过热蒸汽处理柞木性质变化规律及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温热处理优点是提高木材尺寸稳定性和耐久性能,但是也会导致木材力学强度降低、重量减轻以及木材颜色变化等。如何平衡热处理木材尺寸稳定性的提高与力学强度下降、重量损失以及颜色变化的关系;根据热处理材木制品(如地热地板用热处理材)最终要求来选择和优化热处理工艺,是木材高温热处理研究和加工企业急需解决的问题。因此,掌握热处理材性质变化规律与性质间相互关系,应用多种分析手段揭示热处理材尺寸稳定性与力学强度变化机理,对高温热处理加工工艺和推动木材热处理生产企业进步,具有重要的现实意义和理论意义。
     本文以柞木(Quercus mongolica)木材为研究对象,传热介质为过热水蒸汽,考察了热处理温度、时间、氧气浓度和窑内压力4个因子对热处理材性质影响规律以及室内抗白蚁性能,应用运筹学中非线性回归模型优化热处理材用于地热地板的高温热处理工艺,并结合利用扫描电镜、气相色谱、X-射线衍射仪与纳米压痕等技术手段揭示热处理材尺寸稳定性与力学强度变化机理。
     本文主要结论如下:
     1)建立了热处理温度、氧气浓度和热处理窑内过热水蒸汽压力等3个因子与热处理材抗弯弹性模量(MOE)、抗弯强度(MOR)、径向抗膨胀系数(Anti-swelling efficiency inradial direction: ASE-R)、宽度方向耐湿尺寸稳定性(Anti-humidity efficiency in width:AHE)、平衡含水率(EMC)和颜色变化(△E*)等6项性质的相互关系。其中:温度与MOE呈三次多项式关系,与MOR、ASE-R、AHE、EMC和△E*为线性关系;氧气浓度与以上6项性质呈二次三项式关系;窑内蒸汽压力和时间与上述6项性质呈线性关系。
     2)根据影响因子与热处理材性质的相互关系,建立了6项热处理性质与4个因子的非线性回归函数,根据木质地热地板标准要求以及4个影响因子的界定,通过运筹学中的非线性规划求解,获得优化热处理工艺:在常压下进行热处理,处理温度195℃、氧气浓度8.0%和处理时间1h,相对应求解得到的热处理材MOE、MOR、ASE-R、AHE、EMC和△E*分别为17.79GPa、80.02MPa、18.19%、0.28%、7%和16.06,与实际试验结果相近。在满足标准对AHE和EMC要求外,使处理材MOE和MOR最大,同时△E*较小。
     3)对柞木热处理而言,当温度小于180℃时,氧气浓度不能超过10%,当温度大于220℃,氧气浓度不能超过8%。
     4)与常压热处理相比,加压过热水蒸汽在热处理温度160℃和180℃时,对进一步提高尺寸稳定性有显著性影响,而在热处理温度220℃时,对进一步提高尺寸稳定性影响较小;随着处理窑中压力的增加,MOE、MOR和硬度逐渐下降。
     5)对于热处理材分层颜色与密度而言,在热处理温度160℃(180℃)与2h时,第1层的△E*与其它4层的差异不显著;而在热处理温度200℃和220℃下,第1层的△E*与其它4层的差异显著;但其它4层的△E*之间差异不显著;△E*从第1层(最外层)至第5层(中心层)逐渐降低,然而分层气干密度刚好相反。热处理材△E*与EMC、ASE-R呈二次三项式相关,与MOR呈线性关系,而与弦面硬度、径面硬度和MOE不相关。热处理材△E*预测EMC、ASE-R以及MOR较为准确。
     6)在室内抗白蚁试验中,热处理柞木木材被蛀等级为4级,为不耐抗白蚁蛀蚀。
     7)热处理柞木木材尺寸稳定性提高的原因:其一,热处理温度180℃木材半纤维素降解生成的各种糖类总量最多,可能主要是五碳糖,当热处理温度继续升高,纤维素生成少量的六碳糖类。由于木材降解,降低木材吸湿性。其二,由于纤维素非结晶区的降解,使处理材相对结晶度增加;加压热处理在密闭环境下,热处理过程中木材产生甲酸、乙酸和糖类等物质,使热处理环境为酸性,处理材的相对结晶度进一步提高。由于相对结晶度的提高,降低木材吸湿性。
     8)热处理柞木木材力学强度变化的原因:其一,晚材导管等细胞由圆形或方形经高温热处理后变为椭圆形;同时热处理材相对结晶度的增加,使得热处理温度200℃和2h的热处理材MOE较对照材的有所增加。其二,当增加热处理温度、时间延长或窑体蒸汽压力,处理后早材导管附近崩塌严重,甚至开裂,以及木材化学成分热降解,使MOR、MOE和顺纹抗压强度下降。其三,随着热处理温度升高,处理材细胞壁的纵向弹性模量呈先增加后降低趋势,与无疵小试样木材端面硬度变化趋势相同;热处理材细胞壁端面硬度大于对照材的;使热处理材表面硬度也大于对照材的。
High Temperature Heat Treatment (HTHT) on wood is one of the most well-establishedtechnologies to reduce hygroscopicity, increase dimensional stability and bio-durability ofwood. While the mechanical strength and oven density of wood are generally reduced, andcolor difference (△E*) increases during this process. It’s an urgent issue for relatedresearching academies and wood processing enterprises to seek a good balance among thosecontradictory effects induced by HTHT through selection and optimization of related processin accordance with the end-users’ demand on properties of Heat Treatment Wood (HTW).Therefore it’s of critically practical and theoretical importance for upgrading HTHT technologyand promoting the development of related wood processing enterprises to master the HTW’sproperties changing patterns and relationship amongst various properties, and to explore themechanism on dimensional stability and mechanical strength of HTW through application ofdifferent analysis tools and approaches.
