多因素耦合作用下混凝土的冻融损伤模型与寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际服役混凝土结构通常处于复杂的环境因素作用下,其劣化过程是物理、化学和力学等因素耦合作用的过程,这些因素耦合作用造成的混凝土损伤远大于各因素单独作用的叠加。为指导实际工程中混凝土的配合比设计,混凝土耐久性及寿命预测体系的研究趋势和热点已由单一因素向多因素耦合作用发展。然而,以冻融为主因素的多因素耦合作用下的混凝土耐久性研究还显得不足,存在以下问题:多因素耦合作用下的混凝土耐久性评价还采用以往用于单因素作用下的评价指标,即评价方法相对落后于实际的耐久性研究;现有混凝土损伤模型和寿命预测体系多是基于单因素作用下的;对已经取得的成果还缺乏归纳总结。
     为解决上述问题,本文首先开发了混凝土冻融耐久性数据库系统,对以往学者的试验数据与参考模型进行归纳总结,以此作为建模的前提基础之一;然后,用应变表征了多因素耦合作用下混凝土的耐久性能,以此作为建模的另外一个前提基础;最终,建立了两个多因素耦合作用下的混凝土损伤模型并结合寿命预测方法对实际工程进行了寿命评估和预测,为有抗冻要求的服役混凝土耐久性设计和寿命预测研究提供了新思路。本文主要试验工作及结果如下:
     1)开发了混凝土冻融耐久性数据库系统。借助于RILEM TC246-TDC技术委员会平台,收集到来自15个国家和地区的34位著名学者关于多因素耦合作用下混凝土耐久性研究成果以及冻融损伤与寿命预测模型;经过严格的筛选得到入库试验数据和模型,并与计算机技术相结合,打造了数据管理的集成化平台,具有跨平台性和可扩展性等优点以及查询和搜索功能。
     2)用应变表征了多因素耦合作用下混凝土的耐久性能。无损监测的应变具有实时性、连续性,冻融(简称FTC)单因素作用下,混凝土残余应变的产生证明了混凝土基体的损伤是一个不断累积的不可逆的劣化过程,它与基体内部裂纹的不断萌生与扩展直接相关;冻融和盐溶液侵蚀(简称FTC-Cl)双因素作用下,同一配合比混凝土在3.5wt.%的NaCl溶液中冻融产生的残余应变比水冻大,说明盐溶液加速了混凝土的冻融损伤;冻融、盐溶液侵蚀和弯曲应力(简称FTC-Cl-BS)三因素耦合作用下,施加恒定的弯曲应力比越大,混凝土试件拉应力区的应变与残余应变均越大,说明应力的施加加速了混凝土的损伤劣化。
     3)建立了混凝土的残余应变冻融损伤演化方程。在FTC单因素、FTC-Cl双因素和FTC-Cl-BS三因素耦合作用下,混凝土的残余应变变化规律均符合单段或双段变化模式,单段变化模式一般适用于抗冻性较强的混凝土,双段变化模式一般适用于抗冻性较差的混凝土;结合混凝土冻融耐久性数据库系统中其他学者的残余应变数据,对演化方程进行验证,结果显示计算值和实测值之间具有较高的吻合度。
     4)建立了基于残余应变的FTC-Cl双因素耦合作用下混凝土冻融损伤数值模型(M-FTC+Cl)。该损伤数值模型适用于FTC单因素和FTC-Cl双因素作用,对混凝土损伤程度变量曲线的拟合相关系数在0.95以上;该模型还可以预测特定条件下混凝土的最终快速冻融循环次数,再结合寿命预测方法可以预测特定环境下服役混凝土的安全使用寿命。
     5)将冻融损伤、盐溶液侵蚀等环境因素进行了力学统一等效转化,建立了基于应变的FTC-Cl-BS三因素耦合作用下混凝土损伤力学模型(M-FTC+Cl+BS)。该损伤力学模型适用于FTC-BS双因素和FTC-Cl-BS三因素作用,模型建立了应变与快速冻融循环次数之间的关系;利用该模型计算的混凝土最终快速冻融循环次数与实际测量值非常接近;该模型结合寿命预测方法可以预测特定环境下服役混凝土的安全使用寿命。
     6)将冻融损伤模型与实际工程的寿命预测相关联,对实际工程进行了寿命预测。通过计算,长白山飞行区跑道、停机坪混凝土的使用寿命预测值分别为43年和52年,符合最低设计年限为30年的要求;青岛海湾大桥承台、箱梁混凝土的使用寿命预测值分别为144年、110~123年,也符合设计使用寿命100年的使用要求。
In fact, concrete in service is usually subject to complex environmental factors.Its deterioration is a process with coupling action including physics, chemistry,mechanics and so on. The damage caused by these coupling factors is far greater thanthat caused by a sum of each action. To guide the durability design of concrete inpractical projects, the research tendency on concrete durability and service lifeprediction system is developing from single factor to multiple factors. But there aresome problems on freeze-thaw durability research of concrete under multi-factorcoupling. Firstly, the durability research of concrete under multi-factor coupling alluses the test parameters under single factor. In other words, the evaluation method islagging behind the actual durability research. Secondly, the present damage modelsand service life prediction system of concrete are mostly established under singlefactor. Finally, lack of summary for the present research results of concrete durabilityunder multiple factors leads to that it is not easy to perfect the research system andrealize the accuracy and continuity of service life prediction system.
