignment [J]. J Am Chem Soc, 1970, 92(26): 7591-3.
    [27] HAMAGUCHI M, XIAO H, UEHARA Y, et al. Herbimycin A inhibits the association of p60v-src with the cytoskeletal structure and with phosphatidylinositol 3' kinase [J]. Oncogene, 1993, 8(3): 559-64.
    [28] SHIBATA K, SATSUMABAYASHI S, NAKAGAWA A, et al. The structure and cytocidal activity of herbimycin C [J]. J Antibiot (Tokyo), 1986, 39(11): 1630-3.
    [29] FURUSAKI A, MATSUMOTO T, NAKAGAWA A, et al. Herbimycin A: an ansamycin antibiotic; X-ray crystal structure [J]. J Antibiot (Tokyo), 1980, 33(7): 781-2.
    [30] ISONO K, SUZUKI S. The strucutre of polyoxin C [J]. Tetrahedron Lett, 1968, 2(203-8.
    [31] SUZUKI S, ISONO K, NAGATSU J, et al. A New Antibiotic, Polyoxin A [J]. J Antibiot (Tokyo), 1965, 18(131.
    [32] NAGARAJAN R, BOECK L D, GORMAN M, et al. Beta-lactam antibiotics from Streptomyces [J]. J Am Chem Soc, 1971, 93(9): 2308-10.
    [33] LEWIS R J, SINGH O M, SMITH C V, et al. The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography [J]. EMBO J, 1996, 15(6): 1412-20.
    [34] HOOPER D C, WOLFSON J S, MCHUGH G L, et al. Effects of novobiocin, coumermycin A1, clorobiocin, and their analogs on Escherichia coli DNA gyrase and bacterial growth [J]. Antimicrob Agents Chemother, 1982, 22(4): 662-71.
    [35] FLATMAN R H, EUSTAQUIO A, LI S M, et al. Structure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis [J]. Antimicrob Agents Chemother, 2006, 50(4): 1136-42.
    [36] OSTASH B, SAGHATELIAN A, WALKER S. A streamlined metabolic pathway for the biosynthesis of moenomycin A [J]. Chem Biol, 2007, 14(3): 257-67.
    [37] KUPCHAN S M, SNEDEN A T, BRANFMAN A R, et al. Structural requirements for antileukemic activity among the naturally occurring and semisynthetic maytansinoids [J]. J Med Chem, 1978, 21(1): 31-7.
    [38] LOPUS M. Antibody-DM1 conjugates as cancer therapeutics [J]. Cancer Lett, 2011, 307(2): 113-8.
    [39] BURRIS H A, 3RD, RUGO H S, VUKELJA S J, et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy [J]. J Clin Oncol, 2010, 29(4): 398-405.
    [40] WAKANKAR A A, FEENEY M B, RIVERA J, et al. Physicochemical stability of theprocesses [J]. Bioconjug Chem, 2010, 21(9): 1588-95.
    [41] POLSON A G, WILLIAMS M, GRAY A M, et al. Anti-CD22-MCC-DM1: an antibody-drug conjugate with a stable linker for the treatment of non-Hodgkin's lymphoma [J]. Leukemia, 2010, 24(9): 1566-73.
    [42] JUMBE N L, XIN Y, LEIPOLD D D, et al. Modeling the efficacy of trastuzumab-DM1, an antibody drug conjugate, in mice [J]. J Pharmacokinet Pharmacodyn, 2010, 37(3): 221-42.
    [43] KROP I E, BEERAM M, MODI S, et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer [J]. J Clin Oncol, 2010, 28(16): 2698-704.
    [44] LEWIS PHILLIPS G D, LI G, DUGGER D L, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate [J]. Cancer Res, 2008, 68(22): 9280-90.
    [45] WANG L, AMPHLETT G, BLATTLER W A, et al. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry [J]. Protein Sci, 2005, 14(9): 2436-46.
    [46] LU S X, TAKACH E J, SOLOMON M, et al. Mass spectral analyses of labile DOTA-NHS and heterogeneity determination of DOTA or DM1 conjugated anti-PSMA antibody for prostate cancer therapy [J]. J Pharm Sci, 2005, 94(4): 788-97.
    [47] SPITELLER P, BAI L, SHANG G, et al. The post-polyketide synthase modification steps in the biosynthesis of the antitumor agent ansamitocin by Actinosynnema pretiosum [J]. J Am Chem Soc, 2003, 125(47): 14236-7.
    [48] YU T W, BAI L, CLADE D, et al. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum [J]. Proc Natl Acad Sci U S A, 2002, 99(12): 7968-73.
    [49] OKAMOTO K, HARADA K, IKEYAMA S, et al. Therapeutic effect of ansamitocin targeted to tumor by a bispecific monoclonal antibody [J]. Jpn J Cancer Res, 1992, 83(7): 761-8.
    [50] FREEL MEYERS C L, OBERTHUR M, XU H, et al. Characterization of NovP and NovN: completion of novobiocin biosynthesis by sequential tailoring of the noviosyl ring [J]. Angew Chem Int Ed Engl, 2004, 43(1): 67-70.
