防腐结构刨花板的制备及其组分反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构刨花板是工程、建筑用木质复合材料中最重要的种类之一,而耐腐性能是制约其更广泛应用的首要因素。因此,开发综合性能优异的结构刨花板用防腐剂及其使用方法势在必行。本论文分别将五硼酸铵、五硼酸铵与聚乙二醇、纳米氧化铜和碱式碳酸铜引入结构刨花板生产体系,研究了其用量和用法对结构刨花板物理性能及生物耐腐性和抗白蚁性的影响;并采用碳13核磁共振仪(13C CP/MAS NMR)、差示扫描量热仪(DSC)、傅立叶红外光谱(FT-IR)等手段系统深入地研究了各种防腐剂对酚醛树脂固化动力学和固化后分子结构的影响。本论文首次提出了有别于传统意义的“二次固化”观点,并完成了酚醛树脂及其与防腐剂共混物固化过程的模型化和定量化分析,得到了以下主要结果:
     (1)将五硼酸铵作为防腐剂引入结构刨花板后,结构刨花板的抗白蚁性明显提高,甲醛释放量降低;以3层结构引入五硼酸铵(即芯层不添加五硼酸铵)可以有效补偿其对结构刨花板物理力学性能的影响。
     (2)聚乙二醇的添加弥补了五硼酸铵对结构刨花板内结合强度的降低作用,且聚乙二醇存在时,内结合强度随五硼酸铵用量的增加有一定程度的增大。结合各项物理力学性能的分析,改性体系最佳的配比是,五硼酸铵用量2.80%(基于绝干刨花重),聚乙二醇种类PEG-4000,聚乙二醇用量40%(基于酚醛树脂胶粘剂用量)。
     (3)由反应活化能、反应热焓以及红外结构分析共同得出,五硼酸铵的加入使酚醛树脂的固化出现“二次固化”现象,其反应特征为:a.由氧化硼催化的二苄基醚键断裂以及更稳定的亚甲基键的形成;b.小分子甲醛及含-B-O-键的基团与羟甲基等酚醛树脂大分子上活性点的反应;c.五硼酸铵加热释放的氨气与甲醛反应生成六次甲基四铵。
     (4)五硼酸铵和杨木木粉并没有改变酚醛树脂固化反应的反应级数,木粉的引入使酚醛树脂由连续相变为分离相,导致固化过程早期的加成反应被加速;五硼酸铵的pH缓冲作用为酚醛树脂/木粉/五硼酸铵固化体系提高了有利的固化环境,宏观表现为固化体系反应活化能降低;固化体系反应速率以125℃为分界点,等温实验数据与理论数据的拟合结果中,低温阶段相互符合较理想,而高温部分理论预测数据整体上小于实验测定数据。
     (5)纳米氧化铜使结构刨花板的内结合强度、静曲强度和弹性模量略提高,碱式碳酸铜降低了内结合强度,且使24小时吸水率增大;DSC分析表明,两种铜化合物都促进了酚醛树脂的固化反应;纳米氧化铜使酚醛树脂固化反应热焓增加,固化程度提高;两种铜化合物并没有明显改变刨花中纤维素晶层的距离,但使其处理的刨花板的结晶度略有下降,可能因金属化合物提高了铺装后板基的导热能力所致;酚醛树脂胶粘剂的固化对纳米氧化铜和碱式碳酸铜在刨花板中的固着表现了理想的促进作用。
     (6)13C CP/MAS NMR分析表明,五硼酸铵的添加使电负性较强的硼酸根与未反应的羟甲基相连接,且造成化学位移向低场迁移,该结果验证了热动力学分析得出的“二次固化”反应理论;杨木粉中主要成分的化学位移与酚醛树脂重合使谱峰面积相对增大,但并没有改变酚醛树脂固化后大分子结构主要基团的连接状态;纳米氧化铜和碱式碳酸铜的添加使酚醛树脂羟甲基碳移向高场低频,但对固化后树脂的整体结构影响不显著;在相同的固化条件下,纳米氧化铜使酚醛树脂固化程度有所提高。
As one of the most important wood-based composites which can be used outdoors, the application of stuctural strand board was restricted by its decay reisitance. Thus, it is necessary to develop preservatives suitable for structural stand board and corresponding application methods. In this study, ammonium pentaborate (APB), the mixture of APB and poly enthylene (PEG), nano size copper oxide, and basic copper carbonate were respectively introduced into strand or flake board manufacturing process. The effect of the loading level and the application method of these additives on the physical and mechanical properties, fungi and termite resistance of strand board were investigated, futher more,13C CP/MAS NMR, differential scanning charametry (DSC), fourier transform infrared spectrometer (FT-IR) were used to study the effect of APB, wood and copper compounds on the curing kinetics of phenol formaldehyde (PF) resin and the molecular structure change of cured PF resin. In this study, the "second curing process" was first observed and proposed which is completely different from the previous ingestivations. In addition, the PF resin and its mixtures with additives were analysized by chemical reaction models and quantitative way as well.
