蛋白激酶小分子抑制剂选择性及其JAK2激酶调控机制的计算化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于物理学原理的计算化学,其方法和技术可广泛应用于生物分子体系的模拟研究。在蛋白质功能和结构的研究中,可用于蛋白质三维结构的同源建模,蛋白质-蛋白质复合物的分子对接,和分子动力学模拟蛋白的柔性及功能分析。在计算机辅助药物设计中,基于结构的药物虚拟筛选已经被证明是非常有效的方法。在本论文的研究工作中,我们针对两个很有意义的生物学问题开发了相应的计算方法并开展了研究,一是开发了一种基于物理学原理的预测激酶抑制剂选择性的算法;二是设计了一套基于结构信息的从头预测蛋白质-蛋白质复合物的对接策略。
     如何合理设计具有选择性的激酶小分子抑制剂是激酶药物开发中一个具有挑战性但是很重要的问题。我们开发的算法主要包括以下步骤:1.选择具有代表性的处于活性构象的激酶晶体结构;2.用比较对接的方法构建配体受体复合物;3.在配体存在下搜索结合位点的氨基酸构象;4.用MM-GB/SA的打分函数评估最终的配体和受体之间的结合自由能。我们首先回顾性地评价了这种算法在预测17个常见的激酶小分子抑制剂和143个激酶选择性的表现。两个相关性分析参数,排名前20%的富集因子(EF20)平均值2.81和预测指数(PI)平均值0.35表明我们的算法能够预测一个激酶小分子抑制剂的选择性,尤其是对有选择性好的抑制剂具有更好的预测能力。然后我们将这种算法应用到化疗药物米托蒽醌(MX)可能结合的激酶靶点中。根据预测结果,我们取排名前五位的激酶进行体外活性检测。结果表明米托蒽醌对PIM1激酶具有低纳摩尔级的抑制活性。同时,我们发现米托蒽醌也能在肿瘤细胞中抑制PIM1底物的磷酸化。我们进一步解析了米托蒽醌和PIM1的复合物晶体结构,从而揭示了米托蒽醌抗癌机制的一种新的结构基础和作用机制。虽然米托蒽醌最初被认为是通过嵌入DNA和抑制Ⅱ型拓扑异构酶起作用的,我们的研究结果第一次表明米托蒽醌还可能通过抑制PIM1激酶发挥其抗癌疗效和特异性。
     蛋白激酶在细胞内行使功能时是被严格调控的,包括激酶自身二聚化或寡聚化,其它结构域或蛋白的相互作用。例如JAK2激酶结构域(JH1结构域)就受到相邻的假激酶结构域(JH2结构域)的调控,但是具体两个结构域之间的作用机理依然不清楚。我们首先采用MuInf,一种能够鉴定蛋白扭转角相关性位点的算法来预测JAK2假激酶结构域和激酶结构域可能的变构调节位点,然后将这些变构调节位点作为蛋白质与蛋白质相互作用的界面来构建起始模型,随后我们用蛋白质对接和分子动力学模拟来更合理地修正我们的结构模型。我们构建的JAK2复合物模型揭示了JAK2假激酶结构域自我抑制的可能的一种作用机制,它通过重要的疏水性作用和广泛的静电相互作用将激酶结构域中的活化茎环限制在非活性状态,同时也阻碍αC螺旋的转动。进一步的分子动力学模拟表明在大多数骨髓增生性肿瘤患者中发现的JAK2的一个获得性突变(V617F),可能通过减弱假激酶结构域的这种抑制作用来激动JAK2。重要的是我们用的假激酶结构域在结合界面上的氨基酸的突变实验证实,这些重要氨基酸的突变确实能够激活JAK2激酶活性,并能促进用这些突变体转化的BaF3/EpoR细胞增殖。尽管还可能存在其它的假激酶结构域介导的JAK2激酶的调控机制,我们构建的JAK2假激酶和激酶复合物模型提供了一种合理的假说,这有助于进一步设计实验来阐明假激酶结构域在正常和病理中的JAK2的调控机理。同时我们这种逐级蛋白对接的策略能够更广泛地应用到研究其它蛋白质-蛋白质相互作用的体系。
The theory of computational chemisty is on the basis of physics, and the theoretical computational technologies can be widely used to model and simulate the biomolecule systems. In the protein function and structure study, the computational approaches can provide a series of tools, including the homology modeling for protein three-dimensional structure prediction, the protein-protein docking algorithm for complex structures prediction, and the molecular dynamics (MD) simulations for protein flexibility and function analysis. In the field of computational drug design, the structure-based virtual screening has been widely applied. In this thesis, two efficient computational protocols were developed to address two interesting biological questions, individually. One is a physics-based approach to computationally modeling the kinase inhibitor selectivity profile. The other is a novel informatics-guided protein-protein docking strategy for ab initio modeling protein complex structures.
     The rational design of selective kinase inhibitors is a great challenge in the kinase drug discovery. We described a physics-based approach to computationally modeling the kinase inhibitor selectivity profile. Briefly, our computational modeling procedure consists the following steps:1. Selecting the representative kinase crystal structure in an active conformation;2. Predicting the ligand binding pose using comparative docking;3. Sampling the binding site conformation with the presence of the docked ligand;4. Scoring the resulted complex structure using the MM-GB/SA scoring function. We retrospectively assessed this protocol by computing the binding profiles of17well-known kinase inhibitors against143kinases. The averaged EF20value of2.81and the averaged PI value of0.35indicated a reasonable prediction performance of our computational approach in ranking order of the kinase targets for a given inhibitor. This automatic workflow allowed rapid evaluation of compounds of interest against the entire structural kinome. Next, we predicted the binding profile of the chemotherapy drug mitoxantrone (MX), and chose the predicted top five kinase targets for in vitro kinase assays. Remarkably, mitoxantrone was shown to possess low nanomolar inhibitory activity against PIM1kinase and to inhibit the PIM1-mediated subtrates phosphorylation in cancer-cells. We further determined the crystal complex structure of PIM1bound with mitoxantrone, which revealed the structural and mechanistic basis for a novel mode of PIM1inhibition. Although mitoxantrone's mechanism of action had been originally thought to act through DNA intercalation and type Ⅱ topoisomerase inhibition, we provided for the first time evidence that PIM1kinase inhibition may contribute to mitoxantrone's therapeutic efficacy and specificity.