    [51] BREWER S J, TAYLOR P M, TURNER M K. An adenosine triphosphate-dependent carbamoylphosphate--3-hydroxymethylcephem O-carbamoyltransferase from Streptomyces clavuligerus [J]. Biochem J, 1980, 185(3): 555-64.
    [52] COQUE J J, PEREZ-LLARENA F J, ENGUITA F J, et al. Characterization of thecmcHgenes of Nocardia lactamdurans and Streptomyces clavuligerus encoding a functional 3'-hydroxymethylcephem O-carbamoyltransferase for cephamycin biosynthesis [J]. Gene, 1995, 162(1): 21-7.
    [53] HOUGHTON J E, BENCINI D A, O'DONOVAN G A, et al. Protein differentiation: a comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coli K-12 [J]. Proc Natl Acad Sci U S A, 1984, 81(15): 4864-8.
    [54] ONODERA H, KANEKO M, TAKAHASHI Y, et al. Conformational significance of EH21A1-A4, phenolic derivatives of geldanamycin, for Hsp90 inhibitory activity [J]. Bioorg Med Chem Lett, 2008, 18(5): 1588-91.
    [55] BEDIN M, GABEN A M, SAUCIER C, et al. Geldanamycin, an inhibitor of the chaperone activity of HSP90, induces MAPK-independent cell cycle arrest [J]. Int J Cancer, 2004, 109(5): 643-52.
    [56] STANCATO L F, SILVERSTEIN A M, OWENS-GRILLO J K, et al. The hsp90-binding antibiotic geldanamycin decreases Raf levels and epidermal growth factor signaling without disrupting formation of signaling complexes or reducing the specific enzymatic activity of Raf kinase [J]. J Biol Chem, 1997, 272(7): 4013-20.
    [57] HONG Y S, LEE D, KIM W, et al. Inactivation of the carbamoyltransferase gene refines post-polyketide synthase modification steps in the biosynthesis of the antitumor agent geldanamycin [J]. J Am Chem Soc, 2004, 126(36): 11142-3.
    [58] RASCHER A, HU Z, VISWANATHAN N, et al. Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602 [J]. FEMS Microbiol Lett, 2003, 218(2): 223-30.
    [59] SHIN J C, NA Z, LEE D H, et al. Characterization of tailoring genes involved in the modification of geldanamycin polyketide in Streptomyces hygroscopicus JCM4427 [J]. J Microbiol Biotechnol, 2008, 18(6): 1101-8.
    [60] LI Y, HE W, WANG Y, et al. A new post-PKS modification process in the carbamoyltransferase gene inactivation strain of Streptomyces hygroscopicus 17997 [J]. J Antibiot (Tokyo), 2008, 61(6): 347-55.
    [61] YUAN Y, FUSE S, OSTASH B, et al. Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design [J]. ACS Chem Biol, 2008, 3(7): 429-36.
    [62] STEMBERA K, VOGEL S, BUCHYNSKYY A, et al. A surface plasmon resonance analysis of the interaction between the antibiotic moenomycin A and penicillin-binding protein 1b [J]. Chembiochem, 2002, 3(6): 559-65.
    [63] KURZ M, GUBA W, VERTESY L. Three-dimensional structure of moenomycin A--apotent inhibitor of penicillin-binding protein 1b [J]. Eur J Biochem, 1998, 252(3): 500-7.
    [64] VOLKE F, WASCHIPKY R, PAMPEL A, et al. Characterisation of antibiotic moenomycin A interaction with phospholipid model membranes [J]. Chem Phys Lipids, 1997, 85(2): 115-23.
    [65] LENOIR D, TSCHESCHE R, WUCHERPFENNIG W, et al. Moenomycin A: further characterization and chemistry [J]. Antimicrob Agents Chemother (Bethesda), 1969, 9(144-7.
    [66] BAIZMAN E R, BRANSTROM A A, LONGLEY C B, et al. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase [J]. Microbiology, 2000, 146 Pt 12(3129-40.
    [67] HOLMES M L, DYALL-SMITH M L. Mutations in DNA gyrase result in novobiocin resistance in halophilic archaebacteria [J]. J Bacteriol, 1991, 173(2): 642-8.
    [68] QUEENER S W, SEBEK O K, VEZINA C. Mutants blocked in antibiotic synthesis [J]. Annu Rev Microbiol, 1978, 32(593-636.
    [69] XU H, WANG Z X, SCHMIDT J, et al. Genetic analysis of the biosynthesis of the pyrrole and carbamoyl moieties of coumermycin A1 and novobiocin [J]. Mol Genet Genomics, 2002, 268(3): 387-96.
    [70] XU H, HEIDE L, LI S M. New aminocoumarin antibiotics formed by a combined mutational and chemoenzymatic approach utilizing the carbamoyltransferase NovN [J]. Chem Biol, 2004, 11(5): 655-62.
    [71] GOMEZ GARCIA I, FREEL MEYERS C L, WALSH C T, et al. Crystallization and preliminary X-ray analysis of the O-carbamoyltransferase NovN from the novobiocin-biosynthetic cluster of Streptomyces spheroides [J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2008, 64(Pt 11): 1000-2.
    [72] MOSS S J, BAI L, TOELZER S, et al. Identification of asm19 as an acyltransferase attaching the biologically essential ester side chain of ansamitocins using N-desmethyl-4,5-desepoxymaytansinol, not maytansinol, as its substrate [J]. J Am Chem Soc, 2002, 124(23): 6544-5.
