二级结构对抗菌肽的抗菌活性及特异性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们以15个氨基酸的阳离子型α-螺旋抗菌肽HPRP-A1作为模板研究抗菌肽的二级结构对其抗菌活性和特异性的影响。在不改变原始序列氨基酸组成的情况下,我们通过改变氨基酸的次序,设计了三种具有不同的螺旋能力的α-螺旋的抗菌肽、一个β-折叠抗菌肽和一个无规卷曲抗菌肽,以此体现不同的多肽二级结构。同时,在保留HPRP-A1α-螺旋结构的基础上,通过截断序列长度设计了三个抗菌肽分子。通过圆二色谱测定不同多肽在水溶液中和在疏水环境中二级结构。三种革兰氏阴性细菌,三种的革兰氏阳性细菌和人血红细胞被用于检测抗菌肽的生物活性。结果证实,三个α-螺旋抗菌肽表现出很好的抗菌活性,但他们的溶血效价(毒性),差异明显,与多肽的的螺旋倾向呈正相关。β-折叠抗菌肽部分丧失生物活性。更有趣的是,无规卷曲抗菌肽没有溶血活性,同时针对革兰氏阳性细菌和革兰氏阴性菌的抗菌活性也明显降低。序列截断的抗菌肽不可避免的导致抗菌活性减弱。进一步的NPN实验显示,抗菌肽的抗菌活性与其穿透细菌外膜的能力相关。色氨酸荧光实验揭示,所有的抗菌肽针对原核细胞或真核细胞模拟膜的结合偏好与它们的生物活性相关联。研究结果表明抗菌肽的溶血活性与二级结构呈一定的相关性,但就抗菌活性而言,二级结构对革兰氏阴性菌的影响更加明显。这对进一步解释抗菌肽的作用机制、根据多肽二级结构设计具有应用前景的抗菌肽药物具有重要的作用。
A15-mer cationic α-helical antimicrobial peptide HPRP-A1was used as thetemplate to study the effects of peptide secondary structure on the antimicrobialactivity and specificity. Without changing the original amino acid composition HPRP-A1, we designed three α-helical peptides with either higher or lower helicalpropensity compared with the original peptide, a β-sheet peptide and a random coiledpeptide. Three truncated peptides were also designed. The secondary structures ofpeptides were determined by circular dichroism spectra both in aqueous solution andin hydrophobic environment. The biological activities of peptides were detectedagainst three Gram-negative bacterial strains, three Gram-positive bacterial strainsand human red blood cells. The three helical peptides exhibited comparableantibacterial activities, but their hemolytic potency (cytotoxicity) varied from extremehemolysis to no hemolysis, which was positively correlated with their helicalpropensity. The β-sheet peptide partially lost both of the biological activities. Moreinterestingly, the coiled peptide with no hemolytic activity showed somewhatantibacterial specificity to Gram-positive bacteria because of the considerable loss ofthe antibacterial activity against Gram-negative bacteria. Truncated peptides showedinevitable weaker antimicrobial activity compared to the parent peptide. Furtherinvestigation demonstrated that the antibacterial activity of peptides to Gram-negativebacteria was in accordance with their outer-membrane permeabilizing ability.Tryptophan fluorescence experiment revealed that the binding preference of all ofpeptides to the lipid vesicles for mimicking the cytoplasm of prokaryocyte oreukaryocyte was associated with their biological activity. Our results show thatpeptide secondary structure is strongly correlated with hemolytic activity but lesscorrelated with antimicrobial activity, which providing the insights of mechanism of action of antimicrobial peptide. In this case study, peptide with proper helical contentsmight represent a promising pattern for designing peptide antibiotics.
引文
1. Arash, I. and G.R. L., Antimicrobial peptides[J]. Journal of the AmericanAcademy of Dermatology,2005.52(3): p.381-390.
    2.郝殿明, D/L一对映异构体抗菌肽生物活性的对比研究[D].2010,吉林大学:长春. p.71.
    3. Cole, A.M. and A.L. Cole, REVIEW ARTICLE: Antimicrobial Polypeptidesare Key Anti-HIV-1Effector Molecules of Cervicovaginal Host Defense[J].American Journal of Reproductive Immunology,2007.59(1): p.27-34.
    4. Ferre, R., et al., Synergistic Effects of the Membrane Actions of Cecropin-Melittin Antimicrobial Hybrid Peptide BP100[J]. Biophysical Journal,2009.96(5): p.1815-1827.
    5. Wimley, W.C., Describing the Mechanism of Antimicrobial[J]. AmericanChemical Society,2010.
    6. Reddy, K.V.R., R.D. Yedery, and C. Aranha, Antimicrobial peptides: premisesand promises[J]. International Journal of Antimicrobial Agents,2004.24(6): p.536-547.
    7. McPhee, J.B. and R.E.W. Hancock, Function and therapeutic potential of hostdefence peptides[J]. Journal of Peptide Science,2005.11(11): p.677-687.
    8. Hawrani, A., et al., Thermodynamics of RTA3peptide binding to membranesand consequences for antimicrobial activity[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes,2010.1798(6): p.1254-1262.
    9. Dubovskii, P.V., et al., Spatial Structure and Activity Mechanism of a NovelSpider Antimicrobial Peptide[J]. Biochemistry,2006.45(35): p.10759-10767.
    10. Oman, T.J. and W.A. van der Donk, Insights into the Mode of Action of theTwo-Peptide Lantibiotic Haloduracin[J]. ACS Chemical Biology,2009.4(10): p.865-874.
    11. Matsuzaki, K., Control of cell selectivity of antimicrobial peptides[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2009.1788(8): p.1687-1692.