     The paper studies the effect of such parameters as temperature, time, oxygenconcentration and steam pressure on the wood properties and in-laboratory termite resistanceproperty of Oak (Quercus mongolica) samples treated in an environment of superheated steam.A non-linear regressive model is established to optimize the processing technology for HTWapplied in flooring for ground with heating system. Apart from this, various testing approaches,including Scanning Electron Microscopy, Gas Chromatography, X-ray Diffraction andNano-indentation are adopted to explore the mechanism of change in dimensional stability andmechanical strength of HTW.The key conclusions are drawn as follows:
     1) The relationships between the parameters (including temperature, oxygen concentrationand steam pressure inner kiln) and the properties of THW (including the Modulus ofElasticity (MOE), Modulus of Rupture (MOR), Anti-Swelling Efficiency in Radialdirection (ASE-R), Anti-Humidity Efficiency in width (AHE), Equilibrium MoistureContent (EMC) and color difference (△E*)) are established. An cubic polynomial relationship exists between temperature and MOE, a linear one between temperature andMOR, ASE-R, AHE, EMC and△E*, a quadratic polynomial for oxygen concentration andthese six properties mentioned above, and a linear for steam pressure inner kiln and heattreatment time with these six properties.
     2) Six regression equations (temperature, oxygen concentration, steam pressure and time asfunctions of MOE, MOR, ASE-R, AHE, EMC and△E*) are developed for the estimationand a nonlinear programming model is derived with operation research theory to obtain themost desirable HTW properties under heat flooring constraints. The results indicate that amaximum MOR of80.02MPa for the HTW can be obtained when heat treated at atemperature of195℃, oxygen concentration of8%, steam pressure of0.1MPa for1h.Under these production conditions, MOE, ASE-R, AHE, EMC and△E*are17.79GPa,18.19%,0.28%,7%and16.06respectively, which meet the requirements of the standards.
     3) In the practice, when the heat treatment temperature was less than180℃, oxygenconcentration was not over10%. While the temperature was higher than200℃, theoxygen concentration was less than8%.
     4) Compared with HTW treated at atmospheric pressure, the heat treatment temperature ofless than180℃has a significant impact on improving the dimensional stability of HTW atsteam pressure of kiln, where the heat treatment temperature of larger than200℃has aslight impact on dimension stability of HTW at steam pressure of kiln. However, with anincrease in steam pressure of kiln, the MOE, MOR and surface hardness decrease.