    [73] LIN J, BAI L, DENG Z, et al. Enhanced production of ansamitocin P-3 by addition of isobutanol in fermentation of Actinosynnema pretiosum [J]. Bioresour Technol, 102(2): 1863-8.
    [74] ZHAO P, BAI L, MA J, et al. Amide N-glycosylation by Asm25, an N-glycosyltransferase of ansamitocins [J]. Chem Biol, 2008, 15(8): 863-74.
    [75] MA J, ZHAO P J, SHEN Y M. New amide N-glycosides of ansamitocins identified from Actinosynnema pretiosum [J]. Arch Pharm Res, 2007, 30(6): 670-3.
    [76] LU C, BAI L, SHEN Y. A novel amide N-glycoside of ansamitocins from Actinosynnemapretiosum [J]. J Antibiot (Tokyo), 2004, 57(5): 348-50.
    [77] WU Y, KANG Q, SHANG G, et al. N-methylation of the amide bond by methyltransferase asm10 in ansamitocin biosynthesis [J]. Chembiochem, 2011, 12(11): 1759-66.
    [78] SNIPES C E, DUEBELBEIS D O, OLSON M, et al. The ansacarbamitocins: polar ansamitocin derivatives [J]. J Nat Prod, 2007, 70(10): 1578-81.
    [79] KNOBLOCH. T, HARMROLFS K, TAFT F, et al. Mutational Biosynthesis of Ansamitocin Antibiotics: A Diversity-Oriented Approach to Exploit Biosynthetic Flexibility [J]. Chembiochem, 2011, 12(4): 540-7.
    [80] KIESER H M, KIESER T, HOPWOOD D A. A combined genetic and physical map of the Streptomyces coelicolor A3(2) chromosome [J]. J Bacteriol, 1992, 174(17): 5496-507.
    [81] DATSENKO K A, WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J]. Proc Natl Acad Sci U S A, 2000, 97(12): 6640-5.
    [82] HATANO K, AKIYAMA S, ASAI M, et al. Biosynthetic origin of aminobenzenoid nucleus (C7N-unit) of ansamitocin, a group of novel maytansinoid antibiotics [J]. J Antibiot (Tokyo), 1982, 35(10): 1415-7.
    [83] JANSSEN G R, BIBB M J. Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies [J]. Gene, 1993, 124(1): 133-4.
    [84] HE Y, WANG Z, BAI L, et al. Two pHZ1358-derivative vectors for efficient gene knockout in streptomyces [J]. J Microbiol Biotechnol, 2010, 20(4): 678-82.
    [85] WU Y, KANG Q, SHEN Y, et al. Cloning and functional analysis of the naphthomycin biosynthetic gene cluster in Streptomyces sp. CS [J]. Mol Biosyst, 2011, 7(8): 2459-69.
    [86]黄培堂译美J莎.分子克隆实验指南[J]. 2005,
    [87] EADS J C, BEEBY M, SCAPIN G, et al. Crystal structure of 3-amino-5-hydroxybenzoic acid (AHBA) synthase [J]. Biochemistry, 1999, 38(31): 9840-9.
    [88] KIESER T, BIBB M J, BUTTNER M J, et al. Practical Streptomyces Genetics [M]. Norwich, United Kingdom; The John Innes Foundation. 2000.
    [89] NEUMANN A, WOHLFARTH G, DIEKERT G. Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans [J]. J Biol Chem, 1996, 271(28): 16515-9.
    [90] RINEHART K L, JR., SHIELD L S. Chemistry of the ansamycin antibiotics [J]. Fortschr Chem Org Naturst, 1976, 33(231-307.
    [91] SENSI P, GRECO A M, BALLOTTA R. Rifomycin. I. Isolation and properties ofrifomycin B and rifomycin complex [J]. Antibiot Annu, 1959, 7(262-70.
    [92] MULLIN S, ROTHSTEIN D M, MURPHY C K. Activity of novel benzoxazinorifamycins against rifamycin-resistant Streptococcus pyogenes [J]. Antimicrob Agents Chemother, 2006, 50(5): 1908-9.
    [93] MURPHY C K, MULLIN S, OSBURNE M S, et al. In vitro activity of novel rifamycins against rifamycin-resistant Staphylococcus aureus [J]. Antimicrob Agents Chemother, 2006, 50(3): 827-34.
    [94] HOSOE K, MAE T, YAMASHITA K, et al. Identification and antimicrobial activity of urinary metabolites of a rifamycin derivative in dog [J]. Xenobiotica, 1996, 26(3): 321-32.
    [95] DHOPLE A M, DIMOVA V. In vitro activity of a new rifamycin derivative against Mycobacterium leprae [J]. Arzneimittelforschung, 1996, 46(2): 210-2.
    [96] PRASAD E S, WENMAN W M. In vitro activity of rifaximin, a topical rifamycin derivative, against Chlamydia trachomatis [J]. Diagn Microbiol Infect Dis, 1993, 16(2): 135-6.
    [97] NEU H C. Antibacterial activity of DL 473, a C3-substituted rifamycin derivative [J]. Antimicrob Agents Chemother, 1983, 24(3): 457-60.
