高浓度CO_2下高羊茅应对温度和水分变化的生理生化响应及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高羊茅(Festuca arundinacea)是一种世界性分布的冷季型多年生羊茅属牧草兼草坪草,在中国主要分布于华北、华中、中南和西南地区,适宜于寒冷潮湿和温暖潮湿的过渡带生长,广泛应用于学校、公园、运动场和高尔夫球场等绿地建设。高羊茅属于丛生型,分蘖性强,须根发达,入土深,具有广泛的适应性,抗逆性强,耐酸、耐瘠薄,抗病性强,其耐寒和耐热能力都很强,同时也是最耐践踏的草坪草,夏季不休眠,而且建坪速度较快,是长江流域能够保持四季常绿的草坪草种。因此,本文以高羊茅(cv. Rembrandt)为研究对象,(1)研究高浓度CO2如何缓解过渡性干旱对高羊茅生理指标的影响,包括光合作用、呼吸作用、电解质渗漏率、光化学效率、羧化速率和电子传输速率及气孔导度;(2)确定高浓度CO2如何缓解5℃增温对高羊茅生理指标的影响;(3)明确高浓度CO2及高温和干旱三者的交互作用对高羊茅生理指标的影响,并探究其机理;(4)研究在热胁迫条件下(10℃增温)高羊茅对高浓度CO2的生理响应,并探究其机理。(5)研究在高浓度CO2条件下,非过渡性干旱及复水处理对高羊茅各项生理指标的影响。
     本文在第三章以当前人们普遍关注的气候变化为研究背景,以冷季型草坪草高羊茅为实验材料,研究了高羊茅应对温度升高5℃和逐步干旱做出的生理生化响应,并发现了高浓度CO2对植物应对不利气候条件所发挥的缓解性作用,包括通过降低气孔导度来减少蒸腾作用,降低土壤和叶片水平的水分损失来提高光合作用、抑制呼吸作用;同时,提高光化学效率,降低电解质渗漏率。此外,高浓度CO2可以显著降低气孔对光合作用的限制,该作用不受温度升高及过渡性干旱的影响。
     连续的夏季高温是影响冷季型草坪草的一个重要的非生物因素,为了探索在CO2浓度升高的条件下,冷季型草坪草如何应对长期的热胁迫环境,本文在第四章对此进行了详细阐述。结果表明,热胁迫严重影响了高羊茅材料的正常生长代谢,包括降低了光合速率,胞间CO2浓度,气孔导度,水分利用效率,坪观质量,生长率,比叶面积,电子传递速率,Rubisco (?)舌性及细胞膜的稳定性,而CO2浓度升高则对各项生理生化指标均表现出正效应,再次证明了高浓度CO2在高羊茅应对热胁迫过程中所起到的保护性作用。
     夏季高温通常伴随少雨或无雨,使草坪草受到干旱的不利影响,本文在第五章就高浓度CO2下高羊茅如何应对干旱胁迫及胁迫结束后进行复水处理所做出的响应进行了阐述。完全停止浇水造成高羊茅材料的土壤含水量,叶片相对含水量,光合速率,气孔导度,蒸腾速率及Rubisco (?)舌性和激活比率的急剧下降,经过复水处理后,土壤含水量,叶片相对含水量,光合速率,气孔导度和蒸腾速率逐步恢复到干旱处理前的水平,但Rubisco活性和激活比率仍然比干旱处理10天的值显著下降,说明Rubisco活性及Rubisco催化酶由于干旱而造成了不可逆的破坏性影响。
     总之,高浓度CO2能够极大地减轻高温和干旱胁迫对高羊茅各项生理生化指标的不利影响,提高了植物的耐热及耐旱性,有利于植物更好的应对未来全球气候变化。
Tall fescue (Festuca arundinacea) is a cool-season trufgrass and forage grass which widely distributes all over the world. Tall fescue adapts transitional zones between cool-wet and warm-wet areas and is extensively used in schools, parks, sports ground and golf courses, et ac. Tall fescue is a bunch type grass established from seeds, with strong tiller, developed fibrils, powerful resistant to heat, disease, cold, drought, acid, barren and trample. It could make early, dense and fast growing lawns with lower maintenance so that it is one of the more welcome turfgrass. Taking tall fescue as target material, we (1) studied how elevated CO2 alleviated the effects of transitional drought on physiological indexes; (2) elaborated the alleviation of CO2 enrichment on physiological indexes in response to elevated temperature (5℃above normal temperature); (3) discussed the interactive effects of elevated CO2, elevated temperature and drought on physiological indexes; (4) studied the responses of physiological and biochemical indexes to elevated CO2 under heat stressed conditions to look for mechanisms from protein and metabolism levels; (5) studied the effects of non-transitional drought and rewartering treatment on all indexes under elevated CO2 conditions.
     Taking tall fescue as material, the physiological and biochemical responses to elevated temperature and transitional drought in conditions of CO2 enrichment were studied under climate change scenario in chapter 3. Results showed that elevated CO2 mitigated the adverse effects of elevated temperature and drought in tall fescue, including decreased stomatal conductance, SWC, and RWC, but increase photochemical efficiency and electrolyte leakage to reduce water loss and protect cellular integrity to improve photosynthesis and decrease respiration. Additionally, elevated CO2 could significantly decrease stomatal limitation to photosynthesis and this effect was not affected by temperature elevation and transitional drought.
     Successive high temperature in summer is one of the pretty important abiotic factors affecting cool-season turfgrass growth. Chapter 4 would elaborate how cool-season turfgrass responds to long term heat-stressed environment under elevated CO2. Results indicated that heat stress seriously affected the normal growth and metabolism, including decreases in A, Ci, gs, WUE. TQ, Gr, SLA, Jmax, cellular stability, Rubisco activity and activation state, while elevated CO2 suppressed their decreases. Results showed the protective effects of elevated CO2 on tall fescue under heat stress.
     High temperature always accompanying with little precipitation in summer impose negative effects on turfgrass. Chapter 5 elaborated how tall fescue response to drought stress and rewartering under elevated CO2 concentration.100% drought stress induced the rapid decreases in SWC, RWC, A, gs, Tr, Rubisco activity and activity state. SWC, RWC, A, gs and Tr recovered to 0 d (without treatments) after rewartering for one week, but Rubisco activity and activity state still had significantly lower values than those of 10 d of drought treatment indicating that server drought caused irreversible injury to Rubisco activity and Rubisco activase.
     In conclusion, elevated CO2 could significantly mitigate the adverse effects of temperature and drought stresses on physiological and biochemical indexes in tall fescue. The alleviation effects of elevated CO2 could improve heat and drought tolerance which is better for responding to global climate change.
引文
张金屯.全球气候变化对自然上壤碳、氮循环的影响.地理科学.1998,(5):463-471.
    周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究.植物生态学报.1996,20(1):11-19..