     5) When the heat treatment temperature was less than180℃for2h, no significant differencein△E*between the first layer and other four layers was found. When the temperature washigher than200℃, there was a significant difference in△E*between the first layer andother four layers. However, there was no significant difference in△E*among the otherfour layers. The△E*value become gradually small from first to fifth layer, but the airdensity was gradually large. The linear relationship between△E*and MOR and thepolynomial relationships of△E*with EMC and ASE-R were obtained, but there was norelationship between△E*and hardness in tangential, hardness in radial and MOE. Therefore, the EMC, ASE-R and MOR can be estimated by△E*.
     6) In terms of termite (Coptotermes formosanus Shiraki) resistance of HTW in laboratory, thevisual rating of the heat treated Oak was No.4grade, the HTW did not resist termite.
     7) The reasons why the dimension stability of HTW was improved are as follows: Firstly,when treated at temperature of180℃, the hemicellulose was decomposed into varioussugars. The content of sugar reached maximum level at temperature160~220℃, mainlyE-carbon sugar. As the temperature increased to220℃, the cellulose would bedecomposed into hexose. The hygroscopicity was reduced due to decomposing. Secondly,the crystallinity of HTW increased as a result of decomposition of non-crystalline regionof cellulose. HTW in steam pressure could produce formic acid, acetic acid and sugars,which created an acid environment within kiln, the HTW would be further decomposed, sothe crystallinity was higher than the HTW in atmospheric pressure. The hygroscopicitywas reduced due to an increase in crystallinity.
     8) The reasons why the mechanical strength of HTW was changed are as follows: Firstly, theHTW could be intensified because the vessel shape of late wood converted from round orrectangular to oval after HTHT, and the crystallinity of HTW was increased, so the MOEof HTW treated at200℃for2h was higher than un-treated wood. Secondly, with anincrease in the heat treatment temperature, time and steam pressure, predominant collapseor even cracks of the early wood vessels were observed in HTW, and so the MOR, MOEand Compressive strength parallel to grain were reduced. Thirdly, as the heat treatmenttemperature increased, the longitudinal elastic modulus of HTW cell increased, and thenreduced, which followed the same changing patterns with cross-section hardness of smallclear wood. The longitudinal and cross-section hardness of HTW cell were larger thanun-treated wood.
引文
[1]雷加富.中国森林资源.北京:中国林业出版社,2005,219
    [2]中华人民共和国林业行业标准,LY/T1700-2007,地采暖用木质地板.国家林业局,北京
    [3] Windeisen E, B chle H. et al. Relations between chemical changes and mechanical properties ofthermally treated wood. Holzforschung,2009,63:773~778
    [4] Johansson D. Strength and color response of solid wood to heat treatment. Lule University ofTechnology Department of Skellefte Campus, Division of Wood Technology,2005
    [5]邓邵平,杨文斌,饶久平等.热处理对人工林杉木尺寸稳定性的影响.中国农学通报,2009,25(07):103~108
    [6]孙伟伦,李坚.高温热处理落叶松木材尺寸稳定性及结晶度分析表征.林业科学,2010,46(12):114~118