     The function of protein kinases are highly regulated in the cell by their dimerization, supramolecular assemblies, other regulatory domains or interacting proteins. For example, the pseudokinase domain (JH2) of Janus Kinase2(JAK2) regulates the activity of its adjacent kinase domain (JH1) althought the exact molecular mechanisms are not fully understood. We first applied MuInf algorithm, one method can identify protein sites exhibited correlated torsional motions, to predict the potential protein interface. The primary models from MutInf predicted interfaces were refined by a hierarchical protein-protein docking and molecular dynamics simulations refinement procedure to systematically improve the quality of these complex models. We applied this novel strategy to model the pseudokinase domain-kinase domain complex structure of the JAK2. Based on this model, a detailed JAK2JH2-mediated auto-inhibition mechanism was proposed, where JH2traped the activation loop of JH1in an inactive conformation and blocked the movement of kinase a C helix through critical hydrophobic contacts and extensive electrostatic interactions. These stabilizing interactions were less favorable in JAK2-V617F, a gain-of-function mutation within JH2was found in the majority of patients with myeloproliterative neoplasms. Notably, several predicted binding interfacial residues in JH2were confirmed to hyperactivate JAK2kinase activity in site-directed mutagenesis and BaF3/EpoR cell transformation studies. Although there might exist other JH2-mediated mechanisms to control JH1, our JH1-JH2structural model represented a verifiable working hypothesis for further experimental studies to elucidate the role of JH2in regulating JAK2in both normal and pathological settings. This step-wise computational strategy we devised may be easily adopted for studying novel protein-protein interactions in a general manner.
引文
[1]Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity:the pharmaceutical industry's grand challenge [J]. Nat Rev Drug Discov,2010,9(3):203-214.
    [2]Manolio TA. Genomewide Association Studies and Assessment of the Risk of Disease [J]. N Engl J Med,2010,363(2):166-176.
    [3]Weigelt J. Structural genomics—Impact on biomedicine and drug discovery [J]. Exp Cell Res 2010,316(8):1332-1338.
    [4]Cheng T, Li Q, Zhou Z, Wang Y, Bryant S. Structure-Based Virtual Screening for Drug Discovery:a Problem-Centric Review [J]. AAPS J,2012,14(1):133-141.
    [5]Kaldor SW, Kalish VJ, Davies JF, Shetty BV, Fritz JE, Appelt K, et al. Viracept (Nelf inavir Mesylate, AG1343):A Potent, Orally Bioavailable Inhibitor of HIV-1 Protease [J]. J Med Chem 1997,40(24):3979-3985.
    [6]Varghese JN. Development of neuraminidase inhibitors as anti-influenza virus drugs [J]. Drug Dev Res 1999,46(3-4):176-196.
    [7]Rutenber EE, Stroud RM. Binding of the anticancer drug ZD1694 to E. coli thymidylate synthase:assessing specificity and affinity [J]. Structure 1996,4(11):1317-1324.
    [8]Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural Mechanism for STI-571 Inhibition of Abelson Tyrosine Kinase [J]. Science, 2000,289:1938-1942.
    [9]Born M, Oppenheimer R. Zur quantentheorie der molekeln [J]. Ann Phys 1927,389(20):457-484.
    [10]Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, et al. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules [J]. J Am Chem Soc 1995,117(19):5179-5197.
    [11]Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids [J]. J Am Chem Soc 1996,118 (45):11225-11236.
    [12]Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations [J]. J Comput Chem 1983,4(2):187-217.
    [13]Debye P. Naherungsformeln fur die Zylinderfunktionen fUr groβe Werte des Arguments und unbeschrankt veranderliche Werte des Index [J]. Math Ann,1909,67(4):535-558.
    [14]Fletcher R, Reeves CM. Function minimization by conjugate gradients [J]. The Computer Journal,1964,7(2):149-154.
    [15]Boykov Y, Veksler 0, Zabih R. Fast approximate energy minimization via graph cuts [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2001,23(11):1222-1239.
    [16]McCammon JA, Gel in BR, Karplus M. Dynamics of folded proteins [J]. Nature, 1977,267(5612):585-590.
    [17]Bruenger AT, Karplus M. Molecular dynamics simulations with experimental restraints [J]. Acc Chem Res 1991,24(2):54-61.
    [18]Kyckaert J-P, Ciccotti G, Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes [J]. J Comput Phys 1977,23(3):327-341.
    [19]Berendsen HJC, van der Spoel D, van Drunen R. GROMACS:A message-passing parallel molecular dynamics implementation [J]. Comput Phys Commun 1995,91(1-3):43-56.
    [20]Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, et al. Scalable algori thms for molecuiar dynamics simulat ions on commodi ty clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing [R], Tampa, Florida:ACM; 2006:84.
    [21]Meng EC, Shoichet BK, Kuntz ID. Automated docking with grid-based energy evaluation [J]. J Comput Chem 1992,13(4):505-524.
    [22]Shoichet BK, Kuntz ID, Bodian DL. Molecular docking using shape descriptors [J]. J Comput Chem 1992,13(3):380-397.
    [23]Rarey M, Kramer B, Lengauer T, Klebe G. A Fast Flexible Docking Method using an Incremental Construction Algorithm [J]. J Mol Biol 1996,261(3):470-489.
    [24]Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking [J]. J Mol Biol 1997,267 (3):727-748.
    [25]Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function [J]. J Comput Chem 1998,19 (14):1639-1662.
    [26]Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide:A New Approach for Rapid, Accurate Docking and Scoring.1. Method and Assessment of Docking Accuracy [J]. J Med Chem 2004,47(7):1739-1749.
    [27]Soliva R, Gelpi JL, Almansa C, Virgili M, Orozco M. Dissection of the recognition properties of p38 MAP kinase. Determination of the binding mode of a new pyridinyl-heterocycle inhibitor family [J]. J Med Chem 2007,50(2):283-293.
    [28]Tembre BL, Me Cammon JA. Ligand-receptor interactions [J]. Comput Chem 1984,8(4):281-283.
    [29]Straatsma TP, McCammon JA. Multiconfiguration thermodynamic integration [J]. The Journal of Chemical Physics,1991,95(2):1175-1188.
    [30]Huang N, Kalyanaraman C, Irwin JJ, Jacob son MP. Physics-based scoring of protein-ligand complexes:enrichment of known inhibitors in large-scale virtual screening [J]. J Chem Inf Model 2006,46(1):243-253.
    [31]Kuhn B, Kollman PA. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models [J]. J Med Chem 2000,43(20):3786-3791.
    [32]Luo R, David L, Gilson MK. Accelerated Poisson-Boltzmann calculations for static and dynamic systems [J]. J Comput Chem 2002,23(13):1244-1253.
    [33]Still WC, Tempczyk A, Hawley RC, Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics [J]. J Am Chem Soc 1990,112 (16):6127-6129.
    [34]Sitkoff D, Sharp KA, Honig B. Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models [J]. J Phys Chem 1994,98(7):1978-1988.