    Abraham, E.M., W.A. Meyer, S.A. Bonos, and B. Huang.2008. Differential responses of hybrid bluegrass and Kentucky bluegrass to drought and heat stress. HortScience 43:2191-2195.
    Acock, B. and L.H. Allen, Jr.1985. Crop responses to elevated carbon dioxide concentrations, p. 317-346. In:Strain, B.R. and J.D. Cure (eds.). Direct effects of increasing carbon dioxide on vegetation. DOE/ER-0238, Office of Energy Research, U.S. Dept. of Energy, Washington DC.Agron. J.82:834-840.
    Ainsworth E.A., and A. Rogers.2007. The response of photosynthesis and stomatal conductance to rising [CO?]:mechanisms and environmental interactions. Plant, Cell and Environment.30(3):258-270.
    Ainsworth, E.A., A. Rogers, R. Nelson, S.P. Long.2004. Testing the 'source-sink' hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitution in Glycine max. Agric. For. Meteor.122:85-94.
    Albertini, E., G. Marconi, L. Reale, G. Barcaccia, A. Porceddu, F. Ferranti, and M. Falcinelli.2005. SERK and APOSTART. Candidate genes for apomixis in Poa pratensis. Plant physiology 138:2185-2199.
    Al-Khatib, K., and G.M. Paulsen.1999. High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Sci.39:119-125.
    Alonso, A., P.A. Perez, and R. Martinez-Carrasco.2009. Growth in elevated CO2 enhances temperature response of photosynthesis in wheat. Physiol. Plant.135:109-120.
    Alonso, A., P.P. Rez, R. Morcuende, and R. Martinez-Carrasco.2008. Future CO2 concentrations though not warmer temperatures enhance wheat photosynthesis temperature response. Physiologia Plantarum 132:102-112.
    Amthor, J.S.1995. Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Glob. Change Biol.1:243-274.
    Amthor, J.S.1997. Plant respiratory responses to elevated CO2 partial pressure. In Advances in CO2 Effects Research, ed. LH Allen, MH Kirkham, DM Olszyk, CE Whitman, LH Allen, et al. Madison, WI:Am. Soc. Agron.
    Amthor, J.S. and R.S. Loomis.1996. Integrating knowledge of crop responses to elevated CO2 and temperature with mechanistic simulation models:Model components and research needs, p.317-346. In: Koch. G.W. and H.A. Mooney (eds.). Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, CA.
    Amthor, J.S., G.W. Koch, and A.J. Bloom.1992. CO2 inhibits respiration in leaves of Rumex crispus L. Plant Physiology 98:757-760.
    Anderson, L.J., H. Maherali, H.B. Johnson, H.W. Polley, and R.B. Jackson.2001. Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3-C4 grassland. Global Change Biology 7:693-707.
    Andrews J.T., and G.H. Lorimer.1987. Rubisco:structure, mechanisms and prospects for improvement. In:Hatch MD, Broadman NK (eds) Biochemistry of Plants, Vol.10. Academic Press, New York, pp 132-207
    Aranjuelo, I., P. Perez, L. Hernandez, J. J. Irigoyen, G. Zita, R. Martinez-Carrasco, and M. Sanchez-Diaz.2005. The response of nodulated alfalfa to water supply, temperature and elevated CO2: photosynthetic downregulation. Physiol. Plant.123:348-358.
    Assmann, S.M.1993. Signal transduction in guard cells. Annu. Rev. Cell Biol.9:345-375.
    Ayub, G., R.A. Smith, D.T. Tissue, and O.K. Atkin.2011. Impacts of drought on leaf respiration in darkness and light in Eucalyptus saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytologist 190:1003-1018.
    Azcon-Bieto J, M.A. Gonzalez-Meler, W. Doherty, B.G. Drake.1994. Acclimation of respiratory O2 uptake in green tissues of field grown native species after long-term exposure to elevated atmospheric CO2. Plant Physiol.106(3):1163-68.
    Badger, M.R., O. Bjorkman, and P.A. Armond.1982. An analysis of photosynthetic response and adaptation to temperature in higher plants:temperature acclimation in the desert evergreen Nerium oleander L*. Plant Cell And Environment 5:85-99.
    Barrs, H. D., and P. E. Weatherley.1962. A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Aust. J. Biol. Sci.15:413-428.
    Bassham, J. A..2003. Mapping the carbon reduction cycle:a personal retrospective. Photosynth. Res.76:35-52.
    Bazzaz, F.A.1990. The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics 21:167-196.
    Bencze, S., O. Veisz, and Z. Bedo.2005. Effect of elevated CO2 and high temperature on the photosynthesis and yield of wheat. Cereal Research Communications 33:385-388.
    Benson, A.A..2002. Following the path of carbon in photosynthesis:A personal story. Photosynth. Res.73:29-49.
    Bernacchi, C.J., C. Pimentel, and S.P. Long.2003. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ.26:1419-1430.
    Berry, J. and O. Bjorkman.1980, photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31:491-543.
    Blum, A., and A. Ebercon.1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci.21:43-47.
    Bolhar-Nordenkampf, H.R., S.P. Long, N.R. Baker, G. Oquist, U. Schreiber, and E.G. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field:A review of current instrumentation. Functional Ecol.3:497-514.
    Borjigidai, A., K. Hikosaka, T. Hirose, T. Hasegawa, M. Okada, and K. Kobayashi.2006. Seasonal changes in temperature dependence of photosynthetic rate in rice under a free-air CO2 enrichment. Annals of Botany 97:549-557.
    Bota, J., J. Flexas, H. Medrano.2004. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol.162:671-681.
    Bowes, G.1993. Facing the inevitable:Plants and increasing atmospheric CO2 Annu. Rev. Plant Physiol. Plant Mol. Biol.44:309-332.
    Bryant, J., G. Taylo, and M. Frehner.1998. Photosynthetic acclimation to elevated CO2 is modified by source:sink balance in three component species of chalk grassland swards grown in a free air carbon dioxide enrichment (FACE) experiment. Plant, Cell & Environment 21:159-168.
    Bunce, J.A.1990. Short-and-long term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Ann. Bot.65:637-42.
    Bunce, J.A.1994. Responses of respiration to increasing atmospheric carbon dioxide concentrations. Physiol. Plant.90(2):427-30.
    Bunce, J.A.2000. Responses of stomatal conductance to light, humidity and temperature in winter wheat and barley grown at three concentrations of carbon dioxide in the field. Global change Biology 6: 371-382.
    Buyer, J.S., D.A. Zuberer, K.A. Nichols, and A.J. Franzluebbers.2011. Soil microbial community function, structure, and glomalin in response to tall fescue endophyte infection. Plant Soil 339:401-412.
    Cannell, M. and J. Thornley.1998. Temperature and CO2 responses of leaf and canopy photosynthesis:A clarification using the non-rectangular hyperbola model of photosynthesis. Annals of Botany,82(6):883-892.
    Cen, Y.-P. and R.F. Sage.2005. The regulation of rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiology 139:979-990.