    [98] BRUFANI M, CELLAI L, CERRINI S, et al. Structure-activity relationships in the ansamycins. Molecular structure and activity of 3-carbomethoxy rifamycin S [J]. Mol Pharmacol, 1982, 21(2): 394-9.
    [99] DICIOCCIO R A, SRIVASTAVA B I. Structure-activity relationships and specificity of inhibition of DNA polymerases from normal and leukemia cells of man and from simian sarcoma virus by rifamycin derivatives [J]. J Natl Cancer Inst, 1978, 61(5): 1187-94.
    [100] PATTYN S R, SAERENS E J. Activity of three new rifamycin derivates on the experimental infection by Mycobacterium leprae [J]. Ann Soc Belg Med Trop, 1977, 57(3): 169-73.
    [101] QUINN F R, DRISCOLL J S. Structure-activity correlations among rifamycin B amides and hydrazides [J]. J Med Chem, 1975, 18(4): 332-9.
    [102] ADAMSON R H. Evaluation of the antitumor activity of rifamycin SV [J]. Arch Int Pharmacodyn Ther, 1971, 192(1): 61-5.
    [103] BECKER Y. Antitrachoma activity of rifamycin B and 8-O-acetylrifamycin S [J]. Nature, 1971, 231(5298): 115-6.
    [104] SENSI P. Structure-activity relationships of rifamycin derivatives [J]. Acta Tuberc Pneumol Belg, 1969, 60(3): 258-65.
    [105] KRADOLFER F, NEIPP L, SACKMANN W. Chemotherapeutic activity of new derivatives of rifamycin [J]. Antimicrob Agents Chemother (Bethesda), 1966, 6(359-64.
    [106] NITTI V. The antituberculous activity of rifamycin SV [J]. Helv Med Acta, 1965, 32(6): 603-24.
    [107] SENSI P, TIMBAL M T, GRECO A M. Rifamycin. XXVI. Derivatives of rifamycin O with high antimicrobial activity [J]. Antibiot Chemother, 1962, 12(488-94.
    [108] JIN Y, GILL S K, KIRCHHOFF P D, et al. Synthesis and structure-activity relationships of novel substituted 8-amino, 8-thio, and 1,8-pyrazole congeners of antitubercular rifamycin S and rifampin [J]. Bioorg Med Chem Lett, 2011, 21(20): 6094-9.
    [109] FARRELL D J, PUTNAM S D, BIEDENBACH D J, et al. In vitro activity and single-step mutational analysis of rifamycin SV tested against enteropathogens associated with traveler's diarrhea and Clostridium difficile [J]. Antimicrob Agents Chemother, 2010, 55(3): 992-6.
    [110] LEE K, RYU J S, JIN Y, et al. Synthesis and anticancer activity of geldanamycin derivatives derived from biosynthetically generated metabolites [J]. Org Biomol Chem, 2008, 6(2): 340-8.
    [111] BARZILAY E, BEN-CALIFA N, SUPINO-ROSIN L, et al. Geldanamycin-associated inhibition of intracellular trafficking is attributed to a co-purified activity [J]. J Biol Chem, 2004, 279(8): 6847-52.
    [112] MANDLER R, WU C, SAUSVILLE E A, et al. Immunoconjugates of geldanamycin and anti-HER2 monoclonal antibodies: antiproliferative activity on human breast carcinoma cell lines [J]. J Natl Cancer Inst, 2000, 92(19): 1573-81.
    [113] MANDLER R, DADACHOVA E, BRECHBIEL J K, et al. Synthesis and evaluation of antiproliferative activity of a geldanamycin-Herceptin immunoconjugate [J]. Bioorg Med Chem Lett, 2000, 10(10): 1025-8.
    [114] NECKERS L, SCHULTE T W, MIMNAUGH E. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity [J]. Invest New Drugs, 1999, 17(4): 361-73.
    [115] SRIVASTAVA B I, DICIOCCIO R A, RINEHART K L, JR., et al. Preferential inhibition of terminal deoxynucleotidyltransferase activity among deoxyribonucleic acid polymerase activities of leukemic and normal cells by geldanamycin, streptoval C, streptovarone, and dapmavarone [J]. Mol Pharmacol, 1978, 14(3): 442-7.
    [116] KNOBLOCH J, KUNZ W, GREVELDING C G. Herbimycin A suppresses mitotic activity and egg production of female Schistosoma mansoni [J]. Int J Parasitol, 2006, 36(12): 1261-72.
    [117] MCCOLLUM G W, RAJARATNAM V S, BULLARD L E, et al. Herbimycin A inhibits angiogenic activity in endothelial cells and reduces neovascularization in a rat modelof retinopathy of prematurity [J]. Exp Eye Res, 2004, 78(5): 987-95.
    [118] OKABE M, UEHARA Y, NOSHIMA T, et al. In vivo antitumor activity of herbimycin A, a tyrosine kinase inhibitor, targeted against BCR/ABL oncoprotein in mice bearing BCR/ABL-transfected cells [J]. Leuk Res, 1994, 18(11): 867-73.
    [119] TANIGUCHI M, UEHARA Y, MATSUYAMA M, et al. Inhibition of ret tyrosine kinase activity by herbimycin A [J]. Biochem Biophys Res Commun, 1993, 195(1): 208-14.