    [35]Case DA, Cheatham TE,3rd, Darden T, Gohlke H, Luo R, Merz KM, Jr., et al. The Amber biomolecular simulation programs [J]. J Comput Chem 2005,26(16):1668-1688.
    [36]Aqvist J, Medina C, Samuelsson JE. A new method for predicting binding affinity in computer-aided drug design [J]. Protein Eng 1994,7(3):385-391.
    [37]Woo H-J, Roux B. Calculation of absolute protein-ligand binding free energy from computer simulations [J]. Proc Natl Acad Sci U S A,2005,102(19):6825-6830.
    [38]Jaeger S, Aloy P. From protein interaction networks to novel therapeutic strategies [J]. IUBMB Life,2012,64(6):529-537.
    [39]Berg T. Small-molecule inhibitors of protein-protein interactions [J]. Curr Opin Drug Discov Devel,2008,11 (5):666-674.
    [40]Westermarck J, Ivaska J, Corthals GL. Identification of Protein Interactions Involved in Cellular Signalling [J]. Molecular & Cellular Proteomics,2013.
    [41]Fields S, Song 0-k. A novel genetic system to detect protein-protein interactions [J]. Nature,1989,340(6230):245-246.
    [42]Suter B, Kittanakom S, Stagl jar I. Two-hybrid technologies in proteomics research [J]. Curr Opin Biotechnol 2008,19(4):316-323.
    [43]Collins M0, Choudhary JS. Mapping multiprotein complexes by affinity purification and mass spectrometry [J]. Curr Opin Biotechnol 2008,19(4):324-330.
    [44]Hall DA, Ptacek J, Snyder M. Protein microarray technology [J]. Mechanisms of Ageing and Development,2007,128(1):161-167.
    [45]Trakselis MA, Alley SC, Ishmael FT. Identification and Mapping of Protein-Protein Interactions by a Combination of Cross-Linking, Cleavage, and Proteomics [J]. Bioconjugate Chem 2005,16(4):741-750.
    [46]Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, et al. Structure-based prediction of protein-protein interactions on a genome-wide scale [J]. Nature, 2012,490 (7421):556-560.
    [47]Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, et al. A structural perspective on protein-protein interactions [J]. Curr Opin Struct Biol 2004,14(3):313-324.
    [48]Wodak SJ, Janin J. Computer analysis of protein-protein interaction [J]. J Mol Biol 1978,124(2):323-342.
    [49]Janin J. Protein-protein docking tested in blind predictions:the CAPRI experiment [J]. Mol Biosyst 2010,6(12):2351-2362.
    [50]Cherfils J, Duquerroy S, Janin J. Protein-protein recognition analyzed by docking simulation [J]. Proteins:Struct, Funct, Bioinf,1991,11(4):271-280.
    [51]Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Af lalo C, Vakser IA. Molecular surface recognition:determination of geometric fit between proteins and their ligands by correlation techniques [J]. Proc Natl Acad Sci U S A,1992,89(6):2195-2199.
    [52]Gabb HA, Jackson RM, Sternberg MJE. Modelling protein docking using shape complementarity, electrostatics and biochemical information [J]. J Mol Biol 1997,272(1):106-120.
    [53]Mandell JG, Roberts VA, Pique ME, Kotlovyi V, Mitchell JC, Nelson E, et al. Protein docking using continuum electrostatics and geometric fit [J]. Protein Eng 2001,14(2):105-113.
    [54]Chen R, Li L, Weng Z. ZDOCK:An initial-stage protein-docking algorithm [J]. Proteins: Struct, Funct, Bioinf,2003,52(1):80-87.
    [55]Ritchie DW, Kemp GJL. Protein docking using spherical polar Fourier correlations [J]. Proteins:Struct, Funct, Bioinf,2000,39(2):178-194.
    [56]Gray JJ, Moughon S, Wang C, Schueler-Furman 0, Kuhlman B, Rohl CA, et al. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations [J]. J Mol Biol 2003,331(1):281-299.
    [57]Wang C, Schueler-Furman 0, Baker D.Impreved side-chain modeling for protein-protein docking [J]. Protein Sci 2005,14(5):1328-1339.
    [58]Schneidman-Duhovny D, Inbar Y, Polak V, Shatsky M, Halperin I, Benyamini H, et al. Taking geometry to its edge:Fast unbound rigid (and hinge-bent) docking [J]. Proteins: Struct, Funct, Bioinf,2003,52(1):107-112.
    [59]Ehrlich LP, Nilges M, Wade RC. The impact of protein flexibility on protein-protein docking [J]. Proteins,2005,58(1):126-133.
    [60]Andrusier N, Mashiach E, Nussinov R, Wolfson HJ. Principles of flexi ble protein-protein docking [J]. Proteins,2008,73(2):271-289.
    [61]Wang C, Bradley P, Baker D. Protein-protein docking with backbone flexibility [J]. J Mol Biol 2007,373(2):503-519.
    [62]Dominguez C, Boelens R, Bonvin AM. HADDOCK:a protein-protein docking approach based on biochemical or biophysical information [J]. J Am Chem Soc 2003,125(7):1731-1737.
    [63]Mendez R, Leplae R, Lensink MF, Wodak SJ. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures [J]. Proteins:Struct, Funct, Bioinf, 2005,60(2):150-169.
    [64]Kuhlman B, Baker D. Native protein sequences are close to optimal for their structures [J]. Proc Natl Acad Sci U S A,2000,97(19):10383-10388.
    [65]Dunbrack RL, Cohen FE. Bayesian statistical analysis of protein side-chain rotamer preferences [J]. Protein Sci 1997,6(8):1661-1681.
    [66]Lazaridis T, Karplus M. Effective energy function for proteins in solution [J]. Proteins:Struct, Funct, Bioinf,1999,35(2):133-152.
    [67]Kortemme T, Morozov AV, Baker D. An Orientation-dependent Hydrogen Bonding Potential Improves Prediction of Specificity and Structure for Proteins and Protein-Protein Complexes [J]. J Mol Biol 2003,326(4):1239-1259.
    [68]Koehl P, Delarue M. Polar and nonpolar atomic environments in the protein core: Implications for folding and binding [J]. Proteins:Struct, Funct, Bioinf, 1994,20(3):264-278.
    [69]van Dijk AD, de Vries SJ, Dominguez C, Chen H, Zhou HX, Bonvin AM. Data-driven docking: HADDOCK'S adventures in CAPRI [J]. Proteins,2005,60(2):232-238.
    [70]Ofran Y, Rost B. Predicted protein-protein interaction sites from local sequence information [J]. FEBS Lett 2003,544(1-3):236-239.