    [7] Ding T, Gu L B, Li T. Influence of steam pressure on physical and mechanical properties of heat-treatedMongolian pine lumber. Eur. J. Wood Prod.2011,69:121~126
    [8] Burmester A. Effect of heat-pressure-treatment of semi-dry wood on its dimensional stability. Holz Roh-Werkst,1973,31:237~243
    [9] Giebeler E. Dimensional stabilization of wood by moisture heat pressure treatment. Holz Roh-Werkst,1983,41:87~94
    [10] Wang J Y, Cooper P A. Effect of oil type, temperature and time on moisture properties of hot oil-treatedwood. Holz Roh-Werkst,2005,63:417~422
    [11]顾炼百,李涛,涂登云等.超高温热处理实木地板的工艺及应用.木材工业,2007,21(3):4~7
    [12] Akyildiz M H, Ates S. Effect of heat treatment on equilibrium moisture content of some wood species inTurkey. Research Journal of Agriculture and Biological Science,2008,4(6):660~665
    [13]涂登云,王明俊,顾炼百等.超高温热处理对水曲柳板材尺寸稳定性的影响.南京林业大学学报(自然科学版),2010,34(3):113~116
    [14] Cao Y J, Lu J X, Huang R F, et al. Increased dimensional stability of Chinese fir through steam-heattreatment. Eur. J. Wood Prod.2012,70(4):441~444
    [15]刘星雨.高温热处理木材的性能及分类方法探索.中国林业科学研究院硕士学位论文,2010,29~37,44~50,61~65
    [16] Pétrissans M, Gérardin P, bakal I E, et al. Wettability of heat-treated wood. Holzforschung,2003,57:301~307
    [17]杨小军.热处理对实木地板尺寸稳定性影响的研究.木材加工机械,2004,6:18~20
    [18]王雪花.粗皮桉木材真空热处理热效应及材性作用机制研究.中国林业科学研究院博士学位论文,2012,68~85
    [19] Gunduz G, Korkut S, Korkut D S. The effects of heat treatment on physical and technological propertiesand surface roughness of Camiyani Black Pine (Pinus nigra Arn. subsp. pallasiana var. pallasiana)wood. Bioresource Technology,2008,99:2275~2280
    [20] Korkut D S, Korkut S, Bekar I, et al. The effects of heat treatment on the physical properties and surfaceroughness of Turkish Hazel (Corylus colurna L.) wood. Int. J. Mol. Sci.2008,9:1772~1783
    [21] Santos J A. Mechanical behavior of Eucalyptus wood modified by heat. Wood Science and Technology2000,34:39~43
    [22] Korkut S, Akgül M, Dünder T. The effects of heat treatment on some technological properties of Scotspine (Pinus sylvestris L.) wood. Bioresource Technology,2008,99:1861~1868
    [23] Gunduz G, Korkut S. Aydemir D, et al. The density, compression strength and surface hardness of heattreated hornbeam (Carpinus betulus L.) wood. Maderas. Cienciay technología,2009,11(1):61~71
    [24] Borrega M, K renlampi P. Mechanical behavior of heat-treated spruce (Picea abies) wood at constantmoisture content and ambient humidity. Holz Roh Werkst,2008,66:63~69
    [25]顾炼百,涂登云,于学利.炭化木的特点及应用.产品与开发,2007,5:30~32
    [26]龙超,郝丙业,刘文斌等.热处理木材的工艺及应用.木材工业,2007,21(6):44~46
    [27] Kubojima Y, Okano T, Ohta M. Bending strength and toughness of heat-treated wood. J Wood Sci.2000,46:8~15
    [28]邓邵平,杨文斌,陈瑞英等.人工林杉木木材力学性质对高温热处理条件变化的响应.林业科学,2009,45(12):105~111
    [29]李惠明,陈人望,严婷.热处理改性木材的性能分析Ⅰ.热处理材的物理力学性能.木材工业,2009,23(2):43~45
    [30] Adewopo J B, Patterson D W. Effects of heat treatment on the mechanical properties of Loblolly pine,Sweetgum, and Red Oak. Forest Prod.J.2011,61(7):526~535
    [31]江京辉,吕建雄.高温热处理对木材强度影响的研究进展.南京林业大学学报(自然科学版),2012,36(2):1~6
    [32]曹永建.蒸汽介质热处理木材性质及其强度损失控制原理.中国林业科学研究院,博士学位论文,2008.6,116~121,144
