三维角联锁机织复合材料三点弯曲疲劳性能与结构效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层层接结三维角联锁机织物结构由经、纬两种系统的纱线构成。其中,纬纱平行排列无屈曲,经纱以一定角度沿着结构的厚度方向衬入,且每一层中,相邻两根经纱的屈曲波动状态相反,以此形成对材料厚度方向上任意两相邻纬纱层强有力的束缚作用,从而维持织物整体结构的稳定性。以此织物结构作为增强相形成的树脂基复合材料即三维角联锁机织复合材料,在厚度以及面内方向具有高强、高模、高层间剪切强度以及大面积区域承受加载、吸收能量等诸多优势,在结构工程材料领域有巨大的应用潜力。鉴于复合材料在长期服役期,尤其在飞行器、车辆等工程结构件设计应用中的抗疲劳性能甚为关键,研究三维角联锁机织复合材料在交变循环应力加载下的疲劳性能具有重要意义。本文结合实验分析与有限元计算的方法,研究一种层层接结三维角联锁机织复合材料在三点弯曲交变循环载荷下的疲劳性能、结构效应以及破坏机理。
     通过实验分析方法,获取以下结果:(1)三维角联锁机织复合材料的疲劳寿命(S-N)曲线,探索材料抗疲劳能力与应力水平(60%-80%)之间的关系;(2)材料在交变循环应力加载过程中的应力-挠度曲线、刚度变化曲线、挠度变化曲线等,以此表征与分析材料的“三步骤式”渐进疲劳破坏过程;(3)准静态与交变循环应力加载条件下,材料破坏形态的比较,说明裂纹的萌生与扩展在材料疲劳破坏过程中的作用;(4)相同准静态与交变循环应力加载条件下,三维角联锁机织复合材料与三维正交机织复合材料力学性能与破坏形态的比较,阐述三维角联锁机织结构抵抗交变循环载荷的结构特征与优势。
     利用有限元分析方法,结合经典疲劳破坏准则,(1)建立三维角联锁机织复合材料在三点弯曲交变循环载荷下的细观结构单胞模型;(2)计算此结构复合材料在交变循环载荷下的动态力学响应;(3)通过应力在材料结构中的分布、纱线与树脂的破坏、纱线-树脂界面裂纹(脱粘)的萌生与扩展以及结构破坏的关键区域等方面阐述材料在三点弯曲交变循环载荷下发生疲劳破坏的结构效应与破坏机理。
     本文研究为三维角联锁机织复合材料在三点弯曲交变循环应力加载条件下的抗疲劳结构设计提供一种有效的方法,可以扩展应用于飞行器、车辆等工程领域三维纺织结构复合材料的抗疲劳结构设计
The layer-to-layer three-dimensional (3-D) Angle-Interlock Woven Fabric (3DAWF) construction is composed of two types of yarn systems, i.e., warp and weft yarns. It presents a layer-to-layer angle-interlocking structure where the weft yarns are in almost straight way, as well as the undulated warp yarns are placed at an angle to the thickness direction of the material structure. The adjacent two undulated warp yarns in a single layer display a converse undulation form to ensure that two adjacent layers of non-crimp weft yarns be held together to form a stable and integrated woven construction. This structural feature imparts high strength, stiffness, inter-layer shear strength and large-area energy absorption capacity for the3DAWF reinforced composite, i.e.,3-D Angle-Interlock Woven Composite (3DAWC), which also make such type of composite have a wide potential in the field of structural engineering materials applications. Considering the performance of fatigue resistance for the composites is very important during the long-term use, especially in the design and applications of engineering structures such as aircrafts and vehicles. Conducting the research on the fatigue behavior of the3DAWC undergoing cyclic loading conditions is of critical importance. In this dissertation, the fatigue behavior, structural effects and damage mechanisms of the layer-to-layer3DAWC subjected to three-point bending cyclic loading are presented by both experimental and Finite Element Method (FEM).