    Cervigni, T., F. Teofani, and C. Bassanelli.1971. Effect of CO2 on carbonic anhydrase in Avena sativa and Zea mays. Phytochemistry 10:2991-2994.
    Ceulemans, R.1997. Direct impacts of CO2 and temperature on physiological processes in trees. In: Mohren GMJ, Kramer K, Sabate'S (eds) Impacts of Global Change on Tree Physiology and Forest Ecosystems. Kluwer Academic Publishers, Dordrecht, Bostonm, London, pp 3-14.
    Ceulemans, R. and M. Mousseau.1994. Effects of elevated atmospheric CO2 on woody plants. New Phytol.127:425-446.
    Chai, Q., F. Jin, E. Merewitz, and B. Huang.2010. Growth and physiological traits associated with drought survival and post-drought recovery in Perennial turfgrass species. J. Am. Soc. Hort. Sci.135: 125-133.
    Chaudhuri, U.N., M.B. Kirkham, and E.T. Kanemasu.1990. Carbon dioxide and water level effects on yield and water use of winter wheat. Agron. J.82:637-641.
    Cheng, W., D.A. Sims, Y. Luo, J.S. Coleman, D.W. Johnson.2000. Photosynthesis, respiration and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations. Glob. Change Biol.6:931-937.
    Chun, J.A., Q.G. Wang, D. Timlin, D. Fleisher, and V.R. Reddy.2011. Effect of elevated carbon dioxide and water stress on gas exchange and water use efficiency in corn. Agric. For. Meteorol.151: 378-384.
    Cleland, W.W., T.J. Andrews, S. Gutteridge, F.C. Hartman, and G.H. Lorimer.1998. Mechanism of Rubisco:the carbamate as general base. Chemical Review 98:549-561.
    Clifford, S.C., I.M. Stronach, C.R. Black, P.R. Singleton-Jones, S.N. Azam-Ali, and N.M.J. Crout. 2000. Effects of elevated CO2, drought and temperature on the water relations and gas exchange of groundnut (Arachis hypogaea) stands grown in controlled environment glasshouses. Physiol. Plant.110: 78-88.
    Cornic, G.2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in plant science 5:187-188.
    Cowling, S.A., and R.F. Sage.1998. Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant Cell Environ.21: 427-435.
    Crafts-Brandner, S.J., and M.E. Salvucci.2000. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. proceedings of the national academy of sciences of the united states of america 97:13430-13435.
    Crafts-Brandner, S.J., and R.D. Law.2000. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta 212:67-74.
    Cunningham, S.C., and J. Read.2002. comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecologia 133:112-119.
    Davey, P.A., H. Olcer, O. Zakhleniuk, C.J. Bernacchi, C. Calfapietra, S.P. Long, and C.A. Raines. 2006. Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant, cell & environment 29:1235-1244.
    Davies, W.J., S. Wilkinson, B. Loveys.2002. Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use effciency in agriculture, The New Phytol.153: 449-460.
    Dillaway, D. N. and E.L. Kruger.2010. Thermal acclimation of photosynthesis:a comparison of boreal and temperate tree species along a latitudinal transect. Plant Cell and Environment 33(6):888-899.
    Drake, B.G., M.A. Gonzalez-Meler, and S.P. Long.1997. More efficient plants:a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609-639
    Du, H.M., Z.L. Wang, and B. Huang.2009. Differential Responses of warm-season and cool-season turfgrass species to heat stress associated with antioxidant enzyme activity. J. Am. Soc. Hort. Sci. 134:417-422.
    Eamus, D.1991. The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ.14:843-852.
    Eamus, D., C.A. Berryman, and G.A. Duff.1993. Assimilation, stomatal conductance, specific leaf area and chlorophyll responses to elevated CO2 of Maranthes corymbosa. a tropical monsoon rain forest species. Functional Plant Biology 20:741-755.
    Eichelmann, H., and A. Laisk.1999. Ribulose-1,5-bisphosphate carboxylase/oxygenase content, assimilatory charge, and mesophyll conductance in leaves. Plant Physiol 119:179-189.
    Epron, D.1997. Effects of drought on photosynthesis and on the thermotolerance of photosystem Ⅱ in seedlings of cedar (Cedrus atlantica and C-libani). Journal of Experimental Botany 48(315):1835-1841.
    Erice, G., J.J. Irigoyen, P. Perez, R. Martinez-Carrasco, and M. Sanchez-Diaz.2006a. Effect of elevated CO2, temperature and drought on dry matter partitioning and photosynthesis before and after cutting of nodulated alfalfa. Plant Science 170(6):1059-1067.
    Erice, G., J.J. Irigoyen, P. Perez, R. Martinez-Carrasco, and M. Sanchez-Diaz.2006b. Effect of elevated CO2, temperature and drought on photosynthesis of nodulated alfalfa during a cutting regrowth cycle. Physiologia Plantarum 126(3):458-468.
    Escalona, J.M., J. Flexas, and H. Medrano.1999. Stomatal and non-stomatal limitations of photosynthesis underwater stress in field-grown grapevines. Plant Physiol.26:421-433.
    Estiarte, M., J. Penuelas, B.A. Kimball, S.B. Idso. R.L. LaMorte, P.J. Pinter, Jr., G.W. Wall, and R.L. Garcia.1994. Elevated CO2 effects on stomatal density of wheat and sour orange trees. J. Exp. Bot. 45:1665-1668.
    Faria, T., D. Wilkins, R.T. Besford, M. Vaz, J. S. Pereira, and M.M. Chaves.1996. Growth at elevated CO2 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L. seedlings. J. Exp. Bot.47:1755-1761.
    Farquhar, G. D., S. von Caemmerer. and J.A. Berry.1980. A Biochemical Model of Photosynthetic CO2 Assimilation in leaves of C3 species. Planta 149:78-90.
    Farquhar, G.D., and T.D. Sharkey.1982. Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology 33:317-345.
    Fischer, R.A.1968. Stomatal opening:Role of potassium uptake by guard cells. Science 160:784-785.
    Flexas, J., and H. Medrano.2002. Drought-inhibition of photosynthesis in C3 plants:stomatal and non-stomatal limitations revisited. Ann. Bot.89:183-189.
    Flexas, J., J. Bota, F. Loreto, G. Cornic, and T.D. Sharkey.2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol.6:269-279.
    Forseth, I.N., and J. R. Ehleringer.1982. Ecophysiology of two solar-tracking desert winter annuals. I. Photosynthetic acclimation to growth temperature. Funct. Plant Biol.9:321-332.
    Fry, J., and B. Huang.2004. Applied turfgrass science and physiology. John Wiley and Sons, Hoboken, NJ.
    Fu, F.X., M.E. Warner, Y.H. Zhang, Y.Y. Feng, and D.A. Hutchins.2007. Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology 43:485-496.