     To solve the problem above, a database system of concrete freeze-thawdurability as one of the premises to establish service life prediction models wasdeveloped to summarize the previous test results and reference models. Then strainwas used to analyze the damage and deterioration in concrete under multi-factorcoupling as another premise to establish service life prediction models. Finally, twofreeze-thaw damage models were established and used to evaluate and predict theservice life of practical engineering combined with freeze-thaw comparing relationbetween inside and outside, providing a new approach to predict the service life andguidance for durability design of concrete which is required for frost resistance. Thefollowing research results were obtained.
     1) A database system of concrete freeze-thaw durability was developed. With theaid of RILEM TC246-TDC as the platform, the durability research results, thefreeze-thaw damage and service life prediction models of concrete under multi-factorcoupling were collected from34famous scholars who are from15countries. Theexperimental data and models in the database were filtered strictly. These materialsscience results were combined with the computer technology, creating an integrateddata management platform. The database system has the feature of goodacross-platform, powerful expansibility, etc and the function of query and search.
     2) Strain was used to characterize the concrete durability under multi-factorcoupling. Strain may have certain inherent advantages when compared to other testparameters, such as real-time nondestructive monitor, more accurate and continuouswith little error that is caused by manual intervention, etc. Under single factor offreeze-thaw cycles (FTC), the produced residual strain proves that the damage of concrete matrix is a continued accumulated and irreversible deterioration process.This process is directly related to the continued initiation and propagation of cracks inmatrix. Under freeze-thaw cycles coupled with chloride attack (FTC-Cl), the residualstrain produced in3.5wt.%NaCl solution is larger than in water, showing that theNaCl solution accelerates the freeze-thaw damage of concrete. Under freeze-thawcycles, chloride attack coupled with bending stress (FTC-Cl-BS), the strain andresidual strain of concrete tensile region are both larger with the larger constantbending stress ratio, showing that the applied stress accelerates the damage ofconcrete.
     3) The residual strain freeze-thaw damage evolution equation was established.Under FTC, FTC-Cl and FTC-Cl-BS, the residual strain variation all conforms to asingle-segment variation mode or a double-segment variation mode. Thesingle-segment variation mode applies to the concrete that has better frost resistance,and the double-segment variation mode applies to the concrete that has poorer frostresistance. Furthermore, the validation of residual strain freeze-thaw damageevolution equation shows that there is good agreement between computed data andmeasured data.