    [33]丁涛,顾炼百.185℃高温热处理对水曲柳木材力学性能的影响.林业科学,2009,45(2):92~97
    [34]程大莉.高温热处理杉木木材的工艺及性能研究.南京林业大学,硕士学位论文,2007,22,39
    [35]郝东恩.杨木超高温热处理的研究.南京林业大学,硕士学位论文,2008,31
    [36]陈建云.樟子松木材压力高温热处理工艺及材性研究.南京林业大学,硕士学位论文,2008,32-66
    [37]段新芳.木材颜色调控技术.北京:中国建材工业出版社,2002
    [38]CIE简介.2011.http://baike.baidu.com/view/475172.htm
    [39]Finnish Thermowood Association. Thermowood handbook. Finland: Finnish Thermowood Association,2003:24-4
    [40]周永东,姜笑梅,刘君良.木材超高温热处理技术的研究及应用进展.木材工业,2006,20(5):1~3
    [41]González-Pe a M M, Hale M D C. Color in thermally modified wood of beech, Norway spruce andScots pine.Part1: color evolution and color changes. Holzforschung,2009,63(4):385~393
    [42]Bekhta P, Niemz P. Effect of high temperature on the change in color, dimensional stability andmechanical properties of spruce wood. Holzforschung,2003,57(5):539~546
    [43]González-Pe a M M,Hale M D C. Color in thermally modified wood of beech, Norway spruce andScots pine. Part2: Property predictions from color changes. Holzforschung,2009,63(4):394~401
    [44] Brischke C, Welzbacher C R, Brandt K, et al. Quality control of thermally modified timber:interrelationship between heat treatment intensities and CIE L*a*b*color data on homogenized woodsamples. Holzforschung,2007,61(1):19~22
    [45]Johansson D, Morén T. The potential of color measurement for strength prediction of thermally treatedwood. HolzalsRoh-und Werkstoff,2006,64(2):104~110
    [46]李贤军,蔡智勇,傅峰等.高温热处理对松木颜色和湿润性的影响规律.中南林业科技大学学报,2011,31(8):178~182
    [47唐荣强,鲍滨福,李贤军.热处理条件对杉木颜色变化的影响.浙江农林大学学报,2011,28(3):455~459
    [48]史蔷,鲍甫成,吕建雄等.热处理温度对圆盘豆地板材颜色的影响.木材工业,2011,25(2):37~39
    [49]马星霞,蒋明亮,吴玉章等.樟子松热处理材耐久性能的评价.木材工业,2011,25(1):44~46
    [50] Smith W R, Rapp A O, Welzbacher C W. Formosan subterranean termite resistance to heat treatment ofScots pine and Norway spruce. The international research group on wood preservation, Section4Processes and properties.2003, IRG Document No. IRG/WP03-40264
    [51]马星霞,蒋明亮,吕慧梅等.樟子松热处理材耐腐性的评价.木材工业,2009,23(5):45~47
    [52]李惠明,陈人望,严婷等.热处理改性木材的性能分析Ⅱ.热处理材的化学组成与耐腐防霉性能.木材工业,2009,23(3):46~48
    [53]朱昆,程康华,李惠明等.热处理改性木材的性能分析Ⅲ.热处理材的防霉性能.木材工业,2010,24(1):42~44
    [54]陈人望,李惠明,钟俊鸿.热处理改性木材的性能分析Ⅳ.热处理木材的防白蚁性能.木材工业,2010,24(4):49~50
    [55]程大莉,蒋身学,张齐生.杉木热处理材的耐腐性研究.木材工业,2008,22(6):11~13
    [56]刘星雨,黄荣凤,吕建雄.热处理工艺对针叶树材耐腐性及力学性能的影响.木材工业,2011,25(1):16~18
    [57] Calonego F W, Severo E T D, Furtado E L. Decay resistance of thermally-modified Eucalyptus grandiswood at140℃,160℃,180℃,200℃and220℃.Bioresource Technology,2010,101:9391~9394
    [58] Skyba O, Niemz P, Schwarze F W M R. Resistance of thermo-hygro-mechanically (THM) densifiedwood to degradation by white rot fungi. Holzforchung,2009,63:639~646
    [59] Surini T, Charrier F, Malvestio J, et al. Physical properties and termite durability of maritime pine Pinuspinaster Ait., heat-treated under vacuum pressure. Wood Sci Technol,2012,46:487~501
    [60] Shi J L, Kocaefe D, Zhang J. Mechanical behavior of Québec wood species heat-treated using ThermoWood process. Holz Roh-Werkst.2007,65:255~259
    [61] Cao Y J, Lu J X, Huang R F, et al. Effect of steam-heat treatment on mechanical properties of Chinesefir. BioRes.2012a,7(1):1123~1133