    Fu, J.M., B. Huang, and J. Fry.2010. Osmotic potential, sucrose level, and activity of sucrose metabolic enzymes in tall fescue in response to deficit irrigation. J. Am. Soc. Hort. Sci.1356:506-510.
    Fujinon, M.1967. Adenosinetriphosphate and adenosinetriphosphatase in stomatal movement. Sci. Bull. Fac. Educ. Nagasaki Univ.18:1-47.
    Gavazzi, M., J. Seiler, W. Aust, and S. Zedaker.2000. The influence of elevated carbon dioxide and water availability on herbaceous weed development and growth of transplanted loblolly pine (Pinus taeda). Environmental and Experimental Botany 44:185-194.
    Geiger, M., V. Haake, F. Ludewig, U. Sonnewald, and M. Stitt.1999. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant, Cell and Environment 22:1177-1199.
    Ghannoum, O., N.G. Phillips, M.A. Sears, B.A. Logan, J.D. Lewis, J.P. Conroy, and D.T. Tissue. 2010. Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature. Plant Cell and Environment 33:1671-1681.
    Gifford, R.M.1979. Growth and yield of CO2-enriched wheat under water-limited conditions. Aust. J. Plant Physiol.6:367-378.
    Gonzalez-Meler, M.A., M. Ribas-Carbo, J.N. Siedow, and B.G. Drake.1997. The direct inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiol.112:1349-55.
    Goudriaan, J. and R.J. Bijlsma.1987. Effect of CO2 enrichment on growth of faba beans at two levels of water supply. Neth. J. Agr. Sci.35:189-191.
    Griffin, J.J., T.G. Ranney, and D.M. Pharr.2004. Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). Journal of the American Society for Horticultural Science 129:497-502.
    Gunderson C. A., and S.D. Wullschleger.1994. Photosynthetic acclimation in trees to rising CO2:a broader perspective. Photosynthesis Research 39:369-88.
    Gunderson, C.A., K.H. O'Hara, C.M. Campion, A.V. Walker, and N.T. Edwards.2010. Thermal plasticity of photosynthesis:the role of acclimation in forest responses to a warming climate. Global Change Biology 16:2272-2286.
    Hamerlynck, E.P., T.E. Huxman, M.E. Loik, and S.D. Smith.2000. Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentata. Plant Ecol.148:183-193.
    Hamilton Ⅲ, E.W., S.A. Heckathorn, P. Joshi, D. Wang, and D. Barua.2008. Interactive Effects of Elevated CO2 and Growth Temperature on the Tolerance of Photosynthesis to Acute Heat Stress in C3 and C4 Species. Jounal of Integrative Plant Biology 50:1375-1387.
    Hartung, W., A. Sauter, and E. Hose.2002. Abscisic acid in the xylem:where does it come from, where does it go to? J. Exp. Bot.53:27-37.
    Hetherington, A.M., and F.I. Woodward.2003. The role of stomata in sensing and driving environmental change. Nature 424:901-908.
    Hikosaka, K., A. Murakami, and T. Hirose.1999. Balancing carboxylation and regeneration of ribulose-1,5-bisphosphate in leaf photosynthesis:temperature acclimation of an evergreen tree, Quercus myrsinaefolia. Plant, Cell and Environment 22:841-849.
    Hikosaka, K., K. Ishikawa, A. Borjigidai, O. Muller, and Y. Onoda.2006. Temperature acclimation of photosynthesis:mechanisms involved in the changes in temperature dependence of photosynthetic rate. Journal of Experimental Botany 57:291-302.
    Hill, R.S., J. Read, and J.R. Busby.1988. The Temperature-Dependence of Photosynthesis of Some Australian Temperate Rainforest Trees and its Biogeographical Significance. Journal of Biogeography 15:431-449.
    Hoagland, D.R., and D.I. Arnon.1950. The water-culture method for growing plans without soil. California Agric. Exp. Sta. Circ.347:1-32.
    Hoekstra, F.A., E.A. Golovina, and J. Buitink.2001. Mechanisms of plant desiccation tolerance, Trends Plant Sci.6:431-438.
    Houghton, J.T., G.J. Jenkins, and J.J. Ephraums.1990. Climate change:The IPCC scientific assessment. Cambridge University Press, Cambridge, UK.
    Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai. K. Maskell, and C.A. Johnson.2001. Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
    Hsiao, T.C., and E. Acevedo.1974. Plant responses to water deficits, water-use efficiency, and drought resistance. Agricultural Meteorology 14:59-84.
    Hu, L.X., Z.L. Wang, and B. Huang.2010a. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in a C3 perennial grass species. Physiol. Plant.139:93-106.
    Hu, W., Y. Xiao, J. Zeng, and X. Hu.2010b. Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. Biol. Plant.54:761-765.
    Huang, B., X. Liu, and J.D. Fry.1998. Shoot physiological responses of two bentgrass cultivars to high temperature and poor soil aeration. Crop Sci.38:1219-1224.
    Huang, Y., G. Eglinton, P. Ineson, R. Bol. and D.D. Harkness.1999. The effects of nitrogen fertilisation and elevated CO2 on the lipid biosynthesis and carbon isotopic discrimination in birch seedlings (Betula pendula). Plant and soil 216:35-45.
    Hunt, H.W., K.T. Elliott, J.K.. Detling, J.A. Morgan, and D.X. Chen.1996. Responses of a C3 and a C4 perennial grass to elevated CO2 and temperature under different water regimes. Global Change Biology 2:35-47.
    Idso, S.B., and B.A. Kimball.1992. Effects of atmospheric CO2 enrichment on photosynthesis, respiration, and growth of sour orange trees. Plant Physiol.,99:341-343.
    IPCC.2007. Climate change 2007:The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
    Jackson R. B., Y. Luo, Z.G. Cardon, E. Sala, C.B. Field, H.A. Mooney.1995. Photosynthesis, growth and density for the dominant species in a CO2 enriched grassland. J. Biogeogr.22:215-228.
    Jiang, Y. and B. Huang.2001a. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci.41:436-442.
    Jiang, Y., and B. Huang.2000. Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Sci.40:1358-1362.
    Jiang, Y., and B. Huang.2001b. Physiological responses to heat stress alone or in combination with drought:A comparison between tall fescue and perennial ryegrass. HortScience 36:682-686.
    Jifon, J.L., and D.W. Wolfe.2002. Photosynthetic acclimation to elevated CO2 in Phaseolus vulgaris L. is altered by growth response to nitrogen supply. Global Change Biol 8:1018-1027.
    John, I., R. Drake, A. Farrell, W. Cooper, P. Lee, P. Horton, and D. Grierson.1995. Delayed leaf Senescence in ethylene-deficient ACC-oxidase antisense tomato plants-molecular and physiological analysis. Plant J.7:483-490.
    Jones, R.J. and T.A. Mansfield.1970. Increases in the diffusion resistances of leaves in a carbon dioxide-enriched atmosphere. J. Expt. Bot.21:951-958.
