封闭介质对粘结固定型种植义齿应力分布的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究的目的是分析封闭介质的类型、封闭介质的厚度、载荷的大小、载荷的方向对单个种植义齿的应力分布的影响。
     方法:利用三维有限元分析方法(Three-dimensional Finite Element Method,3D-FEM),在右侧下颌第一磨牙的区域,分别建立四个单个粘结固定型种植义齿的计算机模型。采用磷酸锌水门汀(zinc phosphate,ZP)和玻璃离子水门汀(glass ionomer,GI)这两种临床上常用的封闭介质,分别建立25μm和100μm两种厚度的模型。在义齿的(牙合)面施加10N和150N的轴向载荷,在义齿的颊侧(牙合)轴嵴处施加10N和150N的颊舌向的载荷,测定基台、种植体表面及封闭介质内的应力值和应力集中区域。
     结果:轴向载荷下,种植体表面的应力主要集中在种植体的颈部皮质骨内和根尖区域,且种植体颈部的应力值比根尖部大。颊舌向载荷下,种植体表面的应力主要集中在种植体的颈部皮质骨内。而且,颊舌向载荷下,种植体表面的应力明显大于轴向载荷下的应力。随着载荷的增大,种植体表面的应力呈比例增大。在两种不同类型的封闭介质的模型中,种植体表面的应力相差不大,但在同样载荷下,同样厚度的ZP内的应力明显高于GI。在两种不同厚度的封闭介质的模型中,种植体表面的应力差别很小,但在同样载荷下,同种类型的封闭介质内,25μm的应力较100μm时大,且差别相当显著。
     结论:
     1.封闭介质的类型对种植体表面的应力分布影响很小,但GI较ZP的抗疲劳能力更强,更适合用于粘固种植义齿的冠修复体。
     2.封闭介质的厚度对种植体表面的应力分布影响非常小,但在保证封闭介质的粘结强度和较低的溶解性的同时,厚的封闭介质的抗微折性能较薄的封闭介质更强。
     3.载荷的方向对种植体表面的应力分布影响很大,水平载荷下的应力值显著高于轴向载荷下,故要尽量避免种植义齿受到斜向载荷。
     4.载荷的大小对种植体表面的应力分布影响非常显著,随着载荷的增大,种植体表面的应力水平相应增大,故要防止应力集中,减少种植义齿所受到的(牙合)力。
Purpose: The objective of this study was to test the effects of (1) cement type, (2) cement thickness, (3) loading magnitude, (4) loading direction on stress distribution of the single implant denture.
    Material and Methods: Four three-dimensional computer models of single cement-retention implant denture were generated in the right lower first molar area, respectively. Zinc phosphate and glass ionomer were used in the thickness of 25 and 100 # m . Models were loaded axially (10N and 150N) on the occlusion, and loaded buccollingually (10N and 150N) on the buccal edge of the occlusion. The area and level of stress concentration
    on the abutment, implant and within luting agents were tested.
    Results: The stress on the implant denture chiefly concentrated in the neck and the apical of the implant under the axial load, and the stress in the neck of the implant was bigger than
    that in the apical of it. But under the buccollingual load, the stress on the implant denture
    chiefly concentrated in the cervical cortical bone of the implant. And the stress under the buccollingual load was much higher than that under the axial load. The stress on the implant denture increased in proportion to the magnitude of the load. The difference of the stress on the implant denture was not significant in the models of the two luting agents. But under the same load, the stress in the same thickness ZP was much higher than that in the GI. The difference of the stress on the implant denture was not significant in the models of the two
    kinds of thickness luting agents. But under the same load, the stress in the 25 nm luting agent
    was much higher than in the 100#m in the same luting agent.
    II
    
    
    Conclusions:
    1. The type of the luting agents had very little effect on the stress level and stress distribution of the implant. But GI had the more favorable mechanical properties for resisting to microfracture than ZP did, so GI was more adapted to cement-retained implant denture.
    2. The thickness of the luting agents had very small effect on the stress level and stress distribution of the implant. But the thick luting agent had the more favorable mechanical properties for resisting to microfracture than the thin luting agent.
    3. The directpn of the load had very significant effect on the stress level and stress distribution of the implant. And the stress under the buccollingual load was significantly higher than that under the axial load, so the oblique load on the implant denture should be avoided as far as possible.