     In the experimental, we have obtained the following contents:(1) the fatigue life (Stress levels vs. Numbers of cycles to failure, S-N) curve of the3DAWC samples for presenting the relationship between the fatigue resistance capacity and applied stress levels (60%-80%);(2) the curves of Stress vs. Deflection, Stiffness degradation and Deflection variation, for characterizing and analyzing the "three-stage" form cumulative fatigue damage evolution of the3DAWC under three-point bending cyclic loading;(3) the comparisons of ultimate damage modes of the3DAWC samples between the quasi-static three-point bending loading and three-point bending cyclic loading, for indicating the dominated role of the initiation and propagation of the cracks during the entire fatigue damage process of composites;(4) the comparisons of mechanical responses and damage modes between the3DAWC samples and the3-D Orthogonal Woven Composite (3DOWC) samples under both the quasi-static three-point bending loading and three-point bending cyclic loading conditions, for summarizing the structural characteristics and advantages of the3DAWC in resisting the three-point bending cyclic loading.
     In FEM model which takes the classic fatigue damage criteria into account, the main objectives are as follows:(1) to establish the micro-structural unit-cell model of the3DAWC under three-point bending cyclic loading;(2) to calculate the dynamic mechanical responses of the composite during fatigue loading;(3) to describe the structural effects and damage mechanisms of the layer-to-layer3DAWC subjected to three-point bending cyclic loading by the stress distribution, damage evolution of the yarns and resin, debonding initiation and propagation on the resin-yarns interface and critical regions of structural fatigue damage.
     This dissertation provides an effective method for the fatigue resistance structural designing of the3DAWC undergoing cyclic loading. Such an effect could be extended applied to the fatigue resistance structural design of the3D textile structural composites in the field of engineering structures such as aircrafts and vehicles.
引文
[1]Mouritz AP, Bannisterb MK, Falzonb PJ, Leongb KH. Review of applications for advanced three-dimensional fibre textile composites. Composites Part A,1999,30(12):1445-1461
    [2]Hu J.3-D fibrous assemblies:properties, applications and modelling of three-dimensional textile structures. Woodhead Publishing Limited,2008,1-32
    [3]Hu H, Zhang MX, Fangueiro R, Araujo MD. Mechanical properties of composite materials made of 3D stitched woven-knitted preforms. Journal of Composite Materials,2010,44(14):1753-1767
    [4]Xu YH, Hu H, Yuan XL. Geometrical analysis of co-woven-knitted preform for composite reinforcement. The Journal of the Textile Institute,2011,102(5):405-418
    [5]Sun BZ, Liu YK, Gu BH. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite. Composites Part B,2009,40 (6):552-560
    [6]Gu BH. A microstructure model for finite element simulation of 3-D 4-step rectangular braided composite under ballistic penetration. Philosophical Magazine,2007,87(30):4643-4669
    [7]Jin LM, Hu H, Sun BZ, Gu BH. A simplified microstructure model of bi-axial warp-knitted composite for ballistic impact simulation. Composites Part B,2010,41(5):337-353
    [8]Tong L, Mouritz AP, Bannister MK.3D fibre reinforced polymer composites. Elsevier Science Ltd.,2002,1-12
    [9]Amijima S, Fujii T, Hamaguchi M. Static and fatigue tests of a woven glass fabric composite under biaxial tension-torsion loading. Composites,1991,22(4):281-289