     4) The freeze-thaw damage numerical model of concrete subject to FTC-Cl wasestablished based on residual strain. This damage numerical model applies to both thesingle factor of FTC and the two factors of FTC-Cl. The correlation coefficients of thedamage degree variable curve of concrete fitted by the model are all greater than0.95.The model can also predict the final number of rapid freeze-thaw cycles of concreteunder certain conditions, and then can predict the safe service life of concrete inservice under certain environmental factors combined with service life predictionmethod.
     5) Converting the microscopic action mechanism to a macroscopic mechanicaleffect, the damage mechanical model of concrete subject to FTC-Cl-BS wasestablished based on strain. This damage mechanical model applies to both twofactors of FTC-BS and three factors of FTC-Cl-BS, and establishes a relationshipbetween strain and number of rapid freeze-thaw cycles. The model computed data ofthe final number of rapid freeze-thaw cycles is very close to the measured data. Themodel can predict the safe service life of concrete in service under certainenvironmental factors combined with service life prediction method.
     6) Associating the established damage models with service life prediction ofpractical engineering, the service life of practical engineering was predicted. Bycomputing, the predicted service life of concrete of the airport runway and the tarmacused in Changbaishan airport are43years and52years respectively, meeting therequirement of the designed minimum service life of30years. The predicted servicelife of concrete of the bearing platform and the box girder used in Qingdao BayBridge are144years and110~123years respectively, also meeting the requirement of the designed service life of100years.
引文
[1]王媛俐,姚燕.重点工程混凝土耐久性的研究与工程应用[M].北京:中国建材工业出版社,2006.
    [2]交通部水泥混凝土路面推广组编.水泥混凝土路面研究[M].北京:人民交通出版社,1997.
    [3]高海平,金志强,李华.水泥混凝土路面修补技术[M].北京:人民交通出版社,1998.
    [4] MEHTA P K. Concrete durability-fifty year's progress [C]//Proceeding2nd InternationalConference on Concrete Durability, American Concrete Institution. ACI SPI126-1,1991:1-31.
    [5]余红发,孙伟,张云升,等.在冻融或腐蚀环境下混凝土使用寿命预测方法I-损伤演化方程和损伤失效模式[J].硅酸盐学报,2008,31(S1):128-135.
    [6]李金玉,曹建国,徐文雨,等.混凝土冻融破坏机理的研究[J].水利学报,1999,(1):41-49.
    [7] Powers T C. A Working hypothesis for further studies of frost resistance of concrete [J].ACI Journal, Proceedings,1945,16(4):245-272.
    [8] Powers T C. Void spacing as a basis for producing air-entrained concrete [J]. ACI Journal,Proceedings,1954,50(9):741-760.
    [9] Powers T C. Freezing effect in concrete [A]. Scholer C F. Durability of Concrete [C].Detroit: American Concrete Institute,1975:1-11.
    [10] ASTM C457-90, Standard test method for microscopical determination of parameters of theair-void system in hardened concrete [S].
    [11] Pigeon M, Lachance M. Critical air void spacing factor for concretes submitted to slowfreeze-thaw cycle [J]. ACI Journal,1981,78(4):282-291.
    [12] Pigeon M. Freeze-thaw durability versus freezing rate [J]. ACI Journal,1985,82:684-692.
    [13] Chatterji S. Freezing of air-entrained cement-based materials and specific actions ofair-entraining agents [J]. Cement and Concrete Composites.2003,25:759-765.
    [14] Powers T C, Helmuth R A. Theory of volume changes in hardened portland cement pasteduring freezing [J]. Proceedings, Highway Research Board,1953,32:285-297.
    [15] Scherer G W. Crystallization in pores [J]. Cement and Concrete Research,1999,29(8):1347-1358.
    [16] Scherer G W. Stress from crystallization of salt [J]. Cement and Concrete Research,2004,34:1613-1624.