    [62] Zivkovic V, Prsa I, Turkulin H, et al. Dimensional stability of heat treated wood floorings. DrvnaIndustrija.2008,59(2):69~73
    [63] Cao Y J, Jiang J H, Lu J X, et al. Color change of Chinese fir through steam-heat treatment. BioRes.2012c,7(3):2809~2819
    [64] Cai J B, Cai L P. Effects of thermal modification on mechanical and swelling properties and colorchange of lumber killed by mountain pine beetle. BioRes.2012,7(3):3488~3499
    [65] Cao Y J, Lu J X, Huang R F, et al. Evaluation of decay resistance for steam-heat-treated wood. BioRes.2011,6(4):4696~4704
    [66] Boonstra M J, Rijsdiik J F, et al. Micro structural and physical aspects of heat treated wood. Part1.Softwoods. Maderas. Cienciay technología,2006,8(3):193~208
    [67] Awoyemi L, Jones I P. Anatomical explanations for the changes in properties of western red cedar(Thuja plicata) wood during heat treatment. Wood Sci Technol.2008, DOI10.1007/s00226-010-0315-9
    [68] Boonstra MJ, Rijsdiik J F, et al. Micro structural and physical aspects of heat treated wood. Part2.Hardwoods. Maderas. Cienciay technología,2006,8(3):209~217
    [69] Esteves B, Antonio V M, et al. Influence of steam heating on properties of pine and eucalypt wood.Wood Sci Technol.2007,41:193~207
    [70] Esteves B, Videira R. Pereira, H. Chemistry and ecotoxicity of heat-treated pine wood extractives.Wood Sci Technol.2011,45:661~676
    [71] Mehmet S T, Adrian R P, et al. Hydrothermal dissolution of mixed southern hardwood. Holzforschung,2008,62:539~545
    [72] Pétrissans M, Gérardin P, et al. Wettability of heat-treated wood. Holzforschung,2003,57:301~307
    [73] Weiland J J, Guyonnent R. Study of chemical modifications and fungi degration of thermally modifiedwood using DRIFT spectroscopy. Holz Roh Werkst,2003,61:216~220
    [74] Inari G N, Pétrissans M, Gérardin P. Chemical reactivity of heat-treated wood. Wood Sci Technol.2007,41:157~168
    [75] Lennart S, Possler H, et al. Analysis of thermally treated wood samples using dynamic FTIRspectroscopy. Holzforchung,2008,62:676~678
    [76] Mehmet A, Gumuskaya E, et al. Crystalline structure of heat treated Scots pine [Pinus sylvestris L.] anduludag fir [Abies nordmanniana(Stev.)subsp.bommuelleriana(Mattf.)] wood. Wood Sci Technol.2007,41:281~289
    [77] Schwanninger M, Hinterstoisser B, et al. Application of fourier transform near infrared spectroscopy(FT-NIR) to thermally modified wood. Holz Roh Werkst,2004,62:483~485
    [78]张士成,齐华春,刘一星等.高温过热蒸汽处理对木材结晶性能的影响.南京林业大学学报(自然科学版),2010,34(5):164~166
    [79]黄艳辉,费本华,赵荣军等.木材单根纤维力学性质研究进展.林业科学,2010,46(3):146~152
    [80]上官蔚蔚,邢新婷,费本华等.木材细胞壁力学试验方法研究进展.西北林学院学报,2011,26(6):149~153
    [81]江泽慧,余雁,费本华等.纳米压痕技术测量管胞次生壁S2层的纵向弹性模量和硬度.林业科学,2004,40(2):113~118
    [82] Yu Y, Fei B H, Zhang B, et al. Cell-wall mechanical properties of bamboo investigated by in-situimaging nanoindentation. Wood and fiber science,2007,39(4):527~535
    [83] Wu Y, Wang S Q, Zhou D G, et al. Use of nanoindentation and silviscan to denterrmine the mechanicalproperties of10hardwood species. Wood and fiber science,2009,41(1):64~73