    [10]Fujii T, Lin F. Fatigue behavior of a plain-woven glass fabric laminate under tension-torsion biaxial loading. Journal of Composite Materials,1995,29(5):573-590
    [11]Kawakami H, Fujii T. Fatigue degradation and life prediction of glass fabric polymer composite under tension/torsion biaxial loading. Journal of Reinforced Plastics and Composites,1996,15: 183-196
    [12]Mitrovic M, Carman GP. Effect of fatigue damage in woven composites on thermo-mechanical properties and residual compressive strength. Journal of Materials Science,1996,30(2):164-189
    [13]Gilchrist MD, Svensson N, Shishoo R. Fracture and fatigue performance of textile commingled yarn composites. Journal of Materials Science,1998,33(16):4049-4058
    [14]Tamuzs V, Dzelzitis K, Reifsnider K. Prediction of the cyclic durability of woven composite laminates. Composites Science and Technology,2008,68(13):2717-2721
    [15]Van Paepegem W, Degrieck J. Coupled residual stiffness and strength model for fatigue of fibre-reinforced composite materials. Composites Science and Technology,2002,62(5):687-696
    [16]Huang ZM, Ramakrishna S. Modeling inelastic and strength properties of textile laminates:a unified approach. Composites Science and Technology,2003,63(3-4):445-466
    [17]Huang ZM. Fatigue life prediction of a woven fabric composite subjected to biaxial cyclic loads. Composites, Part A,2002,33A:253-266
    [18]Hochard C, Payan J, Bordreuil C. A progressive first ply failure model for woven ply CFRP laminates under static and fatigue loads. International Journal of Fatigue,2006,28(10): 1270-1276
    [19]Hochard C, Thollon Y. A generalized damage model for woven ply laminates under static and fatigue loading conditions. International Journal of Fatigue,2010,32(1):158-165
    [20]Zhang J, Wang F. Modeling of damage evolution and failure in fiber-reinforced ductile composites under thermo mechanical fatigue loading, International Journal of Damage Mechanics,2010, 19(7):851-875
    [21]Fujii T, Amijima S, Okubo K. Microscopic fatigue processes in a plain-weave glass-fibre composite. Composites Science and Technology,1993,49:327-333
    [22]Takemura K, Fujii T. Fatigue damage and fracture of carbon fiber/epoxy composites under tension-tension loading. JSME International Journal, Series A,1994,37(4):472-480
    [23]Jang BZ. Advanced polymer composites. ASM International, Materials Park, Ohio,1994:199-211
    [24]Hansen U. Damage development in woven fabric composites during tension-tension fatigue. Journal of Composite Materials,1999,33(7):614-639
    [25]Pantelakis SP, Labeas G. "Constant and variable amplitude fatigue damage of laminated fibrous composites" in Failure Analysis of Industrial Composite Materials, eds, Gdoutos EE, Pilakoutas K, Rodopoulos CA, New York, McGraw Hill,2000:247-298
    [26]Mouritz AP. Tensile fatigue properties of 3D composites with through-thickness reinforcement. Composites Science and Technology,2008,68(12):2503-2510
    [27]Rudov-Clark S, Mouritz AP. Tensile fatigue properties of a 3D orthogonal woven composite. Composites Part A,2008,39(6):1018-1024
    [28]李嘉禄,杨红娜,寇长河.三维编织复合材料的疲劳性能.复合材料学报,2005,22(4):172-176
    [29]廖晓玲,李贺军,李克智.应力水平对3D C/C复合材料的弯弯疲劳损伤模式的影响.中国科学,E辑,技术科学,2007,37(1):53-59
    [30]Ding YQ, Yan Y, McIlhagger R, Brown D. Comparison of the fatigue behavior of 2-D and 3-D woven fabric reinforced composites, Journal of Materials Processing Technology,1995,55: 171-177
    [31]Carvelli V, Gramellini G, Lomov SV, Bogdanovich AE, Mungalov DD, Verpoest I. Fatigue behavior of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass reinforced composites. Composites Science and Technology,2010,70(14):2068-2076