     The main results can be concluded as follows:
     (1) After introducing APB into structural strand board, the termite resistance was significantly improved and the formaldehyde emission levels were greatly reduced. The three layer structure was proved as an effective way to compensate the reduction of physical and mechanical properties caused by APB.
     (2) The addition of PEG eliminated the adverse effect of APB on the internal bond strength of strand board. With the increasing adding amount of PEG, the internal bond strength of the board increased to a certain extent. According to the analysis of the physical and mechanical properties, the best formula was 2.80% APB (based on the weight of oven dried strand) with 40% PEG-4000 (based on the weight of PF resin).
     (3) Based on the analysis of reaction activation energy, reaction enthalpy and molecular change by FT-IR, the concept of "second curing process" was put forward while investigating the curing process of PF resin with APB. The characteristics of "second curing process" were as follows:first, more stable methylene bridges are formed, followed by the addition reaction between eliminated formaldehyde and-B-O- group to the active groups on PF resin, finally, the reaction between released ammonia and formaldehyde to produce hexamethylenetetramine (hexamine).
     (4) The reaction order of PF resin did not change with the addtion of APB and poplar powder. The addition reaction in the early stage of the curing process was accelerated, since the curing system transformed from consistent one to disperse one caused by poplar powder. In addtion, the reaction activation energy of the curing system decreased as the pH buffer effect of APB provided a friendly curing environment to PF/Wood/APB system. 125℃was a critical temperature to the reaction rate of curing systems. The comparison of the experimental and predicted cure conversion rates at low temperature range showed a good agreement between measured and predicted data. However, with the increasing of heat temperature, the experimental data are relatively higher than the predicted ones.
     (5) Nano size copper oxide improved the internal bond strength, modulas of rupture (MOR) and modulas of elasticity (MOE), but basic copper carbonate decreased the internal bond strength and increased the 24 h water absorption. The DSC result showed that both kinds of copper component improved the curing reactions of PF resin, futher more, the addition of nano copper oxide increased the reaction enthalpy of PF resin and made it cured much more completely. The crystal distance of cellulose kept stable with the addition of nano size copper oxide and basic copper carbonate, but the crystallinity was reduced slightly which maybe due to the improvement of the thermal conductivity of strand board mat caused by copper compounds. The curing of PF resin promoted the fixation of both nano copper oxide and basic copper carbonate in flake board significantly.
     (6) The result of 13C CP/MAS NMR indicated that the addition of APB resulted in the bonding between boric acid ions and unreacted hydroxymethyl groups, and made the chemical shift move to low magnetic field as well, which provided strong evidence to the concept of "second curing process". The spectrum area of PF, APB and poplar increased due to the overlapping of the chemical shifts of wood constituents and PF resin, however, the interaction between the main chemical groups in cured PF resin has not been changed. The chemical shift of carbon in hydroxymethyl in PF resin moved to high magnetic field with the addition of nano size copper oxide and basic copper carbonate, but the whole molecular structure of cured PF resin has not been changed significantly. Meanwhile, at the same curing condition, nano size size copper oxide improved the curing degree of PF resin slightly
引文
1曹金珍.国外木材防腐技术和研究现状[J].林业科学,2006,42(7):120-126.
    2董红燕,刘君卓等.甲醛对豚鼠肺巨噬细胞DNA的损伤作用[J].环境与健康杂志,1998,15(6):253-255.
    3方桂珍,孔漫等.多元羧酸与木材酯化反应的固体核磁共振谱CP/MAS 13CNMR的表征[J].林业科学,2001,37(2):108-111.