    12. Powers, J.-P.S. and R.E.W. Hancock, The relationship between peptidestructure and antibacterial activity[J]. Peptides,2003.24(11): p.1681-1691.
    13. Radzishevsky, I.S., et al., Improved antimicrobial peptides based on acyl-lysineoligomers[J]. Nature Biotechnology,2007.25(6): p.657-659.
    14. Eckert, R., et al., Adding Selectivity to Antimicrobial Peptides: Rational Designof a Multidomain Peptide against Pseudomonas spp[J]. Antimicrobial Agentsand Chemotherapy,2006.50(4): p.1480-1488.
    15. Liu, Z., et al., Length Effects in Antimicrobial Peptides of the (RW)n Series[J].Antimicrobial Agents and Chemotherapy,2006.51(2): p.597-603.
    16. Huang, J.-F., et al., Structure-guided de novo design of α-helical antimicrobialpeptide with enhanced specificity[J]. Pure and Applied Chemistry,2010.82(1):p.243-257.
    17. Jiang, Z., et al., Effects of net charge and the number of positively chargedresidues on the biological activity of amphipathic α-helical cationicantimicrobial peptides[J]. Biopolymers,2008.90(3): p.369-383.
    18. Wimley, W.C., Describing the mechanism of antimicrobial peptide action withthe interfacial activity model[J]. ACS Chem Biol,2010.5(10): p.905-17.
    19. Fiorentini, C., et al., Escherichia coli cytotoxic necrotizing factor1(CNF1), atoxin that activates the Rho GTPase[J]. J Biol Chem,1997.272(31): p.19532-7.
    20. Tai, P.K., et al., P59(FK506binding protein59) interaction with heat shockproteins is highly conserved and may involve proteins other than steroidreceptors[J]. Biochemistry,1993.32(34): p.8842-7.
    21. Smith, V.J., A.P. Desbois, and E.A. Dyrynda, Conventional and UnconventionalAntimicrobials from Fish, Marine Invertebrates and Micro-algae[J]. MarineDrugs,2010.8(4): p.1213-1262.
    22.王笑非,疏水性对抗HeLa多肽活性的影响及抗癌机理的初步研究[D].2010,吉林大学:长春. p.69.
    23. Zhang, L., R. Benz, and R.E.W. Hancock, Influence of Proline Residues on theAntibacterial and Synergistic Activities of R-Helical Peptides[J]. Biochemistry1999.38: p.8102-8111.
    24. Wang, G., Tool developments for structure-function studies of host defensepeptides[J]. Protein Pept Lett,2007.14(1): p.57-69.
    25. Andrushchenko, V.V., H.J. Vogel, and E.J. Prenner, Interactions of tryptophan-rich cathelicidin antimicrobial peptides with model membranes studied bydifferential scanning calorimetry[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2007.1768(10): p.2447-2458.
    26. Huang, Y., J. Huang, and Y. Chen, Alpha-helical cationic antimicrobial peptides:relationships of structure and function[J]. Protein&Cell,2010.1(2): p.143-152.
    27. Chen, Y., et al., Role of Peptide Hydrophobicity in the Mechanism of Action of-Helical Antimicrobial Peptides[J]. Antimicrobial Agents and Chemotherapy,2006.51(4): p.1398-1406.
    28. Melo, Manuel N., Sónia T. Henriques, and Miguel A.R.B. Castanho, Cell-penetrating peptides and antimicrobial peptides: how different are they?[J].Biochemical Journal,2006.399: p.1-7.
    29. Almeida, P.F. and A. Pokorny, Mechanisms of Antimicrobial, Cytolytic, andCell-Penetrating Peptides: From Kinetics to Thermodynamics[J]. Biochemistry,2009.48(34): p.8083-8093.
    30. Lienkamp, K. and G.N. Tew, Synthetic Mimics of Antimicrobial Peptides-AVersatile Ring-Opening Metathesis Polymerization Based Platform for theSynthesis of Selective Antibacterial and Cell-Penetrating Polymers[J].Chemistry-A European Journal,2009.15(44): p.11784-11800.
    31. Mihajlovic, M. and T. Lazaridis, Antimicrobial peptides bind more strongly tomembrane pores[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2010.1798(8): p.1494-1502.
    32. Gidalevitz, D., Interaction of antimicrobial peptide protegrin withbiomembranes[J]. Proceedings of the National Academy of Sciences,2003.100(11): p.6302-6307.
    33. Duperthuy, M., et al., The major outer membrane protein OmpU of Vibriosplendidus contributes to host antimicrobial peptide resistance and is requiredfor virulence in the oyster Crassostrea gigas[J]. Environ Microbiol,2010.12(4):p.951-63.
    34. Arouri, A., M. Dathe, and A. Blume, Peptide induced demixing in PG/PE lipidmixtures: A mechanism for the specificity of antimicrobial peptides towardsbacterial membranes?[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2009.1788(3): p.650-659.
    35. Sato, H. and J. Feix, Peptide–membrane interactions and mechanisms ofmembrane destruction by amphipathic α-helical antimicrobial peptides[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2006.1758(9): p.1245-1256.
    36. Eliassen, L.T., et al., The antimicrobial peptide, lactoferricin B, is cytotoxic toneuroblastoma cellsin vitro and inhibits xenograft growthin vivo[J].International Journal of Cancer,2006.119(3): p.493-500.
    37. Pamp, S.J., et al., Tolerance to the antimicrobial peptide colistin inPseudomonas aeruginosa biofilms is linked to metabolically active cells, anddepends on the pmr and mexAB-oprM genes[J]. Molecular Microbiology,2008.68(1): p.223-240.
    38. Scott, M.G., et al., An anti-infective peptide that selectively modulates theinnate immune response[J]. Nature Biotechnology,2007.25(4): p.465-472.