    [120] YAO X R, SCOTT D W. Inhibition of protein tyrosine kinase activity by herbimycin A prevents anti-mu but not LPS-mediated cell cycle progression and differentiation of splenic B lymphocytes [J]. Cell Immunol, 1993, 149(2): 364-75.
    [121] GARCIA R, PARIKH N U, SAYA H, et al. Effect of herbimycin A on growth and pp60c-src activity in human colon tumor cell lines [J]. Oncogene, 1991, 6(11): 1983-9.
    [122] FUKAZAWA H, MIZUNO S, UEHARA Y. Effects of herbimycin A and various SH-reagents on p60v-src kinase activity in vitro [J]. Biochem Biophys Res Commun, 1990, 173(1): 276-82.
    [123] OIKAWA T, HIROTANI K, SHIMAMURA M, et al. Powerful antiangiogenic activity of herbimycin A (named angiostatic antibiotic) [J]. J Antibiot (Tokyo), 1989, 42(7): 1202-4.
    [124] YAMASHITA T, SAKAI M, KAWAI Y, et al. A new activity of herbimycin A: inhibition of angiogenesis [J]. J Antibiot (Tokyo), 1989, 42(6): 1015-7.
    [125] HONMA Y, OKABE-KADO J, HOZUMI M, et al. Induction of erythroid differentiation of K562 human leukemic cells by herbimycin A, an inhibitor of tyrosine kinase activity [J]. Cancer Res, 1989, 49(2): 331-4.
    [126] UEHARA Y, MURAKAMI Y, SUZUKAKE-TSUCHIYA K, et al. Effects of herbimycin derivatives on src oncogene function in relation to antitumor activity [J]. J Antibiot (Tokyo), 1988, 41(6): 831-4.
    [127] UEHARA Y, MURAKAMI Y, MIZUNO S, et al. Inhibition of transforming activity of tyrosine kinase oncogenes by herbimycin A [J]. Virology, 1988, 164(1): 294-8.
    [128] MARTIN C J, GAISSER S, CHALLIS I R, et al. Molecular characterization of macbecin as an Hsp90 inhibitor [J]. J Med Chem, 2008, 51(9): 2853-7.
    [129] ONO Y, KOZAI Y, OOTSU K. Antitumor and cytocidal activities of a newly isolated benzenoid ansamycin, macbecin I [J]. Gann, 1982, 73(6): 938-44.
    [130] CHEN S, VON BAMBERG D, HALE V, et al. Biosynthesis of ansatrienin (mycotrienin) and naphthomycin. Identification and analysis of two separate biosynthetic gene clusters in Streptomyces collinus Tu 1892 [J]. Eur J Biochem, 1999, 261(1): 98-107.
    [131] LAZAR G, ZAHNER H, DAMBERG M, et al. Ansatrienin A2 and A3: minorcomponents of the ansamycin complex produced by Streptomyces collinus [J]. J Antibiot (Tokyo), 1983, 36(2): 187-9.
    [132]朱建华.以Hsp90为靶点的细胞机制抗病毒药物合成与筛选[D], 2008.
    [133]李怡璇,刘民,李欣, et al.格尔德霉素抗病毒作用的相关基因研究[J].病毒学报, 2008, 24(3): 5.
    [134] KIM C G, YU T W, FRYHLE C B, et al. 3-Amino-5-hydroxybenzoic acid synthase, the terminal enzyme in the formation of the precursor of mC7N units in rifamycin and related antibiotics [J]. J Biol Chem, 1998, 273(11): 6030-40.
    [135] CHEN L, YU H, LU Y, et al. Cloning and preliminary characterization of lh3 gene encoding a putative acetyltransferase from a rifamycin SV-producing strain Amycolatopsis mediterranei [J]. Biotechnol Lett, 2005, 27(15): 1129-34.
    [136] KAUR H, CORTES J, LEADLAY P, et al. Cloning and partial characterization of the putative rifamycin biosynthetic gene cluster from the actinomycete Amycolatopsis mediterranei DSM 46095 [J]. Microbiol Res, 2001, 156(3): 239-46.
    [137] STRATMANN A, TOUPET C, SCHILLING W, et al. Intermediates of rifamycin polyketide synthase produced by an Amycolatopsis mediterranei mutant with inactivated rifF gene [J]. Microbiology, 1999, 145 ( Pt 12)(3365-75.
    [138] FLOSS H G, YU T W. Lessons from the rifamycin biosynthetic gene cluster [J]. Curr Opin Chem Biol, 1999, 3(5): 592-7.
    [139] AUGUST P R, TANG L, YOON Y J, et al. Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699 [J]. Chem Biol, 1998, 5(2): 69-79.
    [140] SCHUPP T, TOUPET C, ENGEL N, et al. Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei [J]. FEMS Microbiol Lett, 1998, 159(2): 201-7.
    [141] RASCHER A, HU Z, BUCHANAN G O, et al. Insights into the biosynthesis of the benzoquinone ansamycins geldanamycin and herbimycin, obtained by gene sequencing and disruption [J]. Appl Environ Microbiol, 2005, 71(8): 4862-71.