    [71]Zhou H-X, Shan Y. Prediction of protein interaction sites from sequence profile and residue neighbor list [J]. Proteins:Struct, Funct, Bioinf,2001,44(3):336-343.
    [72]kic M, Tomic S, Vlahovicek K. Prediction of Protein-Protein Interaction Sites in Sequences and 3D Structures by Random Forests [J]. PLoS Comput Biol,2009,5(1):e1000278.
    [73]Fariselli P, Pazos F, Valencia A, Casadio R. Prediction of protein-protein interaction sites in heterocomplexes with neural networks [J]. Eur J Biochem 2002,269(5):1356-1361.
    [74]Lise S, Buchan D, Pontil M, Jones DT. Predictions of Hot Spot Residues at Protein-Protein Interfaces Using Support Vector Machines [J]. PLoS ONE,2011,6(2):e16774.
    [75]Luque I, Leavitt SA, Freire E. THE LINKAGE BETWEEN PROTEIN FOLDING AND FUNCTIONAL COOPERATIVITY:Two Sides of the Same Coin? [J]. Annu Rev Biophys Biomol Struct 2002,31(1):235-256.
    [76]Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, Russ WP, et al. Surface sites for engineering allosteric control in proteins [J]. Science,2008 Oct.17,322(5900):438-442.
    [77]McClendon CL, Friedland G, Mobley DL, Amirkhani H, Jacobson MP. Quantifying correlations between allosteric sites in thermodynamic ensembles [J]. J Chem Theory Comput 2009,5 (9):2486-2502.
    [78]Killian BJ, Yundenfreund Kravitz J, Gilson MK. Extraction of configurational entropy from molecular simulations via an expansion approximation [J]. J Chem Phys 2007,127(2):024107.
    [79]Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information:detecting and evaluating dependencies between variables [J]. Bio informatics,2002,18 Suppl 2:S231-240.
    [80]Grassberger P. Finite sample corrections to entropy and dimension estimates [J]. Phys Lett A 1988,128(6-7):369-373.
    [81]Vajda S, Kozakov D. Convergence and combination of methods in protein-protein docking [J]. Curr Opin Struct Biol 2009 Apr,19(2):164-170.
    [82]Qin S, Zhou HX. A holistic approach to protein docking [J]. Proteins, 2007,69(4):743-749.
    [83]Fischer EH, Krebs EG. Relationship of structure to function of muscle phosphorylase [J]. Fed Proc,1966,25(5):1511-1520.
    [84]Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome [J]. Science,2002,298(5600)=1912-1934.
    [85]Matthews DJ, Gerritsen ME. Targeting protein kinases for cancer therapy [M]. Wiley 2011.
    [86]Lahiry P, Torkamani A, Schork NJ, Hegele RA. Kinase mutations in human disease: interpreting genotype-phenotype relationships [J]. Nat Rev Genet 2010,11(1):60-74.
    [87]Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer [J]. Nature,2002,417(6892):949-954.
    [88]Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene [J]. Nature, 2008,455 (7215):930-935.
    [89]John Yuan W, Keith WM, Kenichi N, Sara W. Recent advances of MEK inhibitors and their clinical progress [J]. Curr Top Med Chem 2007,7(14):1364-1378.
    [90]Morgan DO. Cyclin-dependent kinases:engines, clocks, and microprocessors [J]. Annu Rev Cell Dev Biol 1997,13:261-291.
    [91]Fu J, Bian M, Jiang Q, Zhang C. Roles of Aurora kinases in mitosis and tumorigenesis [J]. Mol Cancer Res,2007,5(1):1-10.
    [92]Kerbel RS. Tumor Angiogenesis [J]. N Engl J Med,2008,358(19):2039-2049.
    [93]Fedorov 0, Muller S, Knapp S. The (un) targeted cancer kinome [J]. Nat Chem Biol 2010,6 (3):166-169.
    [94]Knighton DR, Zheng JH, Ten Eyck LF, Xuong NH, Taylor SS, Sowadski JM. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase [J]. Science,1991,253(5018):414-420.
    [95]Hubbard SR, Wei L, Ellis L, Hendrickson WA. Crystal structure of the tyrosine kinase domain of the human insulin receptor [J]. Nature,1994,372(6508):746-754.
    [96]Huse M, Kuriyan J. The conformational plasticity of protein kinases [J]. Cell, 2002,109(3):275-282.
    [97]Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes [J]. Nature,2007,446(7132):153-158.
    [98]Bossemeyer D, Engh RA, Kinzel V, Ponstingl H, Huber R. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI (5-24) [J]. EMBO J 1993,12(3):849-859.
    [99]Shan Y, Seeliger MA, Eastwood MP, Frank F, Xu H, Jensen M0, et al. A conserved protonation-dependent switch controls drug binding in the Abl kinase [J]. Proc Natl Acad Sci U S A,2009,106(1):139-144.
    [100]Hubbard SR. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog [J]. EMBO J 1997,16(18)-.5572-5581.
    [101]Chen H, Ma J, Li W, Eliseenkova AV, Xu C, Neubert TA, et al. A molecular brake in the kinase hinge region regulates the activity of receptor tyrosine kinases [J]. Mol Cell,2007,27(5):717-730.
    [102]Chen L, Jiao Z-H, Zheng L-S, Zhang Y-Y, Xie S-T, Wang Z-X, et al. Structural insight into the autoinhibition mechanism of AMP-activated protein kinase [J]. Nature, 2009,459 (7250):1146-1149.
    [103]Johnson LN, Noble MEM, Owen DJ. Active and Inactive Protein Kinases:Structural Basis for Regulation [J]. Cell,1996,85(2):149-158.
    [104]Hubbard SR, Mohammadi M, Schlessinger J. Autoregulatory mechanisms in protein-tyrosine kinases [J]. J Biol Chem 1998,273(20):11987-11990.
    [105]Jacobs MD, Caron PR, Hare BJ. Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations:structure of lck/imatinib complex [J]. Proteins,2008,70(4):1451-1460.
    [106]Brooijmans N, Chang YW, Mobilio D, Denny RA, Humblet C. An enriched structural kinase database to enable kinome-wide structure-based analyses and drug discovery [J]. Protein Sci 2010,19(4):763-774.
    [107]Berteotti A, Cavalli A, Branduardi D, Gervasio FL, Recanatini M, Parrinello M. Protein conformational transitions:the closure mechanism of a kinase explored by atomistic simulations [J]. J Am Chem Soc 2009,131(1):244-250.
    [108]Shan Y, Arkhipov A, Kim ET, Pan AC, Shaw DE. Transitions to catalytically inactive conformations in EGFR kinase [J]. Proc Natl Acad Sci U S A,2013:1-6.