    4. The magnitude of the load had very significant effect on the stress level and the stress distribution of the implant. And corresponding with the load increasing, the stress level on the implant increased. So the occlusion on the implant denture should be decreased.
引文
1. Naert I, Ouirynen M, van Steenberghe D, Darius P. A six-year prosthodontic study of 509 consecutively inserted implants for the treatment of partial edentulism. J Prosthet Dent. 1992 Feb;67(2):236-45.
    2. Block MS, Gardiner D, Kent JN, Misiek D J, Finger IM, Guerra L. Hydroxyapatite-coated cylindrical implants in the posterior mandible: 10-year observations. Int J Oral Maxillofac Implants. 1996 Sep-Oct; 11(5): 626-33.
    3. Haas R, Mensdorff-Pouilly N, Mailath G, Watzek G. Survival of 1,920 IMZ implants followed for up to 100 months. Int J Oral Maxillofac Implants. 1996 Sep-Oct; 11(5): 581-8.
    4. Schnitman PA, Rubenstein JE, Whorle PS, DaSilva JD, Koch GG. Implants for partial edentulism. J Dent Educ. 1988 Dec; 52(12): 725-36.
    5. Lekholm U, van Steenberghe D,Herrmann I et al. Osseointegrated implants in the treatment of partially edentulous jaws: A prospective 5-year multicenter study. Int J Oral Maxillofac Implants. 1994; 9: 627-635.
    6. van Steenberghe D, Lekholm U, Bolender C et al. Applicability of osseointegrated oral implants in the rehabilitation of partial edentulism: a prospective multicenter study on 558 fixtures. Int J Oral Maxillofac Implants. 1990 Fall; 5(3): 272-81.
    7. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res. 1992 Sep; 3(3): 104-11.
    8. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated
    
    implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981 Dec; 10(6): 387-416.
    9. Lindquist LW, Rockier B, Carlsson GE. Bone resorption around fixtures in edentulous patients treated with mandibular fixed tissue-integrated prostheses. J Prosthet Dent. 1988 Jan; 59(1): 59-63.
    10. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res. 1996 Jun;7(2): 143-52.
    11. Brunski JB. Biomaterials and biomechanics in dental implant design. Int J Oral Maxillofac Implants. 1988 Summer; 3(2): 85-97.
    12. Branemark P-I. Osseointegration and its experimental background. J Prosthet Dent. 1983; 50:399-410.
    13. Brunski JB. Biomechanical factors affecting the bone-dental implant interface. Clin Mater. 1992; 10(3): 153-201.
    14. Warren BM, Misch C. Issures in bone mechanics related to oral implants. Implant Dent .1992; 1:153-201.
    15. Weinberg LA. The biomechanics of force distribution in implant-supported prostheses. Int J Oral Maxillofac Implants. 1993;8(1): 19-31.
    16. Gaggl A, Schultes G. Clinical experiences with a new maintenance-free shock absorbing element in titanium implants. Implant Dent. 2001; 10(4): 246-53.
    17. Sheets CG, Earthman JC. Tooth intrusion in implant-assisted prostheses. J Prosthet Dent. 1997 Jan; 77(1): 39-45.
    18. Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res. 1997 Feb;8(1): 1-9.
    19. Skalak R. Aspects of biomechanical considerations. In: Brahe,ark P-I, Zarb GA, Albrektsson T(eds). Tissttre Intergrated Prostheses:Osseointegration in Clinical Dentistry. Quintessence, 1985:117-128.
    20. Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop. 1978 Sep;(135): 192-217.
    21. Branmark P-I, Hansson BO, Adell R et al.Osseointegrated implants in the treatment of the edentulous jaw: Experience from a 10-year period. Scand J Plast Reconstr Surg. 1977; 11:1-132.
    
    
    22. Hebel KS, Gajjar RC. Cement-retained versus screw-retained implant restorations: achieving optimal occlusion and esthetics in implant dentistry. J Prosthet Dent. 1997 Jan; 77(1): 28-35.
    23. Michalakis KX, Pissiotis AL, Hirayama H. Cement failure loads of 4 provisional luting agents used for the cementation of implant-supported fixed partial dentures. Int J Oral Maxillofac Implants. 2000 Jul-Aug; 15(4): 545-9.
    24. Hebel KS, Gajjar RC. Cement-retained versus screw-retained implant restorations: achieving optimal occlusion and esthetics in implant dentistry. J Prosthet Dent. 1997 Jan; 77(1): 28-35. Review.