    39. Dale, B.A. and L.P. Fredericks, Antimicrobial Peptides in the OralEnvironment[J]. Curr Issues Mol Biol.,2005.7(2): p.119–133.
    40. Durr, U., U. Sudheendra, and A. Ramamoorthy, LL-37, the only human memberof the cathelicidin family of antimicrobial peptides[J]. Biochimica et BiophysicaActa (BBA)-Biomembranes,2006.1758(9): p.1408-1425.
    41. Yosef Rosenfeld, Hans-Georg Sahl, and Y. Shai., Parameters Involved inAntimicrobial and Endotoxin Detoxification Activities of AntimicrobialPeptides[J]. Biochemistry,2008.47(11): p.6468–6478.
    42. G. Rameshkumar, et al., Antimicrobial Peptide from the Crab, Thalamitacrenata[J]. World Journal of Fish and Marine Sciences,2009.1(2): p.74-79.
    43. Rossi, L.M., et al., Research advances in the development of peptideantibiotics[J]. Journal of Pharmaceutical Sciences,2008.97(3): p.1060-1070.
    44. Brown, K.L. and R.E.W. Hancock, Cationic host defense (antimicrobial)peptides[J]. Current Opinion in Immunology,2006.18(1): p.24-30.
    45. Robert E.W. Hancock and G. Diamond., The role of cationic antimicrobialpeptides in innate host defences[J]. Trends in Microbiology,2000.8(9): p.402-410.
    46. Reddy, K.V.R., Evaluation of antimicrobial peptide nisin as a safe vaginalcontraceptive agent in rabbits: in vitro and in vivo studies[J]. Reproduction,2004.128(1): p.117-126.
    47. Koponen, O., Studies of producer self-protection and nisin biosynthesis ofLactococcus lactis.2004, Helsinki: Faculty of Agriculture and Forestry of theUniversity of Helsinki.69.
    48. Wang, Z. and G. Wang, APD: the Antimicrobial Peptide Database[J]. NucleicAcids Res,2004.32: p. D590-2.
    49. Wang, G., X. Li, and Z. Wang, APD2: the updated antimicrobial peptidedatabase and its application in peptide design[J]. Nucleic Acids Research,2009.37(Database): p. D933-D937.
    50. Thomas, S., et al., CAMP: a useful resource for research on antimicrobialpeptides[J]. Nucleic Acids Res,2010.38(Database issue): p. D774-80.
    51. Poindexter, B.J., et al., Localization of antimicrobial peptides in normal andburned skin[J]. Burns,2006.32(4): p.402-407.
    52.广慧娟, et al., Cathelicidins家族抗菌肽研究进展[J]. Zoological Research,2012.33(5): p.523-526.
    53. Guang, H.-J., et al., Progress in cathelicidins antimicrobial peptides research[J].Zoological Research,2013.33(5): p.523-526.
    54. Steffen, H., et al., Naturally Processed Dermcidin-Derived Peptides Do NotPermeabilize Bacterial Membranes and Kill Microorganisms Irrespective ofTheir Charge[J]. Antimicrobial Agents and Chemotherapy,2006.50(8): p.2608-2620.
    55. Gennaro, R. and M. Zanetti, Structural features and biological activities of thecathelicidin-derived antimicrobial peptides[J]. Biopolymers,2000.55: p.31-49.
    56. Wang, G., Structures of Human Host Defense Cathelicidin LL-37and ItsSmallest Antimicrobial Peptide KR-12in Lipid Micelles[J]. Journal ofBiological Chemistry,2008.283(47): p.32637-32643.
    57. Dale, B.A. and L.P. Fredericks, Antimicrobial Peptides in the Oral Environment:Expression and Function in Health and Disease[J]. Curr Issues Mol Biol.,2006.7(2): p.119-133.
    58. Koczulla, R., et al., An angiogenic role for the human peptide antibiotic LL-37/hCAP-18[J]. J Clin Invest,2003.111(11): p.1665-72.
    59. Lai, Y. and R.L. Gallo, AMPed up immunity: how antimicrobial peptides havemultiple roles in immune defense[J]. Trends in Immunology,2009.30(3): p.131-141.
    60. Andr6AUMELAS I, et al., Synthesis and solution structure of the antimicrobialpeptide protegrin-1[J]. Biochem Biophys Res Commun,1996.237: p.575-583.
    61. Gottler, L.M. and A. Ramamoorthy, Structure, membrane orientation,mechanism, and function of pexiganan—A highly potent antimicrobial peptidedesigned from magainin[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2009.1788(8): p.1680-1686.
    62. Lohner, K. and F. Prossnigg, Biological activity and structural aspects of PGLainteraction with membrane mimetic systems[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes,2009.1788(8): p.1656-1666.
    63. Nishida, M., et al., Interaction of a Magainin-PGLa Hybrid Peptide withMembranes: Insight into the Mechanism of Synergism[J]. Biochemistry,2007.46: p.14284-14290.
    64. Genco, C.A., et al., Antimicrobial activity of magainin analogues againstanaerobic oral pathogens[J]. Antimicrobial Agents and Chemotherapy,2003.21:p.75-78.
    65. Liu, R., et al., There are Abundant Antimicrobial Peptides in Brains of TwoKinds ofBombinaToads[J]. Journal of Proteome Research,2011.10(4): p.1806-1815.
    66. Tossi, A., L. Sandri, and A. Giangaspero, Amphipathic, a-Helical AntimicrobialPeptides[J]. Biopolymers,2000.55: p.4-30.
    67.杨长庚,大菱鲆(Scophthalmus maximus)、牙鲆(Paralichthys olivaceus)免疫相关基因的克隆及其性[D].2011,海洋大学:青岛市. p.129.