    [17] Bresme F, Cámara L G. Computer simulation studies of Crystallization under confinementcondition [J]. Chemical Geology,2006,230:197-206.
    [18] Fagerlund G. The international cooperative test of the critical degree of saturation methodof assessing the freeze/thaw resistance of concrete [J]. Materials and Structures,1977,10:231-253.
    [19] Fagerlund G. The critical degree of saturation method of assessing the freeze/thawresistance of concrete [J]. Materials and Structures,1977,10(58):379-382.
    [20] Jacobsen S. Calculating liquid transport into high-performance concrete during wetfreeze/thaw [J]. Cement and Concrete Research,2005,35:213-219.
    [21] Chen T. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology,2004,38:127-136.
    [22] Basheer L, Kropp J, Cleland D J. Assessment of the durability of concrete from itspermeation properties: a review [J]. Construction and Building Materials,2001,15:93-103.
    [23] Tikalsky P, Pospisil J, MacDonald W. A method for assessment of the freeze-thawresistance of preformed foam cellular concrete [J]. Cement and Concrete Research,2004,34:889-893.
    [24] Panesar D K, Chidiac S E. Capillary suction model for characterizing salt scaling resistanceof concrete containing GGBFS [J]. Cement and Concrete Composites,2009,31:570-576.
    [25]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999.
    [26] Mihta P K, Schiessl P, Raupach M. Performance and durability of concrete systems [A].Proceedings of9th international congress on the chemistry cement [C], Vol.1, New Delhi:Elsevier Applied Science,1992:571-659.
    [27] Powers T C. Topics in concrete technology-Part3: Mixtures containing intentionallyentrained air [J]. Journal of the PCA Research and Development Laboratories,1964,6(13):1942.
    [28] Kosmatka S H, Panarese W C. Design and control of concrete mixtures [M]. Skokie,Illinois Skokie (IL): Portland Cement Association,1994.
    [29] Neville A M. Properties of concrete [M]. New York (NY): John Wiley and Sons Inc,1997.
    [30]文志祥,刘方文.声波CT无损检测技术在混凝土质检中的应用[J].中国三峡建设,2002,7:18-19.
    [31]黄孝蘅,许彩虹,王丽文.硬化混凝土中气泡性质对抗冻性影响的试验研究[J].港湾建设,2003,3(3):14-17.
    [32] Rakesh Kumar, Bhattacharjee B. Porosity, pore size distribution and in situ strength ofconcrete [J]. Cement and Concrete Research,2003,33(2):155-164.
    [33]方秋清,杜如楼,等.混凝土[M].北京:中国建筑工业出版社,1989.
    [34]范沈抚.掺引气剂混凝土性能的研究[J].混凝土与水泥制品,1991,(1):11-13.
    [35]范沈抚.硬化混凝土气泡结构性质的实验研究[J].混凝土与水泥制品,1993,(2):26-29.
    [36]宋拥军.含气量对混凝土抗冻耐久性能的影响[J].中国三峡建设,1999,(11):45-47.
    [37]谭克锋.水灰比和掺合料对混凝土抗冻性能的影响[J].武汉理工大学学报,2006,(3):58-60.
    [38]成秀珍,张德思.引气粉煤灰混凝土抗冻融耐久性的研究[J].西北建筑工程学院学报,1999,(4):6-10.
    [39]方璟.混凝土在试验条件下冻融破坏的特点[J].混凝土与水泥制品,2003,(4):18-20.
    [40] Collins A R. The destruction of concrete by frost [J]. Journals of Institute of CivilEngineering,1944,23:29-41.
    [41]唐杰锋,吴胜兴.大体积混凝土施工期温度场的仿真计算与监测[J].工程质量,2002,7:17-18.
    [42]王永福.大体积混凝土垂直施工缝处裂缝开展的控制[J].电力建设,2002,23(3):27-28.
    [43] Fagerlund G. The significance of critical degrees of saturation at freezing of porous andbrittle materials [A]. Scholer C F, eds. Durability of concrete [C], Detroit: AmericanConcrete Institute,1975:13-65.