    25.夏海斌,王贻宁.种植体支持式单冠的固位方式及其影响因素.国外医学口腔医学分册,1999,26(3): 153—155.
    26. Lewis S. Anterior single-tooth implant restorations. Int J Pedodontics Restorative Dent. 1995 Feb; 15(1): 30-41.
    27. Ayad MF, Rosenstiel SF, Salama M. Influence of tooth surface roughness and type of cement on retention of complete cast crowns. J Prosthet Dent. 1997 Feb; 77(2): 116-21.
    28.张文云,陈吉华,施长溪等.五种粘固剂下纤维/树脂复合材料桩钉固位力的研究.口腔医学2003:23(2):65—66.
    29.陈治清,管利民,编著.口腔粘结学.第一版.北京:北京医科大学.中国协和医科大学联合出版社,1993,140—158.
    30.夏海斌,王贻宁等.纯钛基桩与镍铬合金全冠的粘结固位力研究.现代口腔医学杂志,2000,14(5):309—310.
    31. Turner MS, Clough RW, Martin HC, et al. Stiffness and deflection analysis of complex structures. J Aero Sci, 1956; 23: 805.
    32.夏荣(综述),赵云凤(审校).有限元法与其进展(一).中国口腔种植学杂志,1997,2(2),96—100.
    33. Meroueh KA, Watanabe F, Mentag PJ. Finite element analysis of partially edentulous mandible rehabilitated with an osteointegrated cylindrical implant. J Oral Implantol. 1987;13(2):215-38.
    34. Farah JW, Craig RG, Meroueh KA. Finite element analysis of a mandibular model. J Oral Rehabil. 1988 Nov;15(6):615-24.
    
    
    35. Rieger MR, Mayberry M, Brose MO. Finite element analysis of six endosseous implants. J Prosthet Dent. 1990 Jun;63(6):671-6.
    36.林天毅,段会龙,吕维雪(综述).医学数字影像通讯(DICOM)标准及在我国的实施策略.国外医学生物医学工程分册,1998;21(2),65—73.
    37. Meijer HJA, Kuiper JH, Starmans FJM, et al. Stress distribution around dental implants: Influence of superstructure, length of implants, and height of mandible. J Prosthet Dent, 1992, 68(1): 96-102
    38. Pilo R, Cardash HS. In vivo retrospective study of cement thickness under crowns. J Prosthet Dent. 1998 Jun; 79(6): 621-5.
    39. Jacobs MS, Windeler AS. An investigation of dental luting cement solubility as a function of the marginal gap. J Prosthet Dent. 1991 Mar; 65(3): 436-42.
    40. Ilizarov GA. The tension-stress effects on the genesis and growth of tissue: Part 1 the influence of stability of fixation and soft tissue preservation. Clin Orthop, 1989, (238): 249-281
    41. Powers JM, Farah JW, Powers JM. Modulus of elasticity and strength properties of dental cements. J Am Dent Assoc, 1976, 92(3): 588-591
    42. McComb D, Sirisko R, Brown J. Comparison of physical properties of commercial glass ionomer luting cements. J Can Dent Assoc, 1984, 50(9): 699-701
    43.张克惠主编.塑料材料学.西北工业大学出版社,2000,p36.
    44.胡新珉主编.医学物理学.第五版,北京:人民卫生出版社,2001,p20—21.
    45.皮昕主编.口腔解剖学.第三版,北京:人民卫生出版社,1994,p193.
    46. Holmes DC, Grigsby WR, Goel VK, Keller JC. Comparison of stress transmission in the IMZ implant system with polyoxymethylene or titanium intramobile element: a finite element stress analysis. Int J Oral Maxillofac Implants. 1992 winter; 7(4): 450-8.
    47.谢贻权,何福保,主编.弹性和塑性力学中的有限单元法.第一版,北京: 机械工业出版社出版,1981,186.
    48.陈小晖.套筒冠义齿用于牙周病修复治疗的研究.武汉大学口腔医学院博士研究生毕业论文,2001,5.
    49.魏斌,张富强.牙颌系统三维有限元建模方法的进展.口腔材料器械杂志,2002,11(2):86-87.
    
    
    50. Hart RT, Hennebel VV, Thongpreda N, Van Buskirk WC, Anderson RC. Modeling the biomechanics of the mandible: a three-dimensional finite element study. J Biomech. 1992 Mar; 25(3): 261-86.