    68. Wang, K.-J., et al., Cloning and expression of a hepcidin gene from a marinefish (Pseudosciaena crocea) and the antimicrobial activity of its syntheticpeptide[J]. Peptides,2009.30(4): p.638-646.
    69. Robertson, L.S., Expression In Fish Of Hepcidin, A Putative AntimicrobialPeptide And Iron Regulatory Hormone[J]. Aquatic Animal Health,2009: p.284-292.
    70. Iijima, N., et al., Purification and characterization of three isoforms ofchrysophsin, a novel antimicrobial peptide in the gills of the red sea bream,Chrysophrys major[J]. Eur J Biochem,2003.270(4): p.675-86.
    71. Pandey, B.K., et al., Cell-Selective Lysis by Novel Analogues of Melittinagainst Human Red Blood Cells andEscherichia coli[J]. Biochemistry,2010.49(36): p.7920-7929.
    72. Unger, T., Z. Oren, and Y. Shai, The Effect of Cyclization of Magainin2andMelittin Analogues on Structure, Function, and Model Membrane Interactions:Implication to Their Mode of Action[J]. Biochemistry,2001.40: p.6388-6397.
    73. Asthana, N., Dissection of Antibacterial and Toxic Activity of Melittin[J].Journal of Biological Chemistry,2004.279(53): p.55042-55050.
    74. Asthana, N., S.P. Yadav, and J.K. Ghosh, Dissection of Antibacterial and ToxicActivity of Melittin.[J]. Journal of Biological Chemistry,2004.279(53): p.55042-55050.
    75. Hoskin, D.W. and A. Ramamoorthy, Studies on anticancer activities ofantimicrobial peptides[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2008.1778(2): p.357-375.
    76. Rao, A.G., Conformation and Antimicrobial Activity of Linear Derivatives ofTachyplesin Lacking Disulfide Bonds[J]. Archives of Biochemistry andBiophysics,1999.361: p.127-134.
    77. Hancock, R.E.W., Peptide antibiotics[J]. The Lancet,1997.349(9049): p.418-422.
    78. Li, G.-R., et al., Rational Design of Peptides with Anti-HCV/HIV Activities andEnhanced Specificity[J]. Chemical Biology&Drug Design,2011.78(5): p.835-843.
    79. Porcelli, F., et al., NMR Structure of the Cathelicidin-Derived HumanAntimicrobial Peptide LL-37in Dodecylphosphocholine Micelles[J].Biochemistry,2008.47(20): p.5565-5572.
    80. Falla, T.J., D.N. Karunaratne, and R.E.W. Hancock, Mode of Action of theAntimicrobial Peptide Indolicidin[J]. Biochemistry and Molecular Biology,1996.271: p.19298–19303.
    81. Hwang, P.M. and H.J. Vogel, Structure–function relationships of antimicrobialpeptides[J]. Cell Biol Int,1998.76: p.235–246.
    82. Castro, M.S. and W. Fontes, Plant Defense and Antimicrobial Peptides[J].Protein and Peptide Letters,2005.12: p.11-16.
    83. Thomma, B.P., B.P. Cammue, and K. Thevissen, Mode of action of plantdefensins suggests therapeutic potential[J]. Curr Drug Targets Infect Disord,2003.3(1): p.1-8.
    84. Li, W.-Z. and C.C. Chinnappa, Isolation and characterization of PHYC genefrom Stellaria longipes: differential expression regulated by different red/far-redlight ratios and photoperiods[J]. Planta,2004.220(2): p.318-30.
    85. Shukurov, R.R., et al., Transformation of tobacco and Arabidopsis plants withStellaria media genes encoding novel hevein-like peptides increases theirresistance to fungal pathogens[J]. Transgenic Res,2012.21(2): p.313-25.
    86. Burke, D.S., C.R. Smidt, and L.T. Vuong, MOMORDICACOCHINCHINENSIS, ROSA ROXBURGHII, WOLFBERRY, AND SEABUCKTHORN—HIGHLY NUTRITIONAL FRUITS SUPPORTED BYTRADITION AND SCIENCE[J]. Current Topics in Nutraceutical Research,2005.3: p.259-266.
    87. Zasloff, M., Antimicrobial peptides of multicellular organisms[J]. NATURE,2002.415: p.389-395.
    88. Epand, R.M. and H.J. Vogel, Diversity of antimicrobial peptides and theirmechanisms of action[J]. Biochim Biophys Acta,1999.1462(1-2): p.11-28.
    89. Jenssen, H., P. Hamill, and R.E.W. Hancock, Peptide Antimicrobial Agents[J].Clinical Microbiology Reviews,2006.19(3): p.491-511.
    90. Haney, E.F., et al., Solution NMR studies of amphibian antimicrobial peptides:Linking structure to function?[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2009.1788(8): p.1639-1655.
    91. Salgadoa, J.u., et al., Membrane-bound structure and alignment of theantimicrobial β-sheet peptide gramicidin S derived from angular and distanceconstraints by solid state19F-NMR[J]. Journal of Biomolecular NMR,2001.21:p.191-208.
    92. Mahalka, A.K. and P.K.J. Kinnunen, Binding of amphipathic α-helicalantimicrobial peptides to lipid membranes: Lessons from temporins B and L[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2009.1788(8): p.1600-1609.
    93. Jin, Y., et al., Antimicrobial Activities and Structures of Two Linear CationicPeptide Families with Various Amphipathic-Sheet and-Helical Potentials[J].Antimicrobial Agents and Chemotherapy,2005.49(12): p.4957-4964.