    [142] DAI S, OUYANG Y, WANG G, et al. Streptomyces autolyticus JX-47 large-insert bacterial artificial chromosome library construction and identification of clones covering geldanamycin biosynthesis gene cluster [J]. Curr Microbiol, 2011, 63(1): 68-74.
    [143] ARAKAWA K, MULLER R, MAHMUD T, et al. Characterization of the early stage aminoshikimate pathway in the formation of 3-amino-5-hydroxybenzoic acid: the RifN protein specifically converts kanosamine into kanosamine 6-phosphate [J]. J Am Chem Soc, 2002, 124(36): 10644-5.
    [144] YU T W, MULLER R, MULLER M, et al. Mutational analysis and reconstituted expression of the biosynthetic genes involved in the formation of 3-amino-5-hydroxybenzoic acid, the starter unit of rifamycin biosynthesis in Amycolatopsis mediterranei S699 [J]. J Biol Chem, 2001, 276(16): 12546-55.
    [145] FLOSS H G, YU T W, ARAKAWA K. The biosynthesis of 3-amino-5-hydroxybenzoic acid (AHBA), the precursor of mC7N units in ansamycin and mitomycin antibiotics: a review [J]. J Antibiot (Tokyo), 2010, 64(1): 35-44.
    [146] HUITU Z, LINZHUAN W, AIMING L, et al. PCR screening of 3-amino-5-hydroxybenzoic acid synthase gene leads to identification of ansamycins and AHBA-related antibiotic producers in Actinomycetes [J]. J Appl Microbiol, 2009,
    [147]武临专,张会图,韩锋, et al.具有产生安莎类抗生素潜能的放线菌的分子筛选[J].中国抗生素杂志, 2008, 33(7): 7.
    [148]陈菲菲,林灵,王以光, et al.海洋细菌中活性化合物的筛选策略[J].中国抗生素杂志, 2011, 36(5): 10.
    [149]张会图,刘爱明,武临专, et al. AHBA合酶基因的筛选与放线菌素D产生菌的发现[J].中国抗生素杂志, 2009, 34(1): 4.
    [150] WOOD S, KIRBY B, GOODWIN C, et al. PCR screening reveals unexpected antibiotic biosynthetic potential in Amycolatopsis sp strain UM16 [J]. Journal of applied microbiology, 2007, 102(1): 9.
    [151] HUITU Z, LINZHUAN W, AIMING L, et al. PCR screening of 3-amino-5-hydroxybenzoic acid synthase gene leads to identification of ansamycins and AHBA-related antibiotic producers in Actinomycetes [J]. Journal of applied microbiology, 2009, 106(3): 9.
    [152]张会图.以AHBA合酶基因为靶标从放线菌中PCR筛选与其相关化合物产生菌的可行性研究[D], 2008.
    [153] ROBSON G D, KUHN P J, TRINCI A P. Effects of validamycin A on the morphology, growth and sporulation of Rhizoctonia cerealis, Fusarium culmorum and other fungi [J]. J Gen Microbiol, 1988, 134(12): 3187-94.
    [154] SHIBATA M, MORI K, HAMASHIMA M. Inhibition of hyphal extension factor formation by validamycin in Rhizoctonia solani [J]. J Antibiot (Tokyo), 1982, 35(10): 1422-3.
    [155] KAMEDA Y, ASANO N, TERANISHI M, et al. New cyclitols, degradation of validamycin A by Flavobacterium saccharophilum [J]. J Antibiot (Tokyo), 1980, 33(12): 1573-4.
    [156] SHIBATA M, UYEDA M, MORI K. Reversal of validamycin inhibition by thehyphal extract of Rhizoctonia solani [J]. J Antibiot (Tokyo), 1980, 33(6): 679-81.
    [157] ONISHI S, MIYAJI T. On the effect of validamycin in rats and mice [J]. Med J Osaka Univ, 1973, 23(4): 215-27.
    [158] IWASA T, YAMAMOTO H, SHIBATA M. Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism [J]. Jpn J Antibiot, 1970, 23(6): 595-602.
    [159] ADISAKWATTANA S, CHAROENLERTKUL P, YIBCHOK-ANUN S. alpha-Glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose [J]. J Enzyme Inhib Med Chem, 2009, 24(1): 65-9.
    [160] SUZUKI T, OBA K, FUTAMI S, et al. Blood glucose-lowering activity of colestimide in patients with type 2 diabetes and hypercholesterolemia: a case-control study comparing colestimide with acarbose [J]. J Nihon Med Sch, 2006, 73(5): 277-84.
    [161] SHINODA Y, INOUE I, NAKANO T, et al. Acarbose improves fibrinolytic activity in patients with impaired glucose tolerance [J]. Metabolism, 2006, 55(7): 935-9.
    [162] JACK R M, GORDON C, SCOTT C R, et al. The use of acarbose inhibition in the measurement of acid alpha-glucosidase activity in blood lymphocytes for the diagnosis of Pompe disease [J]. Genet Med, 2006, 8(5): 307-12.
    [163] ABESUNDARA K J, MATSUI T, MATSUMOTO K. alpha-Glucosidase inhibitory activity of some Sri Lanka plant extracts, one of which, Cassia auriculata, exerts a strong antihyperglycemic effect in rats comparable to the therapeutic drug acarbose [J]. J Agric Food Chem, 2004, 52(9): 2541-5.