    [109]Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, et al. Murine leukemia virus-induced T-cell lymphomagenesis:integration of proviruses in a distinct chromosomal region [J]. Cell,1984,37(1):141-150.
    [110]Mikkers H, Allen J, Knipscheer P, Romeyn L, Hart A, Vink E, et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer [J]. Nat Genet 2002,32(1):153-159.
    [111]Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, et al. Delineation of prognostic biomarkers in prostate cancer [J]. Nature, 2001,412(6849):822-826.
    [112]van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, et al. Predisposition to lymphomagenesis in pim-1 transgenic mice:Cooperation with c-myc and N-myc in murine leukemia virus-induced tumors [J]. Cell,1989,56(4):673-682.
    [113]Alvarado Y, Giles FJ, Swords RT. The PIM kinases in hematological cancers [J]. Expert Rev Hematol,2012,5(1):81-96.
    [114]Schenone S, Tintori C, Botta M. Using insights into Piml structure to design new anticancer drugs [J]. Curr Pharm Des,2010,16(35):3964-3978.
    [115]Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, et al. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase [J]. J Biol Chem 2005,280(7):6130-6137.
    [116]Kumar A, Mandiyan V, Suzuki Y, Zhang C, Rice J, Tsai J, et al. Crystal Structures of Proto-oncogene Kinase Piml:A Target of Aberrant Somatic Hyper mutations in Diffuse Large Cell Lymphoma [J]. J Mol Biol 2005,348(1):183-193.
    [117]Morwick T. Pim kinase inhibitors:a survey of the patent literature [J]. Expert Opin Ther Pat,2010,20(2):193-212.
    [118]Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors [J]. Nat Rev Cancer 2009,9(1):28-39.
    [119]Nagar B, Hantschel O, Young MA, Schef fzek K, Veach D, Bornmann W, et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase [J]. Cell,2003,112(6):859-871.
    [120]Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor [J]. J Biol Chem 2002,277 (48):46265-46272.
    [121]Manley PW, Cowan-Jacob SW, Mestan J. Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia [J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2005,1754(1-2):3-13.
    [122]Kufareva I, Abagyan R. Type-Ⅱ kinase inhibitor docking, screening, and prof iling using modified structures of active kinase states [J]. J Med Chem 2008,51(24):7921-7932.
    [123]Xu M, Yu L, Wan B, Yu L, Huang Q. Predicting Inactive Conformations of Protein Kinases Using Active Structures:Conformational Selection of Type-Ⅱ Inhibitors [J]. PLoS ONE,2011,6(7):e22644.
    [124]Zhang J, Adrian FJ, Jahnke W, Cowan-Jacob SW, Li AG, Iacob RE, et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors [J]. Nature, 2010,463 (7280):501-506.
    [125]Adrian FJ, Ding Q, Sim T, Velentza A, Sloan C, Liu Y, et al. Allosteric inhibitors of Bcr-abl-dependent cell proliferation [J]. Nat Chem Biol 2006,2(2):95-102.
    [126]Cohen MS, Zhang C, Shokat KM, Taunton J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors [J]. Science,2005,308(5726):1318-1321.
    [127]Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage Sara J, Jones Lyn H, et al. Developing Irreversible Inhibitors of the Protein Kinase Cysteinome [J]. Chemistry & Biology, 2013,20(2):146-159.
    [128]Minkovsky N, Berezov A. BIBW-2992, a dual receptor tyrosine kinase inhibitor for the treatment of solid tumors [J]. Curr Opin Investig Drugs,2008,9(12):1336-1346.
    [129]Eskens FA, Mom CH, Planting AS, Gietema JA, Amelsberg A, Huisman H, et al. A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on,2-week off schedule in patients with advanced solid tumours [J]. Br J Cancer,2008,980):80-85.
    [130]Thaimattam R, Baner jee R, Miglani R, Iqbal J. Protein Kinase Inhibitors:Structural Insights Into Selectivity. [J]. Curr Pharm Des,2007,13(27):2751-2765.
    [131]Levitzki A. Tyrosine Kinase Inhibitors:Views of Selectivity, Sensitivity, and Clinical Performance [J]. Annu Rev Pharmacol Toxicol 2013,53(1):161-185.
    [132]Morphy R. Selectively Nonselective Kinase Inhibition:Striking the Right Balance [J]. J Med Chem 2009,53(4):1413-1437.
    [133]Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis [J]. Cancer Res, 2004,64(19):7099-7109.
    [134]Goldstein DM, Gray NS, ZarrinkarPP. High-throughput kinase profiling as a platform for drug discovery [J]. Nat Rev Drug Discov,2008,7(5):391-397.
    [135]Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity [J]. Nat Biotechnol 2011,29(11):1046-1051.
    [136]Anastassiadis T, Deacon SW, Devarajan K, Ma H, Peterson JR. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity [J]. Nat Biotechnol 2011,29(11):1039-1045.
    [137]Sheinerman FB, Giraud E, Laoui A. High Affinity Targets of Protein Kinase Inhibitors Have Similar Residues at the Positions Energetically Important for Binding [J]. J Mol Biol 2005,352(5):1134-1156.
    [138]Subramanian G, Sud M. Computational Modeling of Kinase Inhibitor Selectivity [J]. ACS Med Chem Lett,2010,1(8):395-399.
    [139]Brylinski M, Skolnick J. Comprehensive Structural and Functional Characterization of the Human Kinome by Protein Structure Modeling and Ligand Virtual Screening [J]. J Chem Inf Model 2010,50(10):1839-1854.
    [140]Brylinski M, Skolnick J. Cross-Reactivity Virtual Profiling of the Human Kinome by X-React KIN:A Chemical Systems Biology Approach [J]. Mol Pharmaceutics, 2010,7 (6):2324-2333.
    [141]Rockey WM, Elcock AH. Rapid computational identification of the targets of protein kinase inhibitors [J]. J Med Chem 2005,48(12):4138-4152.
    [142]Martin L, Catherinot V, Labesse G. kinDOCK:a tool for comparative docking of protein kinase ligands [J]. Nucleic Acids Res 2006,34:W325-W329.
    [143]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool [J]. J Mol Biol 1990,215(3):403-410.
    [144]Kelley LA, Gardner SP, Sutcliffe MJ. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies [J]. Protein Eng 1996,9 (11):1063-1065.
    [145]Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis [J]. J Comput Chem 2004,25(13):1605-1612.
    [146]Wehenkel A, Fernandez P, Bellinzoni M, Catherinot V, Barilone N, Labesse G, et al. The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria [J]. FEBS Lett 2006,580 (13):3018-3022.