    94. Cavallo, J.D., et al., In vitro activity of meropenem and seven other beta-lactamantibiotics against K.pneumoniae and enterobacteriaceae producing beta-lactamases with extended spectrum[J]. Pathol Biol (Paris),1994.42(5): p.365-8.
    95. Thomas, T., et al., Structure-activity relations of S-adenosylmethioninedecarboxylase inhibitors on the growth of MCF-7breast cancer cells[J]. BreastCancer Res Treat,1996.39(3): p.293-306.
    96. Powell, W.A., C.M. Catranis, and C.A. Maynard, Synthetic antimicrobialpeptide design[J]. Mol Plant Microbe Interact,1995.8(5): p.792-4.
    97. Chen, Y., et al., Rational Design of α-Helical Antimicrobial Peptides withEnhanced Activities and Specificity/Therapeutic Index[J]. The Juornal ofBiological Chemistry2005.208(13): p.12316–12329.
    98. Jiang, Z., et al., Rational Design of a-Helical Antimicrobial Peptides to TargetGram-negative Pathogens, Acinetobacter baumannii and Pseudomonasaeruginosa: Utilization of Charge,’Specificity Determinants,’ TotalHydrophobicity, Hydrophobe Type and Location as Design Parameters toImprove the Therapeutic Ratio[J]. Chem Biol Drug Des,2011: p.1-16.
    99. Sawai, M.V., et al., The NMR structure of human beta-defensin-2reveals anovel alpha-helical segment[J]. Biochemistry,2001.40(13): p.3810-6.
    100. Mandard, N., et al., Solution structure of thanatin, a potent bactericidal andfungicidal insect peptide, determined from proton two-dimensional nuclearmagnetic resonance data[J]. Eur J Biochem,1998.256(2): p.404-10.
    101. Powers, J.P., A. Rozek, and R.E. Hancock, Structure-activity relationships forthe beta-hairpin cationic antimicrobial peptide polyphemusin I[J]. BiochimBiophys Acta,2004.1698(2): p.239-50.
    102. McManus, A.M., et al., Three-dimensional structure of RK-1: a novel alpha-defensin peptide[J]. Biochemistry,2000.39(51): p.15757-64.
    103. Gesell, J., M. Zasloff, and S.J. Opella, Two-dimensional1H NMR experimentsshow that the23-residue magainin antibiotic peptide is an alpha-helix indodecylphosphocholine micelles, sodium dodecylsulfate micelles, andtrifluoroethanol/water solution[J]. J Biomol NMR,1997.9(2): p.127-35.
    104. Rozek, A., C.L. Friedrich, and R.E. Hancock, Structure of the bovineantimicrobial peptide indolicidin bound to dodecylphosphocholine and sodiumdodecyl sulfate micelles[J]. Biochemistry,2000.39(51): p.15765-74.
    105. Koradi, R., M. Billeter, and K. Wuthrich, MOLMOL: a program for display andanalysis of macromolecular structures[J]. J Mol Graph,1996.14(1): p.51-5,29-32.
    106. Dezfuli, B.S., et al., Mast cell responses to Ergasilus (Copepoda), a gillectoparasite of sea bream[J]. Fish&Shellfish Immunology,2011.30(4-5): p.1087-1094.
    107. Campagna, S., et al., Structure and Mechanism of Action of the AntimicrobialPeptide Piscidin[J]. Biochemistry,2007.46: p.1771-1778.
    108. Yang, L., et al., Barrel-Stave Model or Toroidal Model? A Case Study onMelittin Pores[J]. Biophysical Journal,2001.81: p.1475-1485.
    109. Wan Long Zhu, et al., Effects of Pro f Peptoid Residue Substitution on CellSelectivity and Mechanism of Antibacterial Action of Tritrpticin-AmideAntimicrobial Peptide[J]. Biochemistry,2006.45: p.13007-13017.
    110. Su, Y., et al., Reversible Sheet–Turn Conformational Change of a Cell-Penetrating Peptide in Lipid Bilayers Studied by Solid-State NMR[J]. Journalof Molecular Biology,2008.381(5): p.1133-1144.
    111. Brogden, K.A., Antimicrobial peptides: pore formers or metabolic inhibitors inbacteria?[J]. Nature Reviews Microbiology,2005.3(3): p.238-250.
    112. Yount, N.Y. and M.R. Yeaman, Multidimensional signatures in antimicrobialpeptides[J]. Proc Natl Acad Sci U S A,2004.101(19): p.7363-8.
    113. Yount, N.Y., et al., The gamma-core motif correlates with antimicrobial activityin cysteine-containing kaliocin-1originating from transferrins[J]. BiochimBiophys Acta,2007.1768(11): p.2862-72.
    114. Taylor, K., et al., Analysis and separation of residues important for thechemoattractant and antimicrobial activities of beta-defensin3[J]. J Biol Chem,2008.283(11): p.6631-9.
    115. Harder, J., et al., A peptide antibiotic from human skin[J]. Nature,1997.387(6636): p.861.
    116. Mozsolits, H. and M.-I. Aguilar, Surface plasmon resonance spectroscopy: Anemerging tool for the study of peptide-membrane interactions[J]. Biopolymers,2002.66(1): p.3-18.
    117. Heller, W.T., et al., Multiple states of beta-sheet peptide protegrin in lipidbilayers[J]. Biochemistry,1998.37(49): p.17331-8.
    118. Yount, N.Y., et al., Advances in antimicrobial peptide immunobiology[J].Biopolymers,2006.84(5): p.435-458.
    119. Prenner, E.J., et al., Differential scanning calorimetric study of the effect of theantimicrobial peptide gramicidin S [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,1999.1417: p.211-223.
    120. Tam, J.P., et al., An unusual structural motif of antimicrobial peptidescontaining end-to-end macrocycle and cystine-knot disulfides[J]. Proc NatlAcad Sci U S A,1999.96(16): p.8913-8.