    [44] Skripkiūnas G, Nagrockien D, Girskas G, et al. The cement type effect on freeze-thaw anddeicing salt resistance of concrete [J]. Procedia Engineering.2013,57:1045-1051.
    [45] Gokce A, Nagataki S, Saeki T, et al. Freezing and thawing resistance of air-entrainedconcrete incorporating recycled coarse aggregate: The role of air content in demolishedconcrete [J]. Cement and Concrete Research,2004,34:799-806.
    [46] Kaufmann J. Experimental identification of ice formation in small concrete pores [J].Cement and Concrete Research,2004,34:1421-1427.
    [47] Wang L, Cao Y, Wang Z D, et al. Evolution and characterization of damage of concreteunder freeze-thaw cycles [J]. Journal of Wuhan University of Technology, MaterialsScience Edition,2013,28(4):710-714.
    [48] Niu D T, Jiang L, Bai M, et al. Study of the performance of steel fiber reinforced concreteto water and salt freezing condition [J]. Materials and Design,2013,44:267-273.
    [49] VEGAS I, URRETA J, FRíAS M, et al. Freeze–thaw resistance of blended cementscontaining calcined paper sludge [J]. Construction and Building Materials,2009,23(8):2862-2868.
    [50] Kanellopoulos A, Farhat F A, Nicolaides D, et al. Mechanical and fracture properties ofcement-based bi-materials after thermal cycling [J]. Cement and Concrete Research,2009,39:1087-1094.
    [51] Penttala V. Surface and internal deterioration of concrete due to saline and non-salinefreeze–thaw loads [J]. Cement and Concrete Research,2006,36:921-928.
    [52] Panesar D K, Chidiac S E. Capillary suction model for characterizing salt scaling resistanceof concrete containing GGBFS [J]. Cement and Concrete Composites,2009,31:570-576.
    [53]王阵地.基于无损测试的钢筋混凝土劣化过程和机理研究[D].北京:中国建筑材料科学研究总院,2012.
    [54] Cao J. Damage evolution during freeze–thaw cycling of cement mortar, studied byelectrical resistivity measurement [J]. Cement and Concrete Research,2002,32:1657-1661.
    [55] Arnfelt H. Damage on concrete pavements by winter time salt treatment [J]. StatensVaeginst (Sweden), Meddelande,1943:66.
    [56]曹建国,李金玉,林莉,等.高强混凝土抗冻性的研究[J].建筑材料学报,1999,2(4):292-297.
    [57] Powers T C. Measuring Young’s modulus of elasticity by means of sonic vibrations [A].Proceedings of ASTM [C],1938:460-469.
    [58] Hornibrook F B. Application of sonic method to freezing and thawing studies of concrete[J]. ASTM Bull,1939,(101):5.
    [59] Thomson W T. Measuring changes in physical properties of concrete by the dynamicmethod [A]. Proceeding of ASTM [C],1940:1113.
    [60] Obert L, Duvall W I. Discussion of dynamic methods of testing concrete with suggestionsfor standardization [A]. Proceeding of ASTM [C],1941:1053-1073.
    [61] Stanton T E, Tests comparing the modulus of elasticity of portland cement concrete asdetermined by the dynamic (sonic) and compression (scant at1000psi) methods [J]. ASTMBull,1944,(131):17.
    [62] MacInnis C, Whiting J D. The frost resistance of concrete subjected to a deicing agent [J].Cement and Concrete Research,1979,9:325-336.
    [63] Miura T, Lee D H. Deformation and deterioration of concrete subjected to cyclic coolingdown to very low temperatures [A]. Fagerlund G, Setzer M J, eds. Freeze-thaw and de-icingresistance of concrete [C], Lund,1991:19-33.
    [64] Penttala V. Freezing-induced strains and pressures in wet porous materials and especially inconcrete mortars [J]. Advanced Cement Based Matter,1998,7(1):8-19.