    [147]Jacobson MP, Kaminski GA, Friesner RA, Rapp CS. Force field validation using protein side chain prediction [J]. J Phys Chem 2002,106(44):11673-11680.
    [148]Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides [J]. J Phys Chem B 2001,105(28):6474-6487.
    [149]Ghosh A, Rapp CS, Friesner RA. Generalized Born Model Based on a Surface Integral Formulation [J]. J Phys Chem B 1998,102(52):10983-10990.
    [150]Gallicchio E, Zhang LY, Levy RM. The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators [J]. J Comput Chem 2002,23(5):517-529.
    [151]Zhu K, Shirts MR, Friesner RA. Improved Methods for Side Chain and Loop Predictions via the Protein Local Optimization Program:Variable Dielectric Model for Implicitly Improving the Treatment of Polarization Effects [J]. J Chem Theory Comput 2007,3(6):2108-2119.
    [152]Huang N, Kalyanaraman C, Bernacki K, Jacobson MP. Molecular mechanics methods for predicting protein-ligand binding [J]. Phys Chem Chem Phys 2006,8(44):5166-5177.
    [153]Huang N, Jacobson MP. Binding-site assessment by virtual fragment screening [J]. PLoS One,2010,5(4):e10109.
    [154]Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Sinmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters [J]. Proteins,2006,65(3):712-725.
    [155]Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field [J]. J Comput Chem 2004,25(9):1157-1174.
    [156]Jakalian A, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model:II. Parameterization and validation [J]. J Comput Chem 2002,23(16):1623-1641.
    [157]Jakalian A, Bush BL, Jack DB, Bayly CI. Fast, efficient generation of high-quality atomic charges. AM1-BCC model:I. Method [J]. J Comput Chem 2000,21 (2):132-146.
    [158]Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking [J]. J Med Chem 2006,49(23):6789-6801.
    [159]Pearlman DA, Charifson PS. Are Free Energy Calculations Useful in Practice? A Comparison with Rapid Scoring Functions for the p38 MAP Kinase Protein System [J]. J Med Chem 2001,44(21):3417-3423.
    [160]Powles TJ. Evolving clinical strategies:innovative approaches to the use of mitoxantrone—introduction [J]. Eur J Cancer Care,2008,6:1-3.
    [161]Harris KA, Reese DM. Treatment options in hormone-refractory prostate cancer: current and future approaches [J]. Drugs,2001,61(15):2177-2192.
    [162]Rigacci L, Carpaneto A, Alterini R, Carrai V, Bernardi F, Bellesi G, et al. Treatment of large cell lymphoma in elderly patients with a mitoxantrone, cyclophosphamide, etoposide, and prednisone regimen:long-term follow-up results [J]. Cancer, 2003,97(1):97-104.
    [163]Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, et al. Effect of mi toxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3):an open-label randomised trial [J]. Lancet,2010,376(9757).
    [164]Bhalla K, Ibrado AM, Tourkina E, Tang C, Grant S, Bullock G, et al. High-dose mitoxantrone induces programmed cell death or apoptosis in human myeloid leukemia cells [J]. Blood,1993,82(10):3133-3140.
    [165]Bellosillo B, Colomer D, Pons G, Gil J. Mitoxantrone, a topoisomerase Ⅱ inhibitor, induces apoptosis of B-chronic lymphocytic leukaemia cells [J]. Br J Haematol, 1998,100(1):142-146.
    [166]Fry DW. Biochemical pharmacology of anthracenediones and anthrapyrazoles [J]. Pharmacol Ther,1991,52(1):109-125.
    [167]Capranico G, De Isabella P, Tinelli S, Bigioni M, Zunino F. Similar sequence specificity of mitoxantrone and VM-26 stimulation of in vitro DNA cleavage by mammalian DNA topoisomerase II [J]. Biochemistry,1993,32(12):3038-3046.
    [168]Erijman A, Dantes A, Bernheim R, Shifman JM, Peleg Y. Transfer-PCR (TPCR):a highway for DNA cloning and protein engineering [J]. J Struct Biol 2011,175(2):171-177.
    [169]Qian KC, Studts J, Wang L, Barringer K, Kronkaitis A, Peng C, et al. Expression, purification, crystallization and preliminary crystallographic analysis of human Pim-1 kinase [J]. Acta Crystallogr, Sect F:Struct Biol Cryst Commun,2005,61(1):96-99.
    [170]Emsley P, Cowtan K. Coot:model-building tools for molecular graphics [J]. Acta Crystallographica Section D,2004,60(12 Part 1):2126-2132.
    [171]Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method [J]. Acta Crystallogr, Sect D:Biol Crystallogr,1997,53(Pt 3):240-255.
    [172]DeLano WL. The PyMOL Molecular Graphics System DeLano Scientific, San Carlos, CA, USA [J]. Computer Program,2002.
    [173]Kutach AK, Villasenor AG, Lam D, Belunis C, Janson C, Lok S, et al. Crystal Structures of IL-2-inducible T cell Kinase Complexed with Inhibitors:Insights into Rational Drug Design and Activity Regulation [J]. Chem Biol Drug Des 2010,76(2):154-163.
    [174]Gajiwala KS, Wu JC, Christensen J, Deshmukh GD, Diehl W, DiNitto JP, et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients [J]. Proc Natl Acad Sci U S A, 2009,106(5):1542-1547.
    [175]Vogtherr M, Saxena K, Hoelder S, Grimme S, Betz M, Schieborr U, et al. NMR characterization of kinase p38 dynamics in free and ligand-bound forms [J]. Angew Chem, Int Ed 2006,45 (6):993-997.
    [176]Totrov M, Abagyan R. Flexible ligand docking to multiple receptor conformations: a practical alternative [J]. Curr Opin Struct Biol 2008,18(2):178-184.
    [177]Bullock AN, Debreczeni J, Amos AL, Knapp S, Turk BE. Structure and substrate specificity of the Pim-1 kinase [J]. J Biol Chem 2005,280(50):41675-41682.
    [178]Peng C, Knebel A, Morrice NA,'Li X, Barringer K, Li J, et al. Pim kinase substrate identification and specificity [J]. J Biochem 2007,141(3):353-362.
    [179]Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site [J]. FEBS Lett 2004,571(1-3):43-49.
    [180]Pogacic V, Bullock AN, Fedorov 0, Filippakopoulos P, Gasser C, Biondi A, et al. Structural Analysis Identifies Imidazo[1,2-b]Pyridazines as PIM Kinase Inhibitors with In vitro Antileukemic Activity [J]. Cancer Res,2007,67(14).
    [181]Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A. The human protooncogene product p33pijm is expressed during fetal hematopoiesis and in diverse leukemias [J]. Proc Natl Acad Sci U S A,1989,86(22):8857-8861.