    4顾继友.胶粘剂与涂料[M].中国林业出版社,1999.
    5华毓坤.人造板工艺学[M].北京:中国林业出版社,2002.
    6李汉珍,杨旭等.武汉市室内装饰材料卫生状况调查[J].中国公共卫生,2000,6(1):40-41.
    7李连山,马春莲等.室内甲醛污染分析调查[J].环境科学与技术,2002,25(3):44-45.
    8林培喜,程丽华等.新装修居室空气中甲醛浓度[J].环境与健康杂志,2005,22(2):132-133.
    9林时峰.2008年我国人造板产量[J].林产工业,2009,36(4):30-30.
    10刘金玲,崔毅等.甲醛职业暴露与胃癌关系的回顾性队列研究[J].中国慢性病预防与控制,1998,6(4):775-776.
    11刘君卓,郝兰英等.室内装修与不良建筑物综合征[J].环境与健康杂志,2002,19(1):23-25.
    12马心,颜镇.游离甲醛和人造板释放甲醛[J].木材工业,1997,11(3):18-21.
    13木材pH值测定方法[S].GB/T 6043-1999.中华人民共和国国家质量监督检验检疫总局,1999.
    14刨花板第4部分:在干燥状态下使用的结构用板要求[S].GB/T 4897.4-2003.中华人民共和国国家质量监督检验检疫总局,2003.
    15刨花板第7部分:在潮湿状态下使用的增强结构用板要求[S].GB/T 4897.7-2003.中华人民共和国国家质量监督检验检疫总局,2003.
    16人造板及饰面人造板理化性能试验方法[S].GB/T 17657-1999.中华人民共和国国家质量监督检验检疫总局,1999.
    17室内空气质量标准[S].GB/T 18883-2002.中华人民共和国国家质量监督检验检疫总局,2002.
    18宋启泽,陈洁.核磁共振原理及应用[M].北京:兵器工业出版社,1992.
    19宋天佑,程鹏等.无机化学(上册)[M].北京:高等教育出版社,2004.
    20谭晓明,黄乃瑜等.硼酸钠/甲阶酚醛树脂配合物的热固化过程和耐热性[J].应用化学,2002,19(1):76-79.
    21王恺,傅峰.我国人造板工业发展展望[J].人造板通讯,2002,(12):3-5.
    22王恺.木材工业实用大全-木材保护卷[M].北京:中国林业出版社,2001.
    23王威岗,韦杰等.木质纤维热解的热重和反应动力学研究[J].可再生能源,2007,25(5):23-26.
    24王维,冯学庆等.接触甲醛的职业危害及对嗅觉功能的影响[J].中国公共卫生,1999,15(9):787-788.
    25袭著革.室内空气中微量甲醛污染与监测进展[J].重庆环境科学,1995,17(3):15-18.
    26尹思慈.木材学[M].北京:中国林业出版社,1996.
    27余丽萍.抗流失硼基木材防腐剂配方遴选及优选配方处理材的性能[D].北京:北京林业大学,2009.
    28翟冰云,杨丽等.聚乙二醇改性木材药剂抗流失试验[J].林业科技,2002,27(5):40-42.
    29翟淑妙,徐晓俨等.甲醛的暴露与健康效应[J].环境与健康杂志,1999,11(5):238-239.
    30张殿忠,张凤林等.长期低浓度甲醛作业工人健康状况调查[J].中华劳动卫生与职业病,1999,7(5):291-292.
    31张淼,杨金水等.假单孢杆菌PKE117对三种木材降解效果的研究[J].辽宁林业科技,2007,(1):1-5,43.
    32周大鹏,俞立琼.后固化处理对不同填料增强的酚醛模塑料制件电绝缘性能的影响[J].绝缘材料,2007,40(6):4-6.
    33周公度.化学辞典[M].化学工业出版社,2004.
    34 Abdalla M O, Ludwick A, et al. Boron-modified phenolic resins for high performance applications[J]. Polymer,2003,44(24):7353-7359.
    35 Alonso M V, Oliet M, et al. Determination of curing kinetic parameters of lignin-phenol-formaldehyde resol resins by several dynamic differential scanning calorimetry methods[J]. Thermochimica Acta,2004,419(1-2):161-167.