    121. Schibli, D.J., et al., Structure-Function Analysis of Tritrpticin Analogs:Potential Relationships between Antimicrobial Activities, Model MembraneInteractions, and Their Micelle-Bound NMR Structures[J]. Biophysical Journal,2006.91(12): p.4413-4426.
    122.强,王., et al.,甘氨酸对内毒素性肝损害保护作用的机制[J].世界华人消化杂志,2006.14(16): p.1561-1565.
    123.岳昌武, et al.,抗菌肽的结构特点、作用机理及其应用前景[J].安徽农业科学,2008.36(5): p.1736-1739.
    124. Won, H.S., S.J. Kang, and B.J. Lee, Action mechanism and structuralrequirements of the antimicrobial peptides, gaegurins[J]. Biochim Biophys Acta,2009.1788(8): p.1620-9.
    125. Lyu, P.C., et al., Side Chain Contributions to the Stability of Alpha-HelicalStructure in Peptides[J]. Science,1990.250: p.669-673.
    126. Gerrits, M.M., et al., Helicobacter pylori and antimicrobial resistance: molecularmechanisms and clinical implications[J]. The Lancet Infectious Diseases,2006.6(11): p.699-709.
    127. Oyston, P.C.F., et al., Novel peptide therapeutics for treatment of infections[J].Journal of Medical Microbiology,2009.58(8): p.977-987.
    128. Saviello, M.R., et al., New Insight into the Mechanism of Action of theTemporin Antimicrobial Peptides[J]. Biochemistry,2010.49(7): p.1477-1485.
    129. Chen, Y., et al., Rational Design of α-Helical Antimicrobial Peptides withEnhanced Activities and Specificity/Therapeutic Index[J]. The Juornal ofBiological Chemistry,2005.280(13): p.12316–12329.
    130. Chen, Y., et al., Comparison of Biophysical and Biologic Properties of alpha-Helical Enantiomeric Antimicrobial Peptides[J]. Chemical Biology,2006.67(2):p.162-173.
    131. Oliveira, D.C., A. Tomasz, and H. de Lencastre, Secrets of success of a humanpathogen: molecular evolution of pandemic clones of meticillin-resistantStaphylococcus aureus[J]. Lancet Infect Dis,2002.2(3): p.180-9.
    132. Hancock, R.E.W., Cationic peptides: effectors in innate immunity and novelantimicrobials[J]. The Lancet Infectious Diseases,2001.1(3): p.156-164.
    133. Conlon, J.M., et al., Peptidomic analysis of skin secretions supports separatespecies status for the tailed frogs, Ascaphus truei and Ascaphus montanus[J].Comparative Biochemistry and Physiology,2007.2: p.121–125.
    134. Huang, J., et al., Inhibitory effects and mechanisms of physiological conditionson the activity of enantiomeric forms of an alpha-helical antibacterial peptideagainst bacteria[J]. Peptides,2011.32(7): p.1488-95.
    135. Schr der-Borm, H., R. Bakalova, and J. Andr, The NK-lysin derived peptideNK-2preferentially kills cancer cells with increased surface levels of negativelycharged phosphatidylserine[J]. FEBS Letters,2005.579(27): p.6128-6134.
    136. Papo, N. and Y. Shai, New Lytic Peptides Based on the D,L-Amphipathic HelixMotif Preferentially Kill Tumor Cells Compared to Normal Cells[J].Biochemistry,2003.42: p.9346-9354.
    137. Wang, P., Y.H. Nan, and S.Y. Shin, Candidacidal mechanism of a Leu/Lys-richα-helical amphipathic model antimicrobial peptide and its diastereomercomposed of D,L-amino acids[J]. Journal of Peptide Science,2010.16(11): p.601-606.
    138. Huang, Y.b., et al., Studies on Mechanism of Action of Anticancer Peptides byModulation of Hydrophobicity Within a Defined Structural Framework[J].Molecular Cancer Therapeutics,2011.10(3): p.416-426.
    139. Cinier, M., et al., Bisphosphonate adaptors for specific protein binding onzirconium phosphonate-based microarrays[J]. Bioconjug Chem,2009.20(12): p.2270-7.
    140. Mason, A.J., A. Marquette, and B. Bechinger, Zwitterionic Phospholipids andSterols Modulate Antimicrobial Peptide-Induced Membrane Destabilization[J].Biophysical Journal,2007.93(12): p.4289-4299.
    141. Tan, C.H., J. Li, and R.L. Nation, Activity of Colistin against HeteroresistantAcinetobacter baumannii and Emergence of Resistance in an In VitroPharmacokinetic/Pharmacodynamic Model[J]. Antimicrobial Agents andChemotherapy,2007.51(9): p.3413-3415.
    142. Rausch, J.M., Rational combinatorial design of pore-forming-sheet peptides[J].Proceedings of the National Academy of Sciences,2005.102(30): p.10511-10515.
    143. Makovitzki, A., A. Fink, and Y. Shai, Suppression of Human Solid TumorGrowth in Mice by Intratumor and Systemic Inoculation of Histidine-Rich andpH-Dependent Host Defense-like Lytic Peptides[J]. Cancer Research,2009.69(8): p.3458-3463.
    144.赵叔进, et al.,刘华侨医院药学.2008,广州:广州花都区华山印刷厂.
    145. Meyer1, J.E. and J. Harder, Antimicrobial Peptides in Oral Cancer[J]. CurrentPharmaceutical Design,2007.13: p.3119-3130.
    146. Thevissen, K., et al., Therapeutic potential of antifungal plant and insectdefensins[J]. Drug Discov Today,2007.12(21-22): p.966-71.