    [182]Cibull TL,Jones TD, Li L, Eble JN, Ann Baldridge L, Malott SR, et al. Overexpression of Pim-1 during progression of prostatic adenocarcinoma [J]. J Clin Pathol, 2006,59(3):285-288.
    [183]Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells [J]. Blood, 2009,114(19):4150-4157.
    [184]Nawijn MC, Alendar A, Berns A. For better or for worse:the role of Pim oncogenes in tumorigenesis [J]. Nat Rev Cancer 2011,11(1):23-34.
    [185]Chen LS, Redkar S, Taverna P, Cortes JE, Gandhi V. Mechanisms of cytotoxicity to Pim kinase inhibitor, SGI-1776, in acute myeloid leukemia [J]. Blood,2011,118(3):693-702.
    [186]Fathi AT, Arowojolu 0, Swinnen I, Sato T, Rajkhowa T, Small D, et al. A potential therapeutic target for FLT3-ITD AML:PIM1 kinase [J]. Leuk Res,2012,36(2):224-231.
    [187]Sundman-Engberg B, Tidefelt U, Gruber A, Paul C. Intracellular concentrations of mitoxantrone in leukemic cells in vitro vs in vivo [J]. Leuk Res,1993,17(4):347-352.
    [188]John Robinson, Jed Pheneger, Lee Patrice, Dale Wright, Suzy Brown, Francis Sullivan, et al. A Dual PIM 1/3 Kinase Inhibitor Demonstrates Efficacy in Murine Models of Lupus and Multiple Sclerosis [J]. J Immunol,2012,188,199.9.
    [189]Raju TN. The Nobel chronicles.1988:James Whyte Black, (b 1924), Gertrude Elion (1918-99), and George H Hitchings (1905-98) [J]. Lancet,2000,355(9208):1022.
    [190]Gotoh N, Tojo A, Hino M, Yazaki Y, Shibuya M. A highly conserved tyrosine residue at codon 845 within the kinase domain is not required for the transforming activity of human epidermal growth factor receptor [J]. Biochem Biophys Res Commun 1992,186(2):768-774.
    [191]Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor [J]. Cell, 2006,125(6):1137-1149.
    [192]Monsey J, Shen W, Schlesinger P, Bose R. Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system [J]. J Biol Chem 2010,285(10):7035-7044.
    [193]Jura N, Shan Y, Cao X, Shaw DE, Kuriyan J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3 [J]. Proc Natl Acad Sci U S A,2009.
    [194]Pellicena P, Kuriyan J. Protein-protein interactions in the allosteric regulation of protein kinases [J]. Curr Opin Struct Biol 2006,16(6):702-709.
    [195]Dar AC, Dever TE, Sicheri F. Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR [J]. Cell,2005,122(6):887-900.
    [196]Gay LM, Ng HL, Alber T. A conserved dimer and global conformational changes in the structure of apo-PknE Ser/Thr protein kinase from Mycobacterium tuberculosis [J]. J Mol Biol 2006,360 (2):409-420.
    [197]Young TA, Delagoutte B, Endrizzi JA, Falick AM, Alber T. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases [J]. Nat Struct Biol 2003,10(3):168-174.
    [198]Khokhlatchev AV, Canagarajah B. Wilsbacher J, Kobinson M, Atkinson M, Goldsmith E, et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation [J]. Cell,1998,93(4):605-615.
    [199]Bae JH, Schlessinger J. Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases [J]. Mol Cells,2010,29(5):443-448.
    [200]Bahadur RP, Chakrabarti P, Rodier F, Janin J. A dissection of specific and non-specific protein-protein interfaces [J]. J Mol Biol 2004,336(4):943-955.
    [201]Endicott JA, Noble MEM, Johnson LN. The Structural Basis for Control of Eukaryotic Protein Kinases [J]. Annu Rev Biochem 2012,81(1):587-613.
    [202]Sicheri F, Moarefi I, Kuriyan J. Crystal structure of the Src family tyrosine kinase Hck [J]. Nature,1997,385(6617):602-609.
    [203]Xu W, Harrison SC, Eck MJ. Three-dimensional structure of the tyrosine kinase c-Src [J]. Nature,1997,385(6617):595-602.
    [204]Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex [J]. Nature, 1995,376(6538):313-320.
    [205]Zeqiraj E, van Aalten DM. Pseudokinases-remnants of evolution or key allosteric regulators? [J]. Curr Opin Struct Biol 2010,20(6):772-781.
    [206]Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM. Structure of the LKB1-STRAD-M025 Complex Reveals an Allosteric Mechanism of Kinase Activation [J]. Science, 2009,326(5960):1707-1711.
    [207]Shi F, Telesco SE, Liu Y, Radhakrishnan R, Lemmon MA. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation [J]. Proc Natl Acad Sci USA,2010,107(17):7692-7697.
    [208]Min X, Lee BH, Cobb MH, Goldsmith EJ. Crystal structure of the kinase domain of WNK1, a kinase that causes a hereditary form of hypertension [J]. Structure, 2004,12(7):1303-1311.
    [209]Zhang H, Photiou A, Grothey A, Stebbing J, Giamas G. The role of pseudokinases in cancer [J]. Cell Signalling 2012,24(6):1173-1184.
    [210]Laurence A, Pesu M, Silvennoinen O,O' Shea J. JAK kinases in health and disease: an update [J]. Open Rheumatol J,2012,6:232-244.
    [211]Darnell JE, Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins [J]. Science, 1994,264 (5164):1415-1421.
    [212]Ward AC, Touw I, Yoshimura A. The Jak-Stat pathway in normal and perturbed hematopoiesis [J]. Blood,2000,95(1):19-29.
    [213]Ihle JN, Gilliland DG. Jak2:normal function and role in hematopoietic disorders [J]. Curr Opin Genet Dev,2007 Feb,17(1):8-14.
    [214]Levine RL. JAK-mutant myeloproliferative neoplasms [J]. Curr Top Microbiol Immunol, 2012,355:119-133.
    [215]Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies [J]. Nat Med 2012,18(3):382-384.
    [216]Hedvat M, Huszar D, Herrmann A, Gozgit JM, Schroeder A, Sheehy A, et al. The JAK2 inhibitor AZD1480 potently blocks stat3 signaling and oncogenesis in solid tumors [J]. Cancer Cell,2009,16(6):487-497.
    [217]Hoefsloot LH, van Amelsvoort MP, Broeders LCAM, van der Plas DC, van Lom K, Hoogerbrugge H, et al. Erythropoietin-Induced Activation of STAT5 Is Impaired in the Myelodysplastic Syndrome [J]. Blood,1997,89(5):1690-1700.