    Keeling, C.D. and T.P. Whorf.2001. Atmospheric CO2 records from sites in the SIO air sampling network, p.14-21. In:Trends:A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Dept. Energy, Oak Ridge, TN.
    Kellomaki, S., and K.Y. Wang.1996. Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO2 and temperature. Tree Physiology 16:765-772.
    Kepova, K.D., R. Holzer, L.S. Stoilova, and U. Feller.2005. Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and rubisco activase in wheat leaves. Biol. Plant.49:521-525.
    Kirkham, M.B.2011. Elevated carbon dioxide:impact on soil and plant water relations. CRC Press, Boca Raton, FL.
    Kobza, J. and G.E. Edwards.1987. Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiol.83:69-74.
    Korner, C.1988. Does global increase of CO2 alter stomatal density? Flora 181:243-257.
    Kositsup, B., P. Montpied, P. Kasemsap, P. Thaler, T. Ameglio, and E. Dreyer.2009. Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (Hevea brasiliensis Mull. Arg.) acclimate to changes in ambient temperatures. trees 23:357-365.
    Kosvancova, M., O. Urban, M. Sprtova, M. Hrstka, J. Kalina, I. Tomaskova, V. Spunda, and M.V. Marek.2009. Photosynthetic induction in broadleaved Fagus sylvatica and coniferous Picea abies cultivated under ambient and elevated CO2 concentrations. Plant Science 177:123-130.
    Krapp, A., B. Hofmann, C. Schafer, and M. Stitt.1993. Regulation of the expression of rbcS and other photosynthetic genes by carbohydrates:a mechanism for the'sink regulation'of photosynthesis? The Plant Journal 3:817-828.
    Kubiske, M.E., and M.D. Abrams.1992. Photosynthesis, water relations, and leaf morphology of xeric versus mesic Quercus rubra ecotypes in central Pennsylvania in relation to moisture stress. Canadian Journal of Forest Research 22(9):1402-1407.
    Lake, J.A., F.I. Woodward, and W.P. Quick.2002. Long-distance CO2 signalling in plants. Journal of Experimental Botany 53:183-193.
    Lake, J.A., W.P. Quick, D.J. Beerling, and F.I. Woodward.2001. Plant development:signals from mature to new leaves. Nature 411:154-154.
    Lambers, H., F.S. Chapin, and T.L. Pons.1999. Plant physiological ecology. Springer-Verlag, NY.
    Lawlor, D.W.2002. Limitation to Photosynthesis in Water-stressed Leaves:Stomata vs. Metabolism and the Role of ATP. Annals of Botany 89:871-885.
    Leakey, A.D.B., M. Uribelarrea, E.A. Ainsworth, S.L. Naidu, A. Rogers, D.R. Ort, and S.P. Long. 2006. Photosynthesis, Productivity, and Yield of Maize Are Not Affected by Open-Air Elevation of CO2 Concentration in the Absence of Drought. Plant Physiology 140:779-790.
    Lee, T.D., M.G. Tjoelker, D.S. Ellsworth, and P.B. Reich.2001. Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist 150:405-418.
    Lekkerkerk, L.J.A., S.C. van de Geijn, and J.A. van Veen.1990. Effects of elevated atmospheric CO2-levels on the carbon economy of a soil planted with wheat, p.423-429. In:Bouwman, A.F. (ed.). Soils and the greenhouse effect. John Wiley & Sons, New York, NY.
    Li, J., D. Johnson, P. Dijkstra, B. Hungate, C. Hinkle, and B. Drake.2007. Elevated CO2 mitigates the adverse effects of drought on daytime net ecosystem CO2 exchange and photosynthesis in a Florida scrub-oak ecosystem. Photosynthetica 45:51-58.
    Long, S.P.1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations:Has its importance been underestimated? Plant Cell Environ.14: 729-739.
    Long, S.P., E.A. Ainsworth, A. Rogers, and D.R. Ort.2004. Rising atmospheric carbon dioxide. Plants FACE the future. Annu. Rev. Plant Biol.55:59-628.
    Loreto, F., D. Tricoli, and G. Di Marco.1995. On the relationship between electron transport rate and photosynthesis in leaves of the C4 plant Sorghum bicolor exposed to water stress, temperature changes and carbon metabolism inhibition, Aust. J. Plant Physiol.22:885-892.
    Luo, Y, C.B. Field, and H.A. Mooney.1994. Predicting responses of photosynthesis and root fraction to elevated [CO2]:interactions among carbon, nitrogen, and growth:theoretical paper. Plant Cell Environ 17:1195-1204.
    Macallum, A.G.1905. On the distribution of potassium in animal and vegetable cells. J. physiol. 52:95-128.
    Maherali, H., C.D. Reid, H.W. Polley, H.B. Johnson, and R.B. Jackson.2002. Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant cell Environ.25: 557-566.
    Majeau, N. and J.R. Coleman.1996. Effect of CO2 on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol.112:569-574.
    Malone, S.R., H.S. Mayeux, H.B. Johnson, and H.W. Polley.1993. Stomatal density and aperture length in four plant species grown across a subambient CO2 gradient. Am. J. Bot.80:1413-1418.
    MansWeld. T.J., and C.J. Atkinson. Stomatal behaviour in water stressed plants, in:R.G. Alscher, J.R. Cumming (F.ds.). Stress Responses in Plants:Adaptation and Acclimation Mechanisms, Wiley-Liss, New York.1990, pp.241-264.
    Marchi, S., R. Tognetti, F.P. Vaccari, M. Lanini, M. Kaligaric, F. Miglietta, and A. Raschi.2004. Physiological and morphological responses of grassland species to elevated atmospheric CO2 concentrations in FACE-systems and natural CO2 springs. Functional plant biology 31:181-194.
    Maroco, J.P., G.E. Edwards, and M. Ku.1999. Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. PLANTA 210:115-125.
    Maroco, J.P., M.L. Rodrigues, C. Lopes, and M.M. Chaves.2002. Limitations to leaf photosynthesis in field-grown grapevine under drought—metabolic and modelling approaches. Funct. Plant Biol.29:451-459.
    Martin, B., and Y.R. Thorstenson.1988. Stable carbon isotope composition (δ13C), water use efficiency, and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 hybrid. Plant Physiology 88:213-217.
    Mauney, J. R., K.F. Lewin, G.R. Hendrey, and B.A. Kimball.1992. Growth and yield of cotton expose to free-air CO2 enrichment. Crit. Rev. Plant Sci.11:213-222.
    Mawson, B.T., and W.R. Cummins.1989. Thermal Acclimation of Photosynthetic Electron Transport Activity by Thylakoids of Saxifraga cernua. Plant Physiology 89:325-332.
    McCann, S.E., and B. Huang.2008. Evaluation of drought tolerance and avoidance traits for six creeping bentgrass cultivars. HortScience 43:519-524.