    [84] Wu Y, Wang S Q, Zhou D G, et al. Evaluation of elastic modulus and hardness of crop stalks cell wallsby nanoindentation. Bioresource Technoolgy,2010,101:2867~2871
    [85] Yin Y F, Berglund L, Salmen L, et al. Effect of steam treatment on the properties of wood cell walls.Biomacromolecules,2011,12:194~202
    [86] GB/T1931-2009,木材含水率测定方法.国家技术监督局发布,2009
    [87] GB/T1934.1-2009,木材吸水性测定方法.国家技术监督局发布,2009
    [88] GB/T1934.2-2009,木材湿胀性测定方法.国家技术监督局发布,2009
    [89] GB/T1933-2009,木材密度测定方法.国家技术监督局发布,2009
    [90] GB/T1936.2-2009,木材抗弯弹性模量测试方法.国家技术监督局发布,2009
    [91] GB/T1936.1-2009,木材抗弯强度测试方法.国家技术监督局发布,2009
    [92] GB/T1935-2009,木材顺纹抗压强度试验方法.国家技术监督局发布,2009
    [93] JIS Z2101-1994,Methods of test for wood. Japanese Industrial Standards,2002
    [94] GB/T18260-2000,木材防腐剂对白蚁毒效实验室试验方法.国家质量技术监督局,2001
    [95] Anonymous. Thermowood handbook, finnish thermowood association.2003. Helsinki, Finland(www.thermowood.fi)
    [96] Anonymous. Further information thermoWood, finnish thermowood association,2008, Helsinki,Finland (www.thermowood.fi)
    [97]冯德君,赵泾峰.热处理木材吸湿性及尺寸稳定性研究.西北林学院学报,2011,26(2):200~202
    [98] Poncsak S, Kocaefe D, Younsi R. Improvement of the heat treatment of Jack pine (Pinus banksiana)using thermowood technology. Eur. J. Wood Prod.2011,69:281~286
    [99] Tjeerdsma B F, Boonstra M, Millitz H. Thermal modification of nondurable wood species.2. Improvedwood properties of thermally treated wood. The international research group on wood
    [100] Korkut S, Kok M S, Korkut D S, et al. The effects of heat treatment on technological properties inRed-bud maple (Acer trautvetteri Medw.) wood. Bioresource Technology,2008,99:1538~1543
    [101] Millett M A, Gerhards G C. Accelerated aging: Residual weight and flexural properties of wood heatedin air at115℃to170℃. Wood Science,1972,4(4):193~201
    [102]丁涛,贝政廷,李源.杉木热处理材结晶度及力学性能的研究.林业科技开发,2012,26(2):23~26
    [103] Akgul M, Gumuskaya E. Korkut S. Crystalline structure of heat treated Scots pine (Pinus sylvestris L.)and Uludag fir [Abies nordmanmiana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood SciTechnol,2007,41:281~289
    [104] Tariqur M D, Bhuiyan R, Hirai N, et al. Change of crystallinity in wood cellulose by heat treatmentunder dried and moist conditions. J wood Sci,2000,46:431~436
    [105] Leitch M A. Hardness values for thermally treated black ash. Wood and Fiber Science,2009,41(4):440~446
    [106]钱颂迪.运筹学.第4版.北京:清华大学出版社,2012,5,155
    [107]马星霞,王洁瑛,蒋明亮等.中国陆地木材生物危害等级的区域划分.林业科学,2011,47(12):129~135
    [108]住房和城乡建设部文件.建房[2012]92号,全国白蚁防治事业“十二五”发展规划纲要
    [109]成俊卿.木材学.北京:中国林业出版社,1985,186
    [110]李坚.木材波谱学.北京:科学出版社,2003,20
    [111]张泰华,杨业敏.纳米硬度计及其在微机电系统中的应用.现代科学仪器,2002,1:32~37
    [112]张泰华,杨业敏.纳米硬度技术的发展和应用.力学进展,2002,32(3):349~364
    [113]余雁,江泽慧,任海青等.管胞细胞壁力学研究进展评述.林业科学,2003,39(5):133~139
    [114]申宗圻.木材学.第2版,北京:中国林业出版社,1993,119~120
    [115]李贤军,刘元,高建民等.高温热处理木材的FTIR和XRD分析.北京林业大学学报,2009,31(1):107~110
    [116] Brito J O, Silva F G., Leao M M, et al. Chemical composition changes in eucalyptus and pinus woodssubmitted to heat treatment. Bioresource Technology,2008,99:8545~8548

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700