    [65] Penttala V, Al-Neshawy F. Stress and strain state of concrete during freezing and thawingcycles [J]. Cement and Concrete Research,2002,32(9):1407-1420.
    [66] Hasan M, Okuyama H, Sato Y, et al. Stress-strain model of concrete damaged by freezingand thawing cycles [J]. Journal of Advanced Concrete Technology,2004,2:89-99.
    [67] Maekawa K, Okamura H. The deformational behavior and constitutive equation of concreteusing the elasto-plastic and fracture model [J]. Journal of the Faculty of Engineering,1983,XXXVII(2):253-328.
    [68] Bishnoi S. Strain variations in concrete subjected to cyclic freezing and thawing [D]. Tokyo:University of Tokyo,2004.
    [69]曾强,李克非,冻融情况下降温速率对水泥基材料变形和损伤的影响[J].清华大学学报,2008,48:1390-1394.
    [70]曹银.多因素协同作用下粉煤灰-矿渣粉混凝土耐久性能的研究[D].北京:中国建筑材料科学研究总院,2013.
    [71] Stark J, Ludwig H M. Freeze-thaw and freeze-deicing salt resistance of concrete containingcement rich in granulated blast furnace slag [J]. ACI Materials Journal,1997,94(1):47-55.
    [72] Robler M, Odler I. Investigation on the relationship between porosity, structure and strengthof hydrated Portland cement pastes [J]. Cement and Concrete Research,1985,15(2):320-330.
    [73] Setzer M J. Action of frost and deicing chemicals-basic phenomena and testing [A]. FTDoC.Proceedings of the international workshop in the resistance of concrete to scaling due tofreezing in the presence of de-icing salt [C], Quebec, Canada,1997:3-22.
    [74] Neville A M著,李国泮,马贞勇译.混凝土的性能[M].北京:中国建筑工业出版社,1983.
    [75]黄士元,蒋家奋,杨南如,等.近代混凝土技术[M].陕西科学技术出版社,1998.
    [76] Verbeck C J, Kiieger P. Studies of salt scaling of concrete [J]. Highway Research BoardBulletin,1957,150:1-13.
    [77] Foy C, Pigeon M, Banthia N. Freeze-thaw durability and deicer salt scaling resistance of a0.25water-cement ratio concrete [J]. Cement and Concrete Research,1988,18(4):604-614.
    [78] Janssen D J, Snyder M B. Mass loss experience with ASTM C666: with and withoutdeicing salt [A]. FTDoC. Proceedings of the international workshop in the resistance ofconcrete to scaling due to freezing in the presence of de-icing salt [C], Quebec, Canada,1997:247-258.
    [79] Marchand J, Pigeon M, Bager D, et al. Influence of chloride solution concentration ondeicer salt scaling deterioration of concrete [J]. ACI Materials Journal,1999,96(4):429-435.
    [80]巴恒静,李中华,关辉.混凝土抗盐冻性能影响因素的研究[J].混凝土.2008,(11):1-3.
    [81]严安.在荷载与冻融双因素下混凝土的损伤过程[D].东南大学,1998.
    [82]慕儒,严安,孙伟.荷载作用下高强混凝土的抗冻性[J].东南大学学报,1998,28:138-143.
    [83]慕儒,严安,严捍东,等.冻融和应力复合作用下HPC的损伤与损伤抑制[J].建筑材料学报,1999,2(4):359-364.
    [84] Sun W, Zhang Y M, Yan H D. Damage and damage resistance of high strength concreteunder the action of load and freeze-thaw cycles [J]. Cement and Concrete Research,1999,29:1519-1523.
    [85]严安,李启令.高等混凝土在荷载作用下的冻融性能及其可靠性分析[J].混凝土与水泥,2000.
    [86]刘建忠,孙伟,等.弯曲荷载与盐溶液复合作用下混凝土冻融损伤[J].东南大学学报(自然科学版),2006,(36):244-247.