    Medlyn, B.E., E. Dreyer, D. Ellsworth, M. Forstreuter, P.C. Harley, M.U.F. Kirschbaum, X. Le Roux, P. Montpied, J. Strassemeyer, A. Walcroft, K. Wang, and D. Loustau.2002. Temperature response of parameters of a biochemically based model of photosynthesis. Ⅱ. A review of experimental data. Plant Cell and Environment,25(9):1167-1179.
    Merewitz, E., W. Meyer, S. Bonos, and B. Huang.2010. Drought stress responses and recovery of Texas x Kentucky hybrids and Kentucky bluegrass genotypes in temperate climate conditions. Agron. J. 102:258-268.
    Metcalfe, D.B., R. Lobo-do-Vale, M.M. Chaves, J.P. Maroco, L.E.O.C. Aragao, Y. Malhi, A.L. Da Costa, A.P. Braga, P.L. Goncalves, and J. De Athaydes.2010. Impacts of experimentally imposed drought on leaf respiration and morphology in an Amazon rain forest. Funct. Ecol.24:524-533.
    Meyer, S., and B. Genty.1998. Mapping intercellular CO2 mole fraction (Ci) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll Xuorescence imaging:signiWcance of Ci estimated from leaf gas exchange, Plant Physiol.116:947-957.
    Meyer, S., and B. Genty.1999. Heterogeneous inhibition of photosynthesis over the leaf surface of Rosa rubiginosa L. during water stress and abscisic acid treatment:induction of a metabolic component by limitation of CO2 diffusion. Planta 210:126-131.
    Miao, Z., M. Xu, R.G. Lathrop, and Y.F. Wang.2008. Comparison of the A-Cc curve fitting methods in determining maximum ribulose 1.5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration. Plant, Cell & Environment 32:109-122.
    Monson. R.K., M.A. Stidham. G.J. Williams Ⅲ, G.E. Edwards, and E.G. Uribe.1982. Temperature Dependence of Photosynthesis in Agropyron smithii Rydb.:I. factors affecting net CO2 uptake in intact leaves and contribution from ribulose-1,5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiology 69:921.
    Mooney, H.A.1969. Dark respiration of related evergreen and deciduous Mediterranean plants during induced drought. Bulletin Torrey Bot. Club 96:550-555.
    Moore, A.L.1992. Factors affecting the regulation of mitochondrial respiratory activity. In Molecular. Biochemical and Physiological Aspects of Plant Respiration, ed. HLambers,LHWvan der Plas,HLambers.
    Moore, B.D., S.H. Cheng, J. Rice, and J.R. Seemann.1998. Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ.21:905.
    Moore, B.E., S.H. Cheng, D. Sims, and J.R. Seemann.1999. The biochemical and molecular basis for acclimation to elevated CO2. Plant Cell Environ 22:567-582
    Morgan, J.A., R.H. Skinner, and J.D. Hanson.2001. Nitrogen and CO2 affect regrowth and biomass partitioning differently in forages of three functional groups. Crop Sci 41:78-86.
    Morison, J.I.L.1985. Sensitivity of stomata and water use efficiency to high CO2. Plant Cell Environ.8:467-474.
    Neftel, A., E. Moor, H. Oeschger, and B. Stauffer.1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315:45-47.
    Newman, J.A., M.L. Abner, R.G. Dado, D.J. Gibson, A. Brookings, and A.J. Parsons.2003. Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue:growth, photosynthesis, chemical composition and digestibility. Global Change Biology 9:425-437.
    Nijs, I., I. Impens, and T. Behaeghe.1989. Effects of longterm elevated atmospheric CO2 concentration on Lolium perenne and Trifolium repens canopies in the course of a terminal drought stress period. Can. J. Bot.67:2720-2725.
    Nilson, S.E. and S.M. Assmann.2007. The control of transpiration. Insights from Arabidopsis. Plant Physiol.143:19-27.
    Niyogi, K.K., A.R. Grossman, and O. Bjorkman.1998. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121-1134.
    Ogren, W. L.2003. Affixing the O to rubisco:Discovering the source of photorespiratory glycolate and its regulation. Photosynth. Res.76:53-63.
    Onoda, Y., K. Hikosaka, and T. Hirose.2005. Seasonal change in the balance between capacities of RuBP carboxylation and RuBP regeneration affects CO2 response of photosynthesis in Polygonum cuspidatum. Journal of experimental botany 56:755-763.
    Palet A, Ribas-Carbo M, Argiles JM, Azcon-Bieto J.1991. Short-term effects of carbon dioxide on carnation callus cell respiration. Plant Physiol.96:467-72.
    Perez-Lopez, U., A. Robredo, M. Lacuesta, C. Sgherri, A. Munoz Rueda, F. Navari Izzo, and A. Mena Petite.2009. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiologia plantarum 135:29-42.
    Poorter H., and M.L. Navas.2003. Plant growth and competition at elevated CO2. New Phytol.157: 175-190.
    Poorter, H.1993. Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104/105:77-97.
    Popova, L.P., T.D. Tsonev, G.N. Lazova, and Z.G. Stoinova.1996. Drought-and ABA-induced changes in photosynthesis of barley plants. Physiologia Plantarum 96:623-629.
    Portis, A.R.2003. Rubisco activase-rubisco's catalytic chaperone. Photosynthesis Research 75: 11-27.
    Prior, S.A., G.B. Runion, R.J. Mitchell. H.H. Rogers, and J.S. Amthor.1997. Effects of atmospheric CO2 on longleaf pine:Productivity and allocation as influenced by nitrogen and water. Tree Physiol.17:397-405.
    Pritchard, S.H.G., H.O.H. Rogers, S.A. Prior, and C.T.M. Peterson.1999. Elevated CO2 and plant structure:a review. Global Change Biology 5:807-837.
    Qaderi, M.M., L.V. Kurepin, and D.M. Reid.2006. Growth and physiological responses of canola (Brassica napus) to three components of global climate change:temperature, carbon dioxide and drought. Physiologia Plantarum 128:710-721.
    Qi, J., J.D. Marshall, and K.G. Mattson.1994. High soil carbon dioxide concentrations inhibit root respiration of Douglas-fir. New Phytol.128:435-42.
    Raines, C.A., P.R. Horsnell, C. Holder, and J.C. Lioyd.1992. Arabidopsis thaliana carbonic anhydrase:cDNA sequence and effect of CO2 on mRNA levels. Plant Mol. Biol.20:1143-1148.
    Rajcan, I., L.M. Dwyer, and M. Tollenaar.1999. Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence. Field Crops Res.63:13-17.
    Reddy, A.R., G.K. Rasineni, and A.S. Raghavendra.2010. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Current Science 99:46-57.
    Reid, C.D., H. Maherali, H.B. Johnson, S.D. Smith, S.D. Wullschleger, and R.B. Jackson.2003. On the relationship between stomatal characters and atmospheric CO2. Geophysical research letters 30:1983-1986.
    Reuveni, J., J. Gale, and A.M. Mayer.1993. Reduction of respiration by high ambient CO2 and the resulting error in measurements of respiration made with O2 electrodes. Annals of botany 72:129-131.