    147. Eder, J., et al., Aspartic Proteases in Drug Discovery[J]. CurrentPharmaceutical Design,2007.13: p.271-285.
    148. Glukhov, E., Basis for Selectivity of Cationic Antimicrobial Peptides forBacterial Versus Mammalian Membranes[J]. Journal of Biological Chemistry,2005.280(40): p.33960-33967.
    149. Johnsen, P.J., et al., Factors aff ecting the reversal of antimicrobial-drugresistance[J]. Lancet Infect Dis,2009.9(375-64).
    150. Collado, M.C., et al., Antimicrobial peptides are among the antagonisticmetabolites produced by Bifidobacterium against Helicobacter pylori[J].International Journal of Antimicrobial Agents,2005.25(5): p.385-391.
    151. DeGray, G., et al., Expression of an Antimicrobial Peptide via the ChloroplastGenome to Control Phytopathogenic Bacteria and Fungi[J]. Plant Physiology,2001.127(3): p.852-862.
    152.张继南and陈红霞,抗菌肽及其应用研究进展[J]. Letters in Biotechnology,2006.17: p.699-672.
    153. Hancock, R.E.W. and R. Lehrer, Cationic peptides: a new source ofantibiotics[J]. Tibtech february1996.18.
    154. Yarus, S., et al., Production of active bovine tracheal antimicrobial peptide inmilk of transgenic mice[J]. Natl. Acad. Sci. U. S. A,1996.93(24): p.14118-21.
    155. Brouwer, C.P.J.M., M. Wulferink, and M.M. Welling, The pharmacology ofradiolabeled cationic antimicrobial peptides[J]. Journal of PharmaceuticalSciences,2008.97(5): p.1633-1651.
    156.黄金丰, α-螺旋型抗菌肽的结构、活性与抗菌机理及影响机制的研究[D].in生命科学学院.2011,吉林大学:长春. p.92.
    157. Patrzykat, et al., Sublethal concentrations of pleurocidin-derived antimicrobialpeptides inhibit macromolecular synthesis in Escherichia coli[J]. AntimicrobAgents Chemother,2002.46: p.605–614.
    158. Yang, L., et al., Crystallization of antimicrobialpores in membranes: magaininand protegrin[J]. Biophys J,2001.79: p.2002–2009.
    159. Matsuzaki, K., et al., Molecular Basis for Membrane Selectivity of anAntimicrobial Peptide, Magainin2[J]. Biochemistry,1995.34(10): p.3423-3429.
    160. Yeaman, M.R. and N.Y. Yount, Mechanisms of antimicrobial peptide actionand resistance[J]. Pharmacol Rev,2003.55(1): p.27-55.
    161. Tachi, T., et al., Position-Dependent Hydrophobicity of the AntimicrobialMagainin Peptide Affects the Mode of Peptide Lipid Interactions and SelectiveToxicity[J]. Biochemistry,2002.41(34): p.10723-10731.
    162. Epand, R.F., A. Ramamoorthy, and R.M. Epand, Membrane lipid compositionand the interaction of pardaxin: the role of cholesterol[J]. Protein Pept Lett,2006.13(1): p.1-5.
    163. Chu-Kung, A.F., et al., Promotion of Peptide Antimicrobial Activity by FattyAcid Conjugation[J]. Bioconjugate Chem,2004.15(530-535).
    164. Oren, Z. and Y. Shai, Mode of action of linear amphipathic alpha-helicalantimicrobial peptides[J]. Biopolymers,1998.47(6): p.451-63.
    165.王红叶, α-螺旋型多肽对不同肿瘤细胞的抗癌活性研究[D].2010,吉林大学:长春. p.57.
    166. Zhang, L., R. Benz, and R.E.W. Hancock, Influence of Proline Residues on theAntibacterial and Synergistic Activities of α-Helical Peptides[J]. Biochemistry,1999.38(25): p.8102-8111.
    167. Zhu, W.L., et al., Substitution of the leucine zipper sequence in melittin withpeptoid residues affects self-association, cell selectivity, and mode of action[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,2007.1768(6): p.1506-1517.
    168. Charnley, M., et al., Anti-microbial action of melanocortin peptides andidentification of a novel X-Pro-d/l-Val sequence in Gram-positive and Gram-negative bacteria[J]. Peptides,2008.29(6): p.1004-1009.
    169. Huang, H., Molecular mechanism of antimicrobial peptides: The origin ofcooperativity[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2006.1758(9): p.1292-1302.
    170. Deslouches, B., et al., Activity of the De Novo Engineered AntimicrobialPeptide WLBU2against Pseudomonas aeruginosa in Human Serum and WholeBlood: Implications for Systemic Applications[J]. Antimicrobial Agents andChemotherapy,2005.49(8): p.3208-3216.
    171. NE, Z., K. CM, and H. RS., The net energetic contribution of interhelicalelectrostatic attractions to coiled-coil stability[J]. Protein Eng,1994.7(11): p.1365-1372.
    172. Dathe, M. and T. Wieprecht, Structural features of helical antimicrobial peptides:their potential to modulate activity on model membranes and biological cells[J].Biochimica et Biophysica Acta (BBA)-Biomembranes,1999.1462: p.71^87.
    173.王三山, et al.,抗菌肽的一级结构和二级结构分析[J].动物学研究,1993.14:p.120-127.
    174. Dennison, S.R., et al., Amphiphilic a-Helical Antimicrobial Peptides and TheirStructure/Function Relationships[J]. Protein and Peptide Letters,2005.12: p.31-39.
    175. Fernández-Vidal, M., et al., Folding Amphipathic Helices Into Membranes:Amphiphilicity Trumps Hydrophobicity[J]. Journal of Molecular Biology,2007.370(3): p.459-470.