    36 Amusant N, Arnould O, et al. Utilizing Cypress to improve the decay and termite resistance of OSB panels[C]. The 39th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 08-10658, Istanbul, Turkey. May 25-29 2008.
    37 ASTM. Standard test method for evaluating properties of wood-based fiber and particle panel material[S]. D 1037-99. ASTM International:West Conshohocken, USA1999.
    38 ASTM. Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials[S]. E 698-01. ASTM International:West Conshohocken, USA2001.
    39 AWPA. Fire retardant formulations[S]. P17-02. Selma, AL: American Wood Protection Association,2002.
    40 AWPA. Standard for waterborne preservatives[S]. P5-08. Selma, AL: American Wood Protection Association,2008.
    41 AWPA. Standard method for laboratory evaluation to determine resistance to subterranean termites[S]. E1-06. Selma, AL: American Wood Protection Association, 2008.
    42 AWPA. Standard method of determining the leachability of wood preservatives[S]. E11-06. Selma, AL: American Wood Protection Association,2008.
    43 Ayrilmis N, Kartal S N, et al. Physical and mechanical properties and fire, decay, and termite resistance of treated oriented strandboard[J]. Forest Products Journal,2005, 55(5):74-81.
    44 Baileys J K, Marks B M, et al. Providing moisture and fungal protection to wood-based composites[J]. Forest Products Journal,2003,53(1):76-81.
    45 Balakrishnan T, Bhagavannarayana G, et al. Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,71(2):578-583.
    46 Barghamadi M, Ghaemy M, et al. Non-isothermal cure kinetics of diglycidyl ether of bisphenol-A with various aromatic diamines[J]. Iranian Polymer Journal,2009,18(6): 431-443.
    47 Barnes H M, Amburgey T L. Technologies for the protection of wood composites[C]. International Union of Forestry Research Organizations (IUFRO) Symposium on the Protection of Wood-Based CompositesMadison, WI, Forest Products Society.1993.
    48 Barnes H M, Lindsey G B, et al. Bending properties of southern pine treated with micronized preservative systems[C]. The 39th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 08-30414, Istanbul, Turkey. May 25-29 2008.
    49 Barnes H M, Murphy R J. Effect of vapor boron treatment on properties of wood strand and fiber composites[J]. Composites Part A:Applied Science and Manufacturing,2006,37(9):1402-1405.
    50 Biblis E J. Prosperities of three-layer oriented strandboard from southern hardwoods[J]. Forest Products Journal,1985,35(2):28-32.
    51 Boggio K, Gertjejansen R. Influence of ACA and CCA waterborne preservatives on the properties of aspen waferboard[J]. Forest Products Journal,1982,32(3):22-26.
    52 Borchardt H J, Daniels F. Application of differential thermal analysis to the study of reaction kinetics[J]. J Am Chem Soc,1957,79:41-46.
    53 Burton R, Bergervoet T, et al. Gaseous preservative treatment of wood[C]. The 21st Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 90-3631, Rotorua, New Zealand. May 13-18 1990.
    54 Carotenuto G, Nicolais L. Kinetic study of phenolic resin cure by IR spectroscopy[J]. Journal of Applied Polymer Science,1999,74(11):2703-2715.
    55 Cavdar A D, Kalaycioglu H, et al. The effects of zinc borate treatment of wood strands on some technological properties of oriented strandboard (OSB)[C]. The 39th Annual Meeting of International Research Group on Wood Preservation, Document No: IRG/WP 08-40419, Istanbul, Turkey. May 25-29 2008.
    56 Chern C S, Poehlein G W. A kinetic model for curing reactions of epoxides with amines[J]. Polymer Engineering and Science,1987,27(11):788-795.
    57 Chung W Y, Wi S G, et al. Microscopic observation of wood-based composites exposed to fungal deterioration[J]. Jounal of Wood Science,1999,45(1):64-68.
    58 Colak S, Colakoglu G. Volatile acetic acid and formaldehyde emission from plywood treated with boron compound[J]. Building and Environment,2004,39(5):533-536.
    59 Cookson L J, Creffield J W, et al. Australian trials on the efficacy of micronized copper[C]. The 39th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 08-30480, Istanbul, Turkey. May 25-29 2008.
    60 Creely J J, Wade R H, et al. X-ray diffraction, thermal and physical studies of complexes of cellulose with secondary diamines[J]. Textile Research Journal,1978, 48(1):37-43.