    Reviere-Rolland, H, P. Contard, and T. Betsche.1996. Adaptation of pea to elevated CO2:Rubisco, phosphoenolpyruvate carboxylase and chloroplast phosphate translocator at different levels of nitrog en and phosphorus nutrition. Plant Cell Environ 19:109-117.
    Robredo, A., U. Perez-Lopez, H.S. de la Maza, B. Gonzalez-Moro, M. Lacuesta, A. Mena-Petite, and A. Munoz-Rueda.2007. Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environmental and experimental botany 59:252-263.
    Robredo, A., U. Perez-Lopez, M. Lacuesta, A. Mena-Petite, and A. Munoz-Rueda.2010. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. BIOLOGIA PLANTARUM 54:285-292.
    Rodriguez-Calcerrada, J., O.K. Atkin, T.M. Robson, J. Zaragoza-Castells, L. Gil, and I. Aranda. 2010. Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments. Tree physiol.30:214-224.
    Rogers, H.H. and R.C. Dahlman.1993. Crop responses to CO2 enrichment. Vegetatio 104/105: 117-131.
    Rogers, H.H.. G.B. Runion, and S.V. Krupa.1994. Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ. Pollut.83:155-189.
    Rogers, H.H., G.B. Runion, S.V. Krupa, and S.A. Prior.1997. Plant responses to atmospheric CO2 enrichment:Implications in root-soilmicrobe interactions, p.1-34. In:Allen, L.H., Jr.. M.B. Kirkham, D.M. Olszyk, and C.E. Whitman (eds.). Advances in carbon dioxide effects research. ASA Special Publication No.61. ASA, CSSA, and SSSA. Madison, WI.
    Rolland, F., B. Moore, and J. Sheen.2002. Sugar sensing and signaling in plants. The Plant Cell Online 14:S185-S205.
    Rowland-Bamford, A.J., J.T. Baker, L.H. Allen Jr. and G. Bowes.1991. Acclimation of rice to changing atmospheric carbon dioxide concentration. Plant, Cell & Environment 14:577-583.
    Sage, R.F., R.W. Pearcy, and J.R. Seemann.1987. The nitrogen use efficiency of C3 and C4 plants: Ⅲ. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant physiology 85:355-359.
    Sage, R.F., T.D. Sharkey, and J.R. Seemann.1988. The in-vivo response of the ribulose-1,5-bisphosphate carboxylase activation state and the pool sizes of photosynthetic metabolites to elevated CO2 inPhaseolus vulgaris L. Planta 174:407-416.
    Sage, R.F., T.D. Sharkey, and J.R. Seemann.1989. Acclimation of photosynthesis to elevated CO2 in five C3 species. Plant Physiology 89:590-596.
    Salvucci, M. E., and S.J. Crafts-Brandner.2004. Inhibition of photosynthesis by heat stress:the activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant.120:179-186.
    Sanchez-Diaz, M, J.J. Irigoyen, N. Gomez-Casanovas, A. Pardo, and J. Azcon-Bieto.2004. El cambio climatico global. Efecto previsible del CO2 sobre los vegetales. In:Reigosa M, Pedrol N, Sanchez-Moreiras A (eds) La Ecofisiologia Vegetal. Una Ciencia de Sintesis. Universidade de Vigo, Vigo, Spain.
    Sankaranarayanan, K., C.S. Praharaj, P. Nalayini, K.K. Bandyopadhyay, and N. Gopalakrishnan. 2010. Climate change and its impact on cotton (Gossypium sp.). Indian Journal of Agricultural Sciences 80:561-575.
    Santarius K.A.1975. The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. J. Therm. Biol.1:101-107.
    Saralabai, V.C., M. Vivekanandan, and R. Suresh Babu.1997. Plant responses to high CO2 concentration in the atmosphere. Photosynthetica 33:7-37.
    Saxe, H, M.G.R. Cannell, B. Johnsen, M.G. Ryan, and G. Vourlitis.2001, Tree and forest functioning in response to global warming. New Phytologist 149:369-399.
    Schimel, D., D. Ives, I. Enting, M. Heimann, F. Joos, D. Raynaud, and T. Wigley.1996. CO2 and the carbon cycle. In Climate Change 1995. (eds), pp.65-131, IPCC, Cambridge University Press, Cambridge.
    Schuppler U., He P.H., John P.C.L., Munns R., EVects of water stress on cell division and cell-division-cycle-2-like cell-cycle kinase activity in wheat leaves. Plant Physiol.117 (1998) 667-678.
    Sharkey, T.D.1988. Estimating the rate of photorespiration in leaves. Physiol Plant 73:147-152.
    Shen, H., H.M. Du, Z.L. Wang, and B.R. Huang.2009. Differential Responses of Nutrients to Heat Stress in Warm-season and Cool-season Turfgrasses. Hortscience 44:2009-2014.
    Silsbury, J.H., and R. Stephens.1984. Growth efficiency of Trifolium subterraneum at high [CO2]. In Advances in Photosynthesis Research, ed. C Sybesma,4:133-36.
    Sims, D.A., W. Cheng, Y. Luo. and J.R. Seeman.1999. Photosynthetic acclimation to elevated CO2 in a sunflower canopy. J. Exp. Bot.50:645-653.
    Sionit, N., H.H. Rogers, G.E. Bingham, and B.R. Strain.1984. Photosynthesis and Stomatal Conductance with CO2-Enrichment of Containerand Field-Grown Soybeans. Agronomy Journal 76:447-451.
    Slot, M., J. Zaragoza-Castells, O.K. Atkin.2008. Transient shade and drought have divergent impacts on the temperature sensitivity of dark respiration in leaves of Geum urbanum. Funct. Plant Biol. 35:1135-1146.
    Smeekens. S.2000. Sugar-induced signal transduction in plants. Annual Review of Plant Biology and Plant Molecular Biology 51:49-81.
    Socias, F.X.. M.J. Correia, M.M. Chaves, H. Medrano.1997. The role of abscisic acid and water relations in drought responses of subterranean clover. J. Exp. Bot.48:1281-1288.
    Stitt, M., A. Schaewen, and L. Willmitzer.1991. "Sink" regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase of glycolytic enzymes. Planta 183:40-50.
    Stitt, M., and A. Krapp.1999. The interaction between elevated carbon dioxide and nitrogen nutrition:the physiological and molecular background. Plant Cell and Environment 22(6):583-621.
    Stocker, O.1961. Contributions to the problem of drought resistance of plants. Indian J. Plant Physiol.4:87-102.
    Sujatha, K.B., D.C. Uprety, D.N. Rao, P.R. Rao, and N. Dwivedi.2008. Up-regulation of photosynthesis and sucrose-P synthase in rice under elevated carbon dioxide and temperature conditions. Plant Soil and Environment 54:155-162.