    [218]Mesa RA, Yasothan U, Kirkpatrick P. Ruxolitinib [J]. Nat Rev Drug Discov, 2012,11 (2):103-104.
    [219]Zhao L, Ma Y, Seemann J, Huang LJ. A regulating role of the JAK2 FERM domain in hyperactivation of JAK2(V617F) [J]. Biochem J 2010,426(1):91-98.
    [220]Lucet IS, Fantino E, Styles M, Bamert R, Patel 0, Broughton SE, et al. The structural basis of Janus kinase 2 inhibition by a potent and specific pan-Janus kinase inhibitor [J]. Blood,2006,107(1):176-183.
    [221]Saharinen P, Takaluoma K, Silvennoinen 0. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain [J]. Mol Cell Biol 2000,20(10):3387-3395.
    [222]Saharinen P, Silvennoinen 0. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction [J]. J Biol Chem 2002,277(49):47954-47963.
    [223]Saharinen P, Vihinen M, Silvennoinen 0. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain [J]. Mol Biol Cell, 2003,14(4)-.1448-1459.
    [224]Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, et al. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling [J]. Nat Struct Mol Biol 2011,18(9):971-976.
    [225]Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders [J]. Nat Rev Cancer 2007,7(9):673-683.
    [226]Zhao L, Dong H, Zhang CC, Kinch L, Osawa M, Iacovino M, et al. A JAK2 interdomain linker relays Epo receptor engagement signals to kinase activation [J]. J Biol Chem 2009,284(39):26988-26998.
    [227]Tsuchiya Y, Nakamura H, Kinoshita K. Discrimination between biological interfaces and crystal-packing contacts [J]. Adv Appl Bioinf Chem,2008,1:99-113.
    [228]Dey M, Cao C, Dar AC, Tamura T, Ozato K, Sicheri F, et al. Mechanistic link between PKR dimerization, autophosphorylation, and eIF2a substrate recognition [J]. Cell, 2005,122(6):901-913.
    [229]Mohammadi M, Schlessinger J, Hubbard SR. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism [J]. Cell,1996,86(4):577-587.
    [230]Lindauer K, Loerting T, Liedl KR, Kroemer RT. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation [J]. Protein Eng 2001,14(1):27-37.
    [231]Giordanetto F, Kroemer RT. Prediction of the structure of human Janus kinase 2 (JAK2) comprising JAK homology domains 1 through 7 [J]. Protein Eng 2002,15(9):727-737.
    [232]Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense [J]. Blood,2005,105(11):4187-4190.
    [233]Lee TS, Ma W, Zhang X, Giles F, Kantarjian H, Albitar M. Mechanisms of constitutive activation of Janus kinase 2-V617F revealed at the atomic level through molecular dynamics simulations [J]. Cancer,2009,115(8):1692-1700.
    [234]Gnanasambandan K, Magis A, Sayeski PP. The constitutive activation of Jak2-V617F is mediated by a π stacking mechanism involving phenylalanines 595 and 617 [J]. Biochemistry,2010,49(46):9972-9984.
    [235]Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN. JAK2 V617F constitutive activation requires JH2 residue F595:a pseudokinase domain target for specific inhibitors [J]. PLoS One,2010,5(6):e11157.
    [236]Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0 [J].2007,23:2947-2948.
    [237]Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes [J]. Annu Rev Biophys Biomol Struct 2000,29:291-325.
    [238]Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-y, et al. Comparative protein structure modeling using MODELLER [M]. John Wiley & Sons, Inc.2001.
    [239]Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK:a program to check the stereochemical quality of protein structures [J]. J Appl Crystallogr 1993,26(2):283-291.
    [240]Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak J. Molecular dynamics with coupling to an external bath [J]. J Chem Phys 1984,81:3684-3690.
    [241]Fruchterman TMJ, Reingold EM. Graph drawing by force-directed placement [J]. Software-Practice and Experience,1991,21(11):1129-1164.
    [242]Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth [J]. Nature,2010,464(7287):431-435.
    [243]Kelley LA, Gardner SP, Sutcliffe MJ. An automated approach for defining core atoms and domains in an ensemble of NMR-derived protein structures [J]. Protein Eng 1997,10(6):737-741.
    [244]Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water [J]. J Chem Phys 1983,79:926-935.
    [245]Jensen KP, Jorgensen WL. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions [J]. J Chem Theory Comput 2006,2(6):1499-1509.
    [246]Darden T, York D, Pedersen L. Particle mesh Ewald:An N · log (N) method for Ewald sums in large systems [J]. J Chem Phys 1993,98:10089.
    [247]Krautler V, van Gunsteren WF, HUnenberger PH. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations [J]. J Comput Chem 2001,22(5):501-508.
    [248]Sanner MF, Olson AJ, Spehner JC. Reduced surface:an efficient way to compute molecular surfaces [J]. Biopolymers,1996,38(3):305-320.
    [249]Tina KG, Bhadra R, Srinivasan N. PIC:protein interactions calculator [J]. Nucleic Acids Res 2007,35(Web Server issue):W473-W476.
    [250]Li X, Jacobson MP, Friesner RA. High-resolution prediction of protein helix positions and orientations [J]. Proteins,2004,55(2):368-382.
    [251]Kortemme T, Baker D. A simple physical model for binding energy hot spots in protein-protein complexes [J]. Proc Natl Acad Sci U S A,2002,99(22):14116-14121.
    [252]Kortemme T, Kim DE, Baker D. Computat ional alanine scanning of protein-protein interfaces [J]. Sci STKE,2004 Feb 10(219):p12.
    [253]Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server [J]. Nucleic Acids Res 2004,32(suppl 2):W526-W531.
    [254]Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, et al. ConSurf: Identification of Functional Regions in Proteins by Surface-Mapping of Phylogenetic Information [J]. Bio informatics,2003,19(1):163-164.
    [255]Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, et al. ConSurf 2005: the pro jection of evolutionary conservation scores of residues on protein structures [J]. Nucleic Acids Res 2005,33(suppl 2):W299-W302.
    [256]Bulut GB, Sulahian R, Ma Y, Chi N-w, Huang LJ-s. Ubiquitination Regulates the Internalization, Endolysosomal Sorting, and Signaling of the Erythropoietin Receptor [J]. J Biol Chem 2011,286(8):6449-6457.
    [257]Burley SK, Petsko GA. Aromatic-aromatic interaction:a mechanism of protein structure stabilization [J]. Science,1985,229(4708):23-28.
    [258]Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F [J]. Nat Struct Mol Biol 2012,19(8):754-759.
    [259]Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, et al. A hierarchical approach to all-atom protein loop prediction [J]. Proteins,2004,55(2):351-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700