    [164] GENTILE S, TURCO S, GUARINO G, et al. Aminotransferase activity and acarbose treatment in patients with type 2 diabetes [J]. Diabetes Care, 1999, 22(7): 1217-8.
    [165] MIURA T, KOIDE T, OHICHI R, et al. Effect of acarbose (alpha-glucosidase inhibitor) on disaccharase activity in small intestine in KK-Ay and ddY mice [J]. J Nutr Sci Vitaminol (Tokyo), 1998, 44(3): 371-9.
    [166] COHEN-MELAMED E, NYSKA A, POLLACK A, et al. Aldose reductase (EC 1.1.1.21) activity and reduced-glutathione content in lenses of diabetic sand rats (Psammomys obesus) fed with acarbose [J]. Br J Nutr, 1995, 74(5): 607-15.
    [167] SALEHI A, PANAGIOTIDIS G, BORG L A, et al. The pseudotetrasaccharide acarbose inhibits pancreatic islet glucan-1,4-alpha-glucosidase activity in parallel with a suppressive action on glucose-induced insulin release [J]. Diabetes, 1995, 44(7): 830-6.
    [168]张穗,郭永霞,唐文华, et al.井冈霉素A对水稻纹枯病菌的毒力和作用机理研究[J].农药学学报, 2001, 3(4): 7.
    [169]杨文英,林丽香,齐今吾, et al.阿卡波糖和二甲双胍对IGT人群糖尿病预防的效果--多中心3年前瞻性观察[J].中华内分泌代谢杂志, 2001, 17(3): 4.
    [170]魏爱生,王甫能,陈苹, et al.甘精胰岛素联合格列美脲及阿卡波糖治疗2型糖尿病患者24小时动态血糖变化[J].中华内分泌代谢杂志, 2006, 22(4): 2.
    [171]王家德,钱海丰,胡宝兰, et al.井冈霉素对土壤可培养微生物的生态效应[J].农药, 2006, 45(11): 5.
    [172]马艳荣,葛家璞,伊万.胰岛素联合阿卡波糖治疗改善血糖波动[J].中华内分泌代谢杂志, 2009, 25(5): 3.
    [173]李喜书,王莎菲,韩新才, et al.氯胺磷与井冈霉素对水稻纹枯病菌的混配增效作用研究[J].植物保护, 2009, 35(2): 3.
    [174] SCHLORKE O, KRASTEL P, MULLER I, et al. Structure and biosynthesis of cetoniacytone A, a cytotoxic aminocarba sugar produced by an endosymbiontic Actinomyces [J]. J Antibiot (Tokyo), 2002, 55(7): 635-42.
    [175] CHOI W S, WU X, CHOENG Y H, et al. Genetic organization of the putative salbostatin biosynthetic gene cluster including the 2-epi-5-epi-valiolone synthase gene in Streptomyces albus ATCC 21838 [J]. Appl Microbiol Biotechnol, 2008, 80(4): 637-45.
    [176] ISHII S, FUJII M, AKITA H. First syntheses of (-)-tauranin and antibiotic (-)-BE-40644 based on lipase-catalyzed optical resolution of albicanol [J]. Chem Pharm Bull (Tokyo), 2009, 57(10): 1103-6.
    [177] TSUJIMORI H, MORI K. Synthesis of the racemate of the stereoisomer at C-6a of BE-40644, a bioactive metabolite of Actinoplanes sp. with a sesquiterpene-substituted p-benzoquinone structure [J]. Biosci Biotechnol Biochem, 2001, 65(1): 167-71.
    [178] TORIGOE K, WAKASUGI N, SAKAIZUMI N, et al. BE-40644, a new human thioredoxin system inhibitor isolated from Actinoplanes sp. A40644 [J]. J Antibiot (Tokyo), 1996, 49(3): 314-7.
    [179] WU X, FLATT P M, SCHLORKE O, et al. A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism [J]. Chembiochem, 2007, 8(2): 239-48.
    [180] WU X, FLATT P M, XU H, et al. Biosynthetic gene cluster of cetoniacytone A, an unusual aminocyclitol from the endosymbiotic Bacterium Actinomyces sp. Lu 9419 [J]. Chembiochem, 2009, 10(2): 304-14.
    [181] STRATMANN A, MAHMUD T, LEE S, et al. The AcbC protein from Actinoplanes species is a C7-cyclitol synthase related to 3-dehydroquinate synthases and is involved in the biosynthesis of the alpha-glucosidase inhibitor acarbose [J]. J Biol Chem, 1999, 274(16): 10889-96.
    [182] YU Y, BAI L, MINAGAWA K, et al. Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008 [J]. Appl Environ Microbiol, 2005, 71(9): 5066-76.
    [183] MAHMUD T. The C7N aminocyclitol family of natural products [J]. Nat Prod Rep, 2003, 20(1): 137-66.
    [184] FLATT P M, MAHMUD T. Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds [J]. Nat Prod Rep, 2007, 24(2): 358-92.
    [185] NAGANAWA H, HASHIZUME H, KUBOTA Y, et al. Biosynthesis of the cyclitol moiety of pyralomicin 1a in Nonomuraea spiralis MI178-34F18 [J]. J Antibiot (Tokyo), 2002, 55(6): 578-84.