    Sung, D.Y., F. Kaplan, K.J. Lee, and C.L. Guy.2003. Acquired tolerance to temperature extremes. Trends Plant Sci.8:179-187.
    Tezara, W., V.J. Mitchell, S.D. Driscoll, and D.W. Lawlor.1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914-917.
    Thebud, R. and K.A. Santarius.1982. Effects of high-temperature stress on various biomembranes of leaf cells in situ and in vitro. Plant Physiol.70:200-205.
    Thomas, H. and C.J. Howarth.2000. Five ways to stay green. J. Expt. Bot.51:329-337.
    Thomas, H., W.G. Morgan, A.M. Thomas, and H.J. Ougham.1999. Expression of the stay-green character introgressed into Lolium temulentum Ceres from a senescence mutant of Festuca pratensis. Theoretical Appl. Genet.99:92-99.
    Toth, S.Z., G. Schansker, J. Kissimon, L. Kovacs, G. Garab, and R.J. Strasser.2005. Biophysical studies of photosystem Ⅱ-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). J. Plant Physiol.162:181-194.
    Tricker, P.J., H. Trewin, O. Kull, G.J.J. Clarkson, E. Eensalu, M.J. Tallis, A. Colella, C.P. Doncaster, M. Sabatti. and G. Taylor.2005. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143:652-660.
    Tuba, Z., K. Szente, and J. Koch.1994. Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat. J. Plant Physiol.144:661-668.
    Urban, O.2003. Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9-20.
    van Oosten, J.J., and R.T. Besford.1994. Sugar feeding mimics effect of acclimation to high CO2-rapid down regulation of Rubisco small subunit transcripts but not of the large subunit transcripts. Journal of Plant Physiology 143:306-312.
    van Oosten, J.J., D. Wilkins, and R.T. Besford.1994. Regulation of the expression of photosynthetic nuclear genes by CO2 is mimicked by regulation by carbohydrates:a mechanism for the acclimation of photosynthesis to high COo? Plant, Cell\ & Environment 17:913-923.
    Volenec, J.J., C.J. Nelson, and D.A. Sleper.1984. Influence of temperature on leaf dark respiration of diverse tall fescue genotypes. Crop Sci.24:907-912.
    von Caemmerer, S., and J.R. Evans.2010. Enhancing C-3 Photosynthesis. Plant Physiology 154:589-592.
    Vu, J.C.V.2005. Acclimation of peanut (Arachis hypogaea L.) leaf photosynthesis to elevated growth CO2 and temperature. Environ. Exp. Bot.53:85-95.
    Vu, J.C.V., J.T. Baker, A.H. Pennanen, L.H. Allen Jr, G. Bowes, and K..J. Boote.1998. Elevated CO2 and water deficit effects on photosynthesis, ribulose bisphosphate carboxylase-oxygenase, and carbohydrate metabolism in rice. Physiologia Plantarum 103:327-339.
    Wahid, A.2007. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J. Plant Res.120:219-228.
    Wang, D., S.A. Heckathorn, D. Barua, P. Joshi, E.W. Hamilton, and J.J. LaCroix.2008. Effects of elevated CO2 on the tolerance of photosynthesis to acute heat stress in C3, C4, and CAM species. American Journal of Botany 95:165-176.
    Weis, E. and J.A. Berry.1988. Plants and high temperature stress. Symp. Soc. Expt. Biol.42:329-346.
    Wherley, B.G. and T.R. Sinclair.2009. Differential sensitivity of C-3 and C-4 turfgrass species to increasing atmospheric vapor pressure deficit. Environ. Expt. Bot.67:372-376.
    Widodo, W., J.C.V. Vu, K.J. Boote, J.T. Baker, and L.H. Allen Jr.2003. Elevated growth CO2 delays drought stress and accelerates recovery of rice leaf photosynthesis. Environ. Exp. Bot.49:259-272.
    Wildman, S. G.2002. Along the trail from fraction 1 protein to rubisco (ribulose bisphosphate carboxylase-oxygenase). Photosynth. Res.73:243-250.
    Wilkinson, S., and W.J. Davies.2002. ABA-based chemical signalling:the co-ordination of responses to stress in plants. Plant, Cell & Environment 25:195-210.
    Wittwer, S.H.1995. Food, climate, and carbon dioxide:The global environment and world food production. CRC Press, Boca Raton, FL.
    Wolfe, D.W., R.M. Gifford, D. Hilbert, and Y. Luo.1998. Integration of photosynthetic acclimation to CO2 at the whole-plant level. Global Change Biology 4:879-893.
    Wong, S.C.1980. Effects of elevated partial pressures of CO2 on rate of CO2 assimilation and water use efficiency in plants, p.159-166. In:Pearman, G.I. (ed.). Carbon dioxide and climate: Australian research. Australian Academy of Science, Canberra, Australia.
    Woodrow, I.E., and J.A. Berry.1988. Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu Rev Plant Physiol Plant Mol Biol 39:533-594.
    Woodward F.I.,1987. Stomatal numbers are sensitive to increases in CO2 from pre-inducstrial levels. Nature 327:1771-1781.
    Woodward, F.I., J.A. Lake, and W.P. Quick.2002. Stomatal development and co2:ecological consequences. New Phytologist 153:477-484.
    Wullschleger, S.D., L.H. Ziska, and J.A. Bunce.1994. Respiratory responses of higher plants to atmospheric CO2 enrichment. Physiologia Plantarum 90:221-229.
    Xu, C., and B. Huang.2010. Differential proteomic response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera. Physiologia plantarum 139:192-204.
    Xu, C., and B. Huang.2010. Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J. Plant Physiol.167:1477-1485.
    Xu, Q. and B. Huang.2001. Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. Crop Sci.41:127-133.
    Xu, Q.H., and B. Huang.2000. Effects of differential air and soil temperature on carbohydrate metabolism in creeping bentgrass. Crop science 40:1368-1374.
    Yamasaki, T.. T. Yamakawa, Y. Yainane, H. Koike, K. Satoh, and S. Katoh.2002. Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in Winter wheat. Plant Physiology 128:1087-1097.
    Yamori, W., and S. von Caemmerer.2009. Effect of Rubisco Activase Deficiency on the Temperature Response of CO2 Assimilation Rate and Rubisco Activation State:Insights from Transgenic Tobacco with Reduced Amounts of Rubisco Activase. Plant Physiology 151:2073-2082.
    Yamori, W., K.O. Noguchi, and I. Terashima.2005. Temperature acclimation of photosynthesis in spinach leaves:analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant, Cell and Environment 28:536-547.
    Zagdanska, B.1995. Respiratory energy demand for protein turnover and ion transport in wheat leaves upon water deficit. Physiol. Plant.95:428-436.
    Zerihun, A, and H. BassiriRad.2000. Photosynthesis of Helianthus annuus does not acclimate to elevated CO2 regardless of N supply. Plant Physiol Biochem 38:897-903.
    Zhang, S., and Q.L. Dang.2006. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings. Tree physiology 26:1457-1467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700