    176. Lee, D.L., et al., Effects of single d-amino acid substitutions on disruption of b-sheet structure and hydrophobicity in cyclic14-residue antimicrobial peptideanalogs related to gramicidin S[J]. J. Peptide Res.,2004.63: p.69-84.
    177. Tachi, T., et al., Position-dependent hydrophobicity of the antimicrobialmagainin peptide affects the mode of peptide-lipid interactions and selectivetoxicity[J]. Biochemistry,2002.41(34): p.10723-31.
    178. Dathea, M., et al., Hydrophobicity, hydrophobic moment and angle subtendedby charged residues modulate antibacterial and haemolytic activity ofamphipathic helical peptides[J]. FEBS Letters,1997.403: p.208-212.
    179. Lee, D.G., et al., Design of novel analogue peptides with potent antibioticactivity based on the antimicrobial peptide, HP (2–20), derived from N-terminusof Helicobacter pylori ribosomal protein L1[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes,2002.1598: p.185–194.
    180. Lee, Dong G., et al., Interactions between the plasma membrane and theantimicrobial peptide HP (2-20) and its analogues derived from Helicobacterpylori[J]. Biochemical Journal,2006.394(1): p.105.
    181. Hawrani, A., et al., Origin of Low Mammalian Cell Toxicity in a Class ofHighly Active Antimicrobial Amphipathic Helical Peptides[J]. Journal ofBiological Chemistry,2008.283(27): p.18636-18645.
    182. Saberwal, G. and R. Nagaraj, Cell-lytic and antibacterial peptides that act byperturbing the barrier function of membranes: facets of their conformationalfeatures, structure-function correlations and membrane-perturbing abilities[J].Biochim Biophys Acta.1197(2): p.109-31.
    183. Shin, S.Y., et al., Influences of Hinge Region of a Synthetic AntimicrobialPeptide, Cecropin A(1-13)-Melittin(1-13) Hybrid on Antibiotic Activity[J]. Bull.Korean Chem. Soc.1999, Vol.20, No.9,1999.20(9): p.1078-1084.
    184. Vunnam, S., et al., Synthesis and study of normal, enantio, retro, andretroenantio isomers of cecropin A-melittin hybrids, their end group effects andselective enzyme inactivation[J]. J Pept Res,1998.51(1): p.38-44.
    185. Shin, S.Y., et al., Antibacterial, antitumor and hemolytic activities of alpha-helical antibiotic peptide, P18and its analogs[J]. J Pept Res,2001.58(6): p.504-14.
    186. Lee, M.T., F.Y. Chen, and H.W. Huang, Energetics of pore formation inducedby membrane active peptides[J]. Biochemistry,2004.43(12): p.3590-9.
    187. Wu, M., et al., Mechanism of Interaction of Different Classes of CationicAntimicrobial Peptides with Planar Bilayers and with the CytoplasmicMembrane of Escherichia coli[J]. Biochemistry,1999.38: p.7235-7242.
    188. Mant, C.T., Y. Chen, and R.S. Hodges, Temperature profiling of polypeptides inreversed-phase liquid chromatography[J]. Journal of Chromatography A,2003.1009(1-2): p.29-43.
    189. Kawakami, T., H. Murakami, and H. Suga, Messenger RNA-ProgrammedIncorporation of Multiple N-Methyl-Amino Acids into Linear and CyclicPeptides[J]. Chemistry&Biology,2008.15(1): p.32-42.
    190.赵喜红,何小维, and罗志刚,抗菌肽的生物活性、作用机制及应用研究进展[J].中国酿造,2007.4: p.1-5.
    191.许伊民,从头设计α-螺旋杭菌肽以提高其抗菌特异性的研究[D].2010,吉林大学:长春. p.67.
    192. MERRIFIELD, R.B., Solid Phase Peptide Synthesis[J]. BIOCHEMISTRY1963.2: p.2149-2151.
    193. Altreuter, D.H., J.S. Dordick, and D.S. Clark, Solid-phase peptide synthesis byion-paired alpha-chymotrypsin in nonaqueous media[J]. Biotechnol Bioeng,2003.81(7): p.809-17.
    194. Ali, A.M. and S.D. Taylor, Efficient Solid-Phase Synthesis of SulfotyrosinePeptides using a Sulfate Protecting-Group Strategy[J]. Angewandte ChemieInternational Edition,2009.48(11): p.2024-2026.
    195.岳昌武,多肽合成中保护基的研究进展[J].国外医学:药学分册,1990.3: p.135-138.
    196. Hossain, M.A., et al., Use of a temporary "solubilizing" peptide tag for theFmoc solid-phase synthesis of human insulin glargine via use of regioselectivedisulfide bond formation[J]. Bioconjug Chem,2009.20(7): p.1390-6.
    197.何丽艳, α-螺旋生物活性肽的螺旋度变化对其生物活性影响的研究[D].2011,吉林大学:长春. p.77.
    198. Cynthia, Fields, and Gregg, Solvents for Solid Phase Peptide Synthesis[J].Methods in Molecular Brology,1994.35: p.29-40.
    199. ISHII, A., et al., Silyl Linker-based Approach to the Solid-phase Synthesis ofFmoc Glycopeptide Thioesters[J]. Biosci. Biotechnol. Bioche,2002.66(2): p.225-232.
    200. SATO, T., et al., Synthesis of a Membrane Protein with Two TransmembraneRegions[J]. J. Peptide Sci,2002.8: p.172-180.
    201. Park, S.-C., et al., Amphipathic α-helical peptide, HP (2–20), and its analoguesderived from Helicobacter pylori: Pore formation mechanism in various lipidcompositions[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2008.1778(1): p.229-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700