    [186] MAHMUD T, LEE S, FLOSS H G. The biosynthesis of acarbose and validamycin [J]. Chem Rec, 2001, 1(4): 300-10.
    [187] DONG H, MAHMUD T, TORNUS I, et al. Biosynthesis of the validamycins: identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus [J]. J Am Chem Soc, 2001, 123(12): 2733-42.
    [188] HYUN C G, KIM S Y, HUR J H, et al. Molecular detection of alpha-glucosidase inhibitor-producing Actinomycetes [J]. J Microbiol, 2005, 43(3): 313-8.
    [189]王洪振,周晓馥,宋朝霞, et al.简并PCR技术及其在基因克隆中的应用[J].遗传, 2003, 25(2): 4.
    [190]史兆兴,王恒樑,苏国富, et al.简并PCR及其应用[J].生物技术通讯, 2004, 15(2): 4.
    [191] SANCHEZ-CESPEDES M, CAIRNS P, JEN J, et al. Degenerate oligonucleotide-primed PCR (DOP-PCR): evaluation of its reliability for screening of genetic alterations in neoplasia [J]. Biotechniques, 1998, 25(6): 1036-8.
    [192] STAHELI J P, BOYCE R, KOVARIK D, et al. CODEHOP PCR and CODEHOP PCR primer design [J]. Methods Mol Biol, 2010, 687(57-73.
    [193] ROSE T M. CODEHOP-mediated PCR - a powerful technique for the identification and characterization of viral genomes [J]. Virol J, 2005, 2(20.
    [194] ROSE T M, HENIKOFF J G, HENIKOFF S. CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design [J]. Nucleic Acids Res, 2003, 31(13): 3763-6.
    [195] MORANT M, HEHN A, WERCK-REICHHART D. Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants [J]. BMC Plant Biol, 2002, 2(7.
    [196] LOURENCO P M, ALMEIDA T, MENDONCA D, et al. Searching for nitrilehydratase using the Consensus-Degenerate Hybrid Oligonucleotide Primers strategy [J]. J Basic Microbiol, 2004, 44(3): 203-14.
    [197] PROVENCHER C, LAPOINTE G, SIROIS S, et al. Consensus-degenerate hybrid oligonucleotide primers for amplification of priming glycosyltransferase genes of the exopolysaccharide locus in strains of the Lactobacillus casei group [J]. Appl Environ Microbiol, 2003, 69(6): 3299-307.
    [198] MARFE G, DE MARTINO L, FILOMENI G, et al. Degenerate PCR method for identification of an antiapoptotic gene in BHV-1 [J]. J Cell Biochem, 2006, 97(4): 813-23.
    [199] LU C, SHEN Y. Two new macrolides produced by Streptomyces sp. CS [J]. J Antibiot (Tokyo), 2004, 57(9): 597-600.
    [200] LU C, SHEN Y. A new macrolide antibiotic with antitumor activity produced by Streptomyces sp. CS, a commensal microbe of Maytenus hookeri [J]. J Antibiot (Tokyo), 2003, 56(4): 415-8.
    [201]鲁春华,何以能,沈月毛.云南美登木共生放线菌菌株CS产生的新多羟基环己烷衍生物[J].中国药物化学杂志, 2004, 14(1): 2.
    [202]王后根.聚醚类抗生素基因资源的挖掘[D].
    [203] XU H, ZHANG Y, YANG J, et al. Alternative epimerization in C(7)N-aminocyclitol biosynthesis is catalyzed by ValD, a large protein of the vicinal oxygen chelate superfamily [J]. Chem Biol, 2009, 16(5): 567-76.
    [204] GUST B, CHALLIS G L, FOWLER K, et al. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin [J]. Proc Natl Acad Sci U S A, 2003, 100(4): 1541-6.
    [205]鲁春华.植物美登木素类化合物生物合成起源的初步研究[D], 2004.
    [206] BAI L, LI L, XU H, et al. Functional analysis of the validamycin biosynthetic gene cluster and engineered production of validoxylamine A [J]. Chem Biol, 2006, 13(4): 387-97.
    [207] ZHANG C S, STRATMANN A, BLOCK O, et al. Biosynthesis of the C(7)-cyclitol moiety of acarbose in Actinoplanes species SE50/110. 7-O-phosphorylation of the initial cyclitol precursor leads to proposal of a new biosynthetic pathway [J]. J Biol Chem, 2002, 277(25): 22853-62.
    [208] ZHANG C S, PODESCHWA M, BLOCK O, et al. Identification of a 1-epi-valienol 7-kinase activity in the producer of acarbose, Actinoplanes sp. SE50/110 [J]. FEBS Lett, 2003, 540(1-3): 53-7.
    [209] BRUNKHORST C, WEHMEIER U F, PIEPERSBERG W, et al. The acbH gene of Actinoplanes sp. encodes a solute receptor with binding activities for acarbose and longer homologs [J]. Res Microbiol, 2005, 156(3): 322-7.
    [210] ZHANG C S, PODESCHWA M, ALTENBACH H J, et al. The acarbose-biosynthetic enzyme AcbO from Actinoplanes sp. SE 50/110 is a 2-epi-5-epi-valiolone-7-phosphate 2-epimerase [J]. FEBS Lett, 2003, 540(1-3): 47-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700