    [32]Gude M, Hufenbach W, Koch I. Damage evolution of novel 3D textile-reinforced composites under fatigue loading conditions. Composites Science and Technology,2010,70(1):186-192
    [33]Tsai KH, Chiu CH, Wu TH. Fatigue behavior of 3D multi-layer angle interlock woven composite plates. Composites Science and Technology,2000,60(2):241-248
    [34]Gowayed Y, Fan H. Fatigue behavior of textile composite materials subjected to tension-tension loads. Polymer Composites,2001,22(6):762-769
    [35]Dadkhah MS, Cox BN, Morris WL. Compression-compression fatigue of 3D woven composites. Acta Metallurgica et Materialia,1995,43(12):4235-4245
    [36]Tan P, Tong L, Steven GP, Ishikawa T. Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation. Composites Part A:Applied Science and Manufacturing,2000,31(3): 259-271
    [37]Bilisik K. Multiaxis 3D woven preform, properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites. Journal of Reinforced Plastics and Composites,2010,29(8): 1173-1186
    [38]Baucom JN, Zikry MA. Low-velocity impact damage progression in woven E-glass composite systems. Composites Part A:Applied Science and Manufacturing,2005,36(5):658-664
    [39]Baucom JN, Zikry MA. Evolution of failure mechanisms in 2D and 3D woven composite systems under quasi-static perforation. Journal of Composite Materials,2003,37(18):1651-1674
    [40]Lomov SV, Bogdanovich AE, Ivanov DS, Mungalov D, Karahan M, Verpoest I. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1:Materials, methods and principal results. Composites Part A:Applied Science and Manufacturing,2009,40(8):1134-1143
    [41]Ivanov DS, Lomov SV, Bogdanovich AE, Karahan M, Verpoest I. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2:Comprehensive experimental results. Composites Part A:Applied Science and Manufacturing,2009,40(8):1144-1157
    [42]Sun BZ, Niu ZL, Zhu LT, Gu BH. Mechanical behaviors of 2D and 3D basalt fiber woven composites under various strain rates. Journal of Composite Materials,2010,44(14):1779-1795
    [43]Sun BZ, Yang L, Gu BH. Strain rate effect on four-step three dimensional braided composite compressive behavior. AIAA journal,2005,43(5):994-999
    [44]Sun BZ, Gu BH. High strain rate behavior of 4-step 3-D braided composites under compressive failure. Journal of Materials Science,2007,42(7):2463-2470
    [45]Sun BZ, Hu H, Gu BH. Compressive behavior of multi-axial multi-layer warp knitted (MMWK) fabric composite at various strain rates. Composite Structures,2007,78(1):84-90
    [46]Liu WJ, Sun BZ, Hu H, Gu BH. Compressive behavior of biaxial spacer weft knitted fabric reinforced composite at various strain rates. Polymer Composites,2007,28(2):224-232
    [47]Sun BZ, Liu F, Gu BH. Influence of the strain rate on the uniaxial tensile behavior of 4-step 3D braided composites. Composites Part A,2005,36(11):1477-1485
    [48]Rong J, Sun BZ, Hu H et al. Tensile impact behavior of multiaxial multilayer warp knitted (MMWK) fabric reinforced composites. Journal of Reinforced Plastics and Composites,2006, 25(12):1305-1315
    [49]Sun BZ, Gu BH Shear behavior of 3D orthogonal woven fabric composites under high strain rates. Journal of Reinforced Plastics and Composites,2006,25(17):1833-1845
    [50]Tabiei A, Nilakantan G. Ballistic impact of dry woven fabric composites:A review. Applied Mechanics Reviews,2008,61(1):1-13
    [51]Walter TR, Subhash G, Sankar BV, Yen CF. Damage modes in 3D glass fiber epoxy woven composites under high rate of impact loading. Composites Part B,2009,40(6):584-589
    [52]顾伯洪,徐静怡.三维编织复合材料弹道侵彻准细观层次有限元计算.复合材料学报,2004, 21(3):84-90
    [53]练军,顾伯洪.三维编织复合材料弹道冲击细观结构模型的有限元计算.弹道学报,2006,18(3):79-83