    [87] Jacobsen S, Granl H C, Sellevold E J. High strength concrete-freeze/thaw testing andcracking [J]. Cement and Concrete Research,1995,8:1775-1780.
    [88]刘波.模拟荷载作用下的混凝土耐久性研究[D].南昌:南昌大学,2007:3-4.
    [89]牛建刚,牛荻涛.荷载作用下混凝土的耐久性研究[J].混凝土,2008,226:30-33.
    [90]黄鹏飞.钢筋混凝土在环境腐蚀与弯曲荷载协同作用下的损伤失效研究[D].北京:中国建筑材料科学研究院,2004.
    [91]黄鹏飞,包亦望,姚燕.在盐冻循环、钢锈与弯曲荷载协同作用下钢筋混凝土的损伤失效研究[J].工业建筑,2005,35(5):63-67.
    [92]王阵地,姚燕,王玲.冻融循环-氯盐侵蚀-荷载耦合作用下混凝土中钢筋的锈蚀行为[J].硅酸盐学报,2011,39(6):1022-1026.
    [93]燕坤.多重因素作用下碳化混凝土的抗冻性[D].南京:南京航空航天大学,2007.
    [94] Sun W, Mu R, Luo X, et al. Effect of chloride salt, freeze–thaw cycling and externallyapplied load on the performance of the concrete [J]. Cement and Concrete Research.2002,32:1859-1864.
    [95] Mu R, Miao C, Luo X, et al. Interaction between loading, freeze–thaw cycles, and chloridesalt attack of concrete with and without steel fiber reinforcement [J]. Cement and ConcreteResearch,2002,32:1061-1066.
    [96] Wu Q L, Yu H F, Chen X X. Service life prediction method of concretes based on mass lossrate: establishment and narration of mathematical model [C]//Tenth InternationalConference of Chinese Transportation Professionals, Beijing: American Society of CivilEngineers,2010.
    [97]肖前慧,牛荻涛,朱文凭.冻融环境下混凝土强度衰减模型与耐久性寿命预测[J].建筑结构,2011,41(S2):203-207.
    [98]张峰,李术才,李守凯.混凝土随机冻融损伤三维预测模型[J].土木建筑与环境工程,2011,33(1):31-35.
    [99]刘志勇,马立国.高强混凝土的抗冻性与寿命预测模型[J].工业建筑,2005,35(1):11-14.
    [100]宁作君.冻融作用下混凝土的损伤与断裂研究[D].哈尔滨:哈尔滨工业大学,2009.
    [101]于孝民,任青文.冻融循环作用下普通混凝土断裂能试验[J].河海大学学报(自然科学版),2010,38(1):80-82.
    [102]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [103] Ababneh A N, Xi Y. Evaluation of environmental degradation of concrete in cold regions [C]//13th International Conference on Cold Regions Engineering, Orono, Maine, United States:American Society of Civil Engineers,2006.
    [104]刘卫东,苏文悌,王依.冻融循环作用下纤维混凝土的损伤模型研究[J].建筑结构学报,2008,29(1):124-128.
    [105]余红发,孙伟,麻海燕,等.基于损伤演化方程的混凝土寿命预测方法[J].建筑科学与工程学报,2012,29(1):1-7.
    [106] Cho T. Prediction of cyclic freeze–thaw damage in concrete structures based on responsesurface method [J]. Construction and Building Materials,2007,(21):2031-2040.
    [107] Al-Harthy A S, Bucher C G, Bourgund U. Efficient use of response surface methods [R].Report no.9-87, Institute of Engineering Mechanics, University of Innsbruck, Austria,1987.
    [108]王新友,李宗津.混凝土使用寿命预测的研究进展[J].建筑材料学报,1999,2(3):249-256.
    [109] Vesikarle. Service life design of concrete structure with regard to frost resistance ofconcrete [R]. Publication No.5Norske Betongforening, Oslo, Norway: Nordic ConcreteResearch,1986:215-228.