    61 Donmez A, Kalaycioglu H. Some technological properties of OSB panels treated zinc borate and borax[C]. The 3rd International Borate SymposiumAnkara.2006.
    62 Dizman E, Yildiz U C, et al. The effects of chemical modification on the physical properties of alder and spruce particleboards[C]. The 36th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 05-40300, Bangalora, India. April 24-28 2005.
    63 Donath S, Spetmann P, et al. Protection of OSB against termites by incorporation of different actives via glue line treatment[C]. The 39th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 08-30453, Istanbul, Turkey. May 25-29 2008.
    64 Ellis S C, Steiner P R. Characterization of chemical properties and flow parameters of powdered phenol formaldehyde resins[J]. Wood and Fiber Science,1991,23(1): 85-97.
    65 Freeman J H. Quantitative Determination of Methylophenols by Paper Chromatography[J]. Analytical Chemistry,1952,24(12):2001-2002.
    66 Freeman J H. Separation and Identification of Polymethylol Phenols by Paper Chromatography[J]. Analytical Chemistry,1952,24(6):955-959.
    67 Gallacher A C, Mclntyre C R, et al. Standard and new analytical techniques for CDDC preserved wood analysis[C]. Proceedings of American Wood-Preservers Association, 91.1995.
    68 Gardziella A, Pilato L A, et al. Phenolic resins:chemistry, application, standardization, safety and ecology[M]. New York:Springer Berlin Heidelberg,2000.
    69 Gertjejansen R O, Schmidt E L, et al. Assessment of preservative treated aspen waferboard after 5 years exposure[J]. Forest Products Journal,1989,39(4):15-19.
    70 Gindl W, Schoberl T, et al. The interphase in phenol-formaldehyde and polymeric methylene di-phenyl-di-isocyanate glue lines in wood[J]. International Journal of Adhesion and Adhesives,2004,24(4):279-286.
    71 Goroyias G J, Hale M D. Effect of point of preservative addition on the mechanical and physical properties of strandboard treated with Tanalith 3485[C]. The 31st Annual Meeting of International Research Group on Wood Preservation, Document No: IRG/WP 00-40152, Kona, Hawaii, USA. May 14-19 2000.
    72 Goroyias G J, Hale M D. An overview of research in the technologies for the manufacture of decay resistant and dimensionally stable OSB[C]. Enhancing the Durability of Lumber and Engineered Wood Products. FPS Symposium ProceedingsMadison, WI, Forest Products Society.2002.
    73 Goroyias G J, Hale M D. The mechanical and physical properties of strand boards treated with preservatives at different stages of manufcture[J]. Wood Science Technology,2004,38(2):93-107.
    74 Guss L M. Engineered wood products:The feature is bright[J]. Forest Products Journal,1995,45(7/8):17-24.
    75 Hall H J, Gertjejansen R O, et al. Preservative treatment effects on mechanical and thickness swelling properties of aspen waferboard[C]. Proceedings of a Workshop on the Durability of Structural Panels.1984.
    76 Hall H J, Gertjejansen R O, et al. Preservative treatment effects on mechanical and thickness swelling properties of aspen waferboard[J]. Forest Products Journal,1982, 32(11-12):19-26.
    77 Hashim R, Dickinson D J, et al. Effect of vapour boron treatment on mechanical properties of wood based board materials[C]. The 23rd Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 92-3727, Harrogate, UK. May 11-15 1992.
    78 Hashim R, Murphy R J, et al. Vapour boron treatment of wood based panels:Further studies on mechanical properties[C]. The 23rd Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 93-30028, Orlando, USA. May 16-21 1993.
    79 Hashim R, Murphy R J, et al. Vapour boron treatment of wood based panels: Mechanism for effect upon impact resistance[C]. The 25th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 94-40036, Bali, Indonesia. May 29-June 3 1994.
    80 He G, Riedl B. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates [J]. Wood Science and Technology, 2004,38(1):69-81.
    81 He G, Riedl B, et al. Model-free kinetics:Curing behavior of phenol formaldehyde resins by differential scanning calorimetry[J]. Journal of Applied Polymer Science, 2003,87(3):433-440.
    82 He G, Yan N. Effect of wood on the curing behavior of commercial phenolic resin systems[J]. Journal of Applied Polymer Science,2005,95(2):185-192.