    [54]Gu BH, Xu JY. Finite element calculation of 4-step 3-dimensional braided composite under ballistic perforation. Composites Part B,2004,35(4):291-297
    [55]Gu BH, Li YL. Ballistic perforation of conically cylindrical steel projectile into 3-D braided Composites. AIAA Journal,2005,43(2):426-434
    [56]Chen X, Spola M, Paya JG, et al. Experimental studies on the structure and mechanical properties of multi-layer and angle-interlock woven structures. Journal of the Textile Institute,1999,90(1): 91-99
    [57]Tan P, Tong LY, Steven GP. Micromechanics models for mechanical and thermomechanical properties of 3D through-the-thickness angle interlock woven composites. Composites:Part A, 1999,30(5):637-648
    [58]Sheng SZ, Hoa SV. Modeling of 3D angle interlock woven fabric composites. Journal of Thermoplastic Composite Materials,2003,16(1):45-58
    [59]Sun BZ, Gu BH, Ding X. Compressive behavior of 3-D angle-interlock woven fabric composites at various strain rates. Polymer Testing,2005,24(4):447-454
    [60]Sun BZ, Gu BH. Frequency analysis of stress waves in testing 3-D angle-interlock woven composite at high strain rates. Journal of Composite Materials,2007,41(24):2915-2938
    [61]杨彩云,田玲玲.三维角联锁结构复合材料的力学模型.固体火箭技术,2007,30(1):76-79
    [62]Lapeyronnie P, Grognec PL, Binetruy C, Boussu F. Homogenization of the elastic behavior of a layer-to-layer angle-interlock composite. Composite Structures,2011,93(11):2795-2807
    [63]Dong WF, Xiao J, Li Y. Finite element analysis of the tensile properties of 2.5D braided composites. Materials Science and Engineering A,2011,457(1-2):199-204
    [64]Nehme S, Hallal A, Fardoun F,et al. Numerical/analytical methods to evaluate the mechanical behavior of interlock composites. Journal of Composite Materials,2011,45(16):1699-1716
    [65]Hallal A, Younes R, Nehme S, Fardoun F. A corrective function for the estimation of the longitudinal Young's modulus in a developed analytical model for 2.5D woven composites. Journal of Composite Materials,2011,45(17):1793-1804
    [66]Cui F, Sun BZ, Gu BH. Fiber inclination model for finite element analysis of three-dimensional angle interlock woven composite under ballistic penetration. Journal of Composite Materials, 2010,45(14):1499-1509
    [67]Li ZJ, Sun BZ, Gu BH. FEM simulation of 3D angle-interlock woven composite under ballistic impact from unit cell approach. Computational Materials Science,2010,49(1):171-183
    [68]Tang YY, Sun BZ, Gu BH. Impact damage of 3D cellular woven composite from unit-cell level analysis. International Journal of Damage Mechanics,2010,20(3):323-346
    [69]Miravete A.3-D textile reinforcements in composite materials. Cambridge:Woodhead publishing limited, New York:CRC Press,1999:9-65
    [70]陶肖明,冼杏娟,高冠勋.纺织结构复合材料.科学出版社,2001:273-311
    [71]李旺.硕士论文.三维正交机织复合材料的制造及高应变率压缩行为的研究.东华大学,2006:1-40
    [72]Hu J L, Jiang Y M. Modeling formability of multiaxial warp knitted fabrics on a hemisphere. Composites part A,2002,33(5):725-734
    [73]龙海如.纬编针织物增强复合材料研究进展.玻璃钢/复合材料,2000,(2):48-52
    [74]郝元恺,肖加余.高性能复合材料科学.北京:化学工业出版社,2004:111-198
    [75]尹洪峰,任耕,罗发.复合材料及其应用.陕西:陕西科学技术出版社,2003:48-52
    [76]曹运红,杨鸿昌.大尺寸复合材料结构的真空辅助树脂传递模塑自动加工工艺.飞航导报,2005,(12):59-63
    [77]Lemaitre L, Chaboche JL. Mechanics of solid materials. London:Cambridge University Press, 1990
    [78]ABAQUS Version 6.10, Hibbit, Karlsson & Sorensen
    [79]Paris P, Gomaz M, Anderson W. A rational analytic theory of fatigue. The Trend in Engineering, 1961,13(1):9-14
    [80]Benzeggagh M, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composite Science and Technology,1996,56(4):439-449

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700