    51.巢永烈,黄降庆,周祥平,等.计算机图像分析系统处理系列截面影像建立三维有限元模型.全国第二届口腔修复学学术论文汇编,西安:1993.
    52. Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 1998 Nov-Dec; 13(6): 781-90.
    53. Teixeira ER, Sato Y, Akagawa Y, Kimoto T. Correlation between mucosal inflammation and marginal bone loss around hydroxyapatite-coated implants: a 3-year cross-sectional study. Int J Oral Maxillofac Implants. 1997 Jan-Feb; 12(1): 74-81.
    54. Kamposiora P, Papavasiliou G, Bayne SC, Felton DA. Predictions of cement microfracture under crowns using 3D-FEA. J Prosthodont. 2000 Dec; 9(4): 201-9.
    55. Kamposiora P, Papavasilious G, Bayne SC, Felton DA. Finite dement analysis estimates of cement microfracture under complete veneer crowns. J Prosthet Dent. 1994 May;71(5):435-41.
    56.孙训方,方孝淑,关来泰主编.材料力学.河北:高等教育出版社(第三版),1994:313
    57. Chalmer B: Physical Metallyurgy. New York, NY, Wiley, 1962,p207.
    58. Craig RG, Peyton FA, Johnson DW: Compressive properties of enamel, dental cements and gold. J Dent Res, 1961; 40:936-945.
    59. Prosser HJ, Powis DR, Brent P, et al. Characterization of glass-ionomer cements. 7. The physical properties of current materials. J Dent, 1984, 12(2): 231-240
    60. White SN, Yu Z. Physical properties of fixed prosthodontic, resin composite luting agents. Int J Prosthodont. 1993 Jul-Aug; 6(4): 384-9.
    61. Pereira LC, Nunes MC, Dibb RG, Powers JM, Roulet JF, Navarro MF. Mechanical properties and bond strength of glass-ionomer cements. J Adlaes Dent. 2002 spring; 4(1): 73-80.
    62.于海洋,巢永烈,杜传诗.不同弹性模量的粘结剂对三型瓷贴面复合体应力的影响.实用口腔医学杂志,1999;15(5):335—338.
    
    
    63. Stegamiu R, Kusakari H, Nishiyama S, Miyakawa O. Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 1998 Nov-Dec; 13(6): 781-90.
    64.邹敬才,刘宝林,唐文杰等.种植牙受力角度对骨界面应力分布的影响.口腔医学.1996;16(2):67—68.
    65. Benzing UR, Gall H, Weber H. Biomechanical aspects of two different implant-prosthetic concepts for edentulous maxillae, Int J Oral Maxillofac Implants. 1995 Mar-Apr; 10(2): 188-98
    66. Hoshaw SJ, Brunski JB, Cochran GVB. Mechanical loading of Branemark implants affects interracial bone modeling and remodeling. Int J Oral Maxillofac Implants, 1994; 9:345-360.
    67. Vaillancourt H, Pilliar RM, McCammond D. Finite element analysis of crestal bone loss around porous-coated dental implants. J Appl Biomater. 1995, winter; 6(4): 267-82.
    68. Adell R, LekhoIm U, Rockier B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg. 1981 Dec; 10(6): 387-416.
    69. Ichikawa T, Miyamoto M, Horisaka Y, Horiuchi M. Radiographic analysis of a two-piece apatite implant: Part Ⅱ. Preliminary report of 2-year observation. Int J Oral Maxillofac Implants. 1994 Mar-Apr; 9(2): 214-22.
    70. Rangert B, Krogh PHJ, Langer B, et al. Bending overload and implant fracture: A retrospective clinical analysis. Int J Oral Maxillofac Implants, 1995; 10: 326-334.
    71.施斌,周铸民.单个种植义齿的种植体边缘骨的应力分析.口腔医学研究,2003,19(1):63-65.
    72.赖红昌,张志勇,张保卫等.三种载荷条件下种植体骨界面应力分布特征.2002,11(3):253-255.
    73. Meijer GJ, Starmans FJM. Loading conditional endosseons implants in an edentulous human mandible: A three-dimensional finite element study. J Oral Rehab, 1996; 23: 757-763.
    74.赖红昌,张志勇,张保卫等.三种载荷条件下种植体骨界面应力分布的特征.上海口腔医学,2002;11(3):253—255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700