    83 He G, Riedl B. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates[J]. Wood Science and Technology 2004,38(1):69-81.
    84 Hedley M, Page D. Performance of boron-treated radiata pine in above ground field tests in New Zealand[C]. The 37th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 06-30406, Tromsφ, Norway. June 18-22 2006.
    85 Holopainen T, Alvila L, et al. Kinetic study of phenolic resin cure by IR spectroscopy[J]. Journal of Applied Polymer Science,1998,69(11):2175-2185.
    86 Jiang H, Kamdem D P. Differential scanning calorimetry characterization of the cure of phenol-formaldehyde adhesive in the presence of copper-based preservative treated wood[J]. Wood Science and Technology,2007,41(8):637-644.
    87 Jones W A, Barnes H M, et al. Ancillary properties of vapor boron-treated composites[C]. The 32nd Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 01-40210, Nara, Japan. May 20-25 2001.
    88 Joseph V, Gunasekaran S, et al. Photoconductivity and dielectric studies of potassium pentaborate crystal (KB5)[J]. Bulletin of Materials Science,2003,26(4):383-386.
    89 Junko M, Takato N. Effects of Wood Preservatives on Adhesive Properties Ⅱ. Curing reaction of resorcinol-formaldehyde resin with Cu[J]. Journal of the Japan Wood Research Society,2002,48(3):178-183.
    90 Junko M, Takato N. Effects of Wood Preservatives on Adhesive Properties Ⅲ. Curing of aqueous vinyl polymer solution-isocyanate adhesive with preservatives[J]. Journal of the Japan Wood Research Society,2002,48(3):184-190.
    91 Jusoh I B, Nzokou P, et al. The effect of silicone on some properties of flakeboard[J]. Holz Als Roh-Und Werkstoff,2005,63(4):266-271.
    92 Kenny J M, Pisanielloa G, et al. Calorimetric analysis of the polymerization reaction of a phenolic resin[J]. Thermochimca Acta.,1995,269/270:201-211.
    93 Khanna U, Chanda M. Kinetics of anhydride curing of isophthalic diglycidyl ester using differential scanning calorimetry[J]. Journal of Applied Polymer Science,1993, 49(2):319-329.
    94 King P W, Mitchell R H, et al. Structural analysis of phenolic resole resins[J]. Journal of Applied Polymer Science,1974,18(4):1117-1130.
    95 Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29(11):1702-1706.
    96 Knudson R M, Gnatowski M J. (1989). Chemically Treated Wood Particleboard. U.S. A. Patent No.4,879,083.
    97 Laborie M P G, Frazier C E.C13 CP/MAS NMR study of a wood/phenol formaldehyde resin bondline[J]. Journal of Materials Science,2006,41(18): 6001-6005.
    98 Laks P E. The past, present, and future of preservative-containing composites[C]. The 33rd International Particleboard/Composite Materials Symposium Proceedings Washington State University: Pullman, WA.1999.
    99 Laks P E. Biodegradation susceptibility of untreated engineered wood products[C]. In: Enhancing the Durability of Lumber and Engineered Wood Products. FPS Symposium Proceedings No.7249Madison, WI, Forest Products Society.2002.
    100 Laks P E, Manning M J. Preservation of wood composites with zinc borate[C]. The 26th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 95-30074, Helsinger, Denmark. June 11-16 1995.
    101 Laks P E, Manning M J. Mobility of zinc borate wood composite preservative[C]. The 28th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 97-30153, Whistler, Canada. May 25-30 1997.
    102 Lee S, Wu Q. Leachability of borate-modified oriented strandboard: A comparison of zinc and calcium borate[C]. The 33rd Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 02-40232, Cardiff, Wales, United Kingdom. May 12-17 2002.
    103 Lee S, Wu Q, et al. Formosan subterranean termite resistance of borate-modified strandboard manufactured from southern wood species:A laboratory trial[J]. Wood and Fiber Science,2004,36(1):107-118.
    104 Lee S, Wu Q, et al. The influence of flake chemical properties and zinc borate on gel time of phenolic resin for oriented strandboard.[J]. Wood and Fiber Science,2001, 33(3):425-436.
    105 Lei Y, Wu Q, et al. Cure kinetics of aqueous phenol-formaldehyde resinsused for oriented strandboard manufacturing: Analytical technique.[J]. Journal of Applied Polymer Science,2006,100(2):1642-1650.
    106 Lei Y, Wu Q. Cure kinetics of aqueous phenol-formaldehyde resins used for oriented strandboard manufacturing: Effect of wood flour[J]. Journal of Applied Polymer Science,2006,102(4):3774-3781.
    107 Lei Y, Wu Q. Cure kinetics of aqueous phenol-formaldehyde resins used for oriented strandboard manufacturing: Effect of zinc borate[J]. Journal of Applied Polymer Science,2006,101(6):3886-3894.
    108 Li S, Vuorimaa E, et al. Application of isothermal and model-free isoconversional modes in DSC measurement for the curing process of the PU system[J]. Journal of Applied Polymer Science,2001,81(6):1474-1480.
    109 Liu H, Wu L, et al. Infrared characterization of curing process of boron modified phenolic resin.[J]. Engineering plastics application,2007,35(7):51-54.
    110 Liu Y, Gao J. Curing kinetics of boron-containing phenol-formaldehyde resin formed from paraformaldehyde[J]. International Journal of Chemical Kinetics,2002,34(11): 638-644.
    111 Manning M J. Wood protection processes for engineered wood products[C]. Enhancing the Durability of Lumber and Engineered Wood Products. FPS Symposium ProceedingsMadison, WI, Forest Products Society.2002.
    112 Marcinko J J, Devathala S, et al. Investigating the molecular and bulk dynamics of PMDI/wood and UF/wood composites[J]. Forest Products Journal,1998,48(6):81-84.
    113 Marcinko J J, Rinaldi P L, et al. Forest Products Journal,1999,49:75-
    114 Mizumachi H, Morita H. Activation energy of the curing reaction of phenolic resin in the presence of woods.[J]. Wood Science,1975,7(3):256-260.
    115 Myers R E. Ammonium pentaborate:an intumescent flame retardant for hermoplastic polyurethanes[J]. Journal of Fire Science,1985,3(6):432-449
    116 Myles T G. Use of disodium octaborate tetrahydrate to protect aspen waferboard from termites[J]. Forest Products Journal,1994,44(9):33-36.
    117 Nearn W T. Application of the ultrastructure concept in industrial wood products research[J]. Wood Science,1974,6(3):285-293.
    118 Pan H, Shupe T F, et al. Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins[J]. Journal of Applied Polymer Science,2008, 108(3):1837-1844.
    119 Peer H G. The reaction of phenol with formaldehyde Ⅱ. The ratio of ortho- and para-hydroxymethylphenol in the base-catalyzed hydroxymethylation of phenol[J]. Rec. Trav. Chim.,1959,78:851-863.
    120 Pizzi A, Mtsweni B, et al. Wood-induced catalytic activation of PF adhesives autopolymerization vs. PF/wood covalent bonding[J]. Journal of Applied Polymer Science,1994,53(13):1847-1856.
    121 Pizzi A, Stephanou A. Phenol-Formaldehyde Wood Adhesives under very Alkaline Conditions. Part Ⅱ:Esters Curing Acceleration, its Mechanism and Applied Results[J]. Holzforschung,1994,48(2):150-156.
    122 Provider T. Cure characterization in product research and development[J]. J Coat Technol,1989,61(777):33-35.
    123 Rammon R M, Johns W E, et al. The chemical structure of UF resins[J]. Journal of Adhesion,1986,19:115-135.
    124 Rowell R M. Chemical Modification of Wood:Its Application to Composite Wood Products[C]. Proceedings of the Composite Wood Products SymposiumNew Zealand. 1988.
    125 Schmidt E L, French D W, et al. Strength reductions in particleboard caused by fungi[J]. Forest Products Journal,1978,28:26-31.
    126 Schmidt R G, Frazier C E.13C CP/MAS NMR as a direct probe of the wood-phenol formaldehyde adhesive bondline[J]. Wood and Fiber Science,1998,30(3):250-258.
    127 Schmidta R G, Fraziera C E.13C CP/MAS NMR as a direct probe of the wood-phenol formaldehyde adhesive bondline[J]. Wood and Fiber Science,1998,30(3):250-258.
    128 Sean T, Brunette G, et al. Protection of oriented strandboard with borate[J]. Forest Products Journal,1999,49(6):47-51.
    129 Smart R, Wall W. Copper borate for the protection of engineered wood composites[C]. International Research Group on Wood Preservation, IRG/WP 06-40334, Tromsφ. June 18-22 2006.
    130 Stirling R, Drummond J, et al. Micro-distribution of micronized copper in southern pine[C]. The 39th Annual Meeting of International Research Group on Wood Preservation, IRG/WP 08-30479, Istanbul, Turkey. May 25-29 2008.
    131 Sugunan A, Warad H, et al. Zinc oxide nanowires in chemical bath on seeded substrates:Role of hexamine[J]. J Sol-Gel Sci and Technol,2006,39(1):49-56.
    132 Sunose T, Akahira T. Method of determineing activation deterioration constant of electrical insulating materials. Chiba Inst. Tecnol. (Sci. Tecnol.) Research Report. 1971,16:22-23.
    133 Sutter H P, Jones Gareth E B, et al. The mechanism of copper tolerance in Poria placenta (Fr.) Cke. and Poria vaillantii (Pers.)[J]. Fr. Mat. und Organismen,1983, 18(4):241-262.
    134 Tomita B, Hatono S. Urea-formaldehyde resins III. Constitutional characterization by 13C Fourier transform NMR spectroscopy[J]. Journal of Polymer Science: Polymer Chemistry Eduvation,1978,16:2509-2525.
    135 Turner P, Murphy R J, et al. Treatment of wood-based panel products with volatile borate[C]. International Research Group on Wood Preservation, IRG/WP 90-3616, Rotorua. May 13-18 1990.
    136 Vazquez G, Gonzalez-Alvarez J, et al. Curing of a phenol-formaldehyde-tannin adhesive in the presence of wood:Analysis by differential scanning calorimetry[J]. Journal of Thermal Analysis and Calorimetry,2006,84(3):651-654.
    137 Vidrine C, Kamke F, et al. The effects of copper-based preservative technologies on the resistance of aspen strandboards to biological degradation[J]. Wood and Fiber Science,2009,41(3):211-219.
    138 Vidrine C, Kamke F A, et al. Preserving panels by furnish addition of copper compounds:Effects on panel properties[C]. American wood protection association, 104.2008.
    139 Vyazovkin S, Lesnikovich A. An approach to the solution of the inverse kinetic problem in the case of complex processes:Methods employing a series of thermoanalytical curves[J]. Thermochimca Acta,1990,165(2):273-280.
    140 Vyazovkin S, Sbirrazzuoli N. Mechanism and kinetics of epoxy-amine cure studied by differential scanning calorimetry.[J]. Macromolecules,1996,29(6):1867-1873.
    141 Wang X, Riedl B, et al. The effects of temperature and humidity on phenol-formaldehyde resin bonding[J]. Wood Science and Technology,1995,29(4): 253-266.
    142 Werstler D D. Quantitative 13C NMR characterization of aqueous formaldehyde resins:2. Resorcinolformaldehyde resins[J]. Polymer,1981,27(5):757-764.
    143 Widmann G. Quantitative isothermal DTA studies[J]. Thermochimca Acta.,1975, 11(3):331-333.
    144 Willeitner H. The behaviour of wood particlcboards under attack of basidiomycetcs-part I:Decomposition of the particleboards by basidiomycetes[J]. Holz als Roh- und Werkstoff,1965,23(7):264-271.
    145 Wu Q, Lee J N. Long-term creep response of borate-modified oriented strandboard[C]. International Conference on Advances in Building Technology, Hong Kong, China. December 4-6 2002.
    146 Wu Q, Lee S, et al. Decay and mold resistance of borate modified oriented strandboard[C]. International Research Group on Wood Preservation, Document No: IRG/WP 03-40260, Brisbane, Queensland. May 18-23 2003.
    147 Yildiz U C, Dizman E, et al. The effects of chemical modification on the biological properties of alder and spruce particleboards[C]. The 38th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 07-40363, Jackson Lake Lodge, Wyoming, USA. May 20-24 2007.
    148 Yildiz U C, Kalaycioglu H, et al. Biological performance of boron-based chemicals treated wood composites[C]. The 40th Annual Meeting of International Research Group on Wood Preservation, Document No:IRG/WP 09-40464, Beijing, China. May 24-282009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700