    [110]李金玉,邓正刚,曹建国,等.混凝土抗冻性的定量化设计[J].混凝土,2000,12(9):61-65.
    [111]刘崇熙,汪在芹.坝工混凝土耐久寿命的衰变规律[J].长江科学院院报,2000,17(2):18-21.
    [112]燕坤.多重因素作用下碳化混凝土的抗冻性[D].南京:南京航空航天大学,2007:45-50.
    [113]汪振双,宋志晨.混凝土损伤抛物线模型的建立与寿命预测[J].低温建筑技术,2009,(11):7-10.
    [114]王立久,汪振双,崔正龙.基于冻融损伤抛物线模型的再生混凝土寿命预测[J].应用基础与工程科学学报,2011,19(1):29-35.
    [115]慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D].南京:东南大学,2000.
    [116] Ghafoori N, Mathis R. A comparison of freezing and thawing durability of non-airentrained concrete pavers under ASTM C67and ASTM C666[J]. ACI Materials Journal,1997,94(6):325-331.
    [117]关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ:模型阐述和建立[J].硅酸盐学报,2001,29(6):509-513.
    [118]关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅱ:模型验证和应用[J].硅酸盐学报,2001,29(6):514-519.
    [119]刘荣桂,付凯,颜庭成,等.预应力混凝土结构在冻融损伤条件下的疲劳寿命预测模型研究[J].建筑结构学报,2009,30(3):79-86.
    [120]马明军,李克非,阎培渝.混凝土结构冻融损伤数据库的开发与使用[J].混凝土,2007,(3):7-10.
    [121] Hillerborg A, Modéer M, Petersson P E. Analysis of crack formation and crack growth inconcrete by means of fracture mechanics and finite elements [J]. Cement and ConcreteResearch.1976,6:773-781.
    [122] Banthia N, Pigeon M, Lachance L. Calorimetric study of freezable water in cement paste[J]. Cement and Concrete Research,1989,19:939-950.
    [123] Sun Z, Scherer G W. Pore size and shape in mortar by thermoporometry [J]. Cement andConcrete Research,2010,40:740-751.
    [124] Coussy O, Monteiro P, Poroelastic model for concrete exposed to freezing temperatures [J].Cement and Concrete Research,2008,(38):40-48.
    [125]慕儒,缪昌文,刘家平,等.氯化钠硫酸钠溶液对混凝土抗冻性的影响及其机理[J].硅酸盐学报,2001,29(6):523-529.
    [126]熊波.人口增长的Logistic模型分析及其应用[J].商业时代,2008,27:6-7.
    [127]李金玉.冻融环境下混凝土结构耐久性设计与施工指南[C]//中国硅酸盐学会2003年学术年会水泥基材料论文集(下册),2003.
    [128] Amazallag C, Gerey J P, Robert J L, et al, Standardization of the rainflow counting methodfor fatigue analysis [J]. International Journal of Fatigue,1994,16(4):287-293.
    [129] Wei J, Wu X H, Zhao X L. A model for concrete durability degradation in freeze-thawingcycles [J]. Acta Mechanica Solida Sinica,2003,16(4):353-358.
    [130] Alliche A, Francois D. Damage of concrete in fatigue [J]. Journal of EngineeringMechanics,1992,118(11):2176-2190.
    [131] Kachanov L M. Introduction to continuum damage mechanics [M]. Dordrecht: MartinusNijhoff Publishers,1986.
    [132] Rabotnov I N. On the equations of state for creep [C]//MacMillan. Progress in AppliedMechanics-the Prager Anniversary Volume, New York,1963:307-315.
    [133] Somerville G. The design life of structures [M]. Glasgow and London: Blackie and Son Ltd,1992.
    [134]嵇志,荣王杰,夏桂英.长白山机场抗冻混凝土设计[J].江西建材,2009,(2):7-13.
    [135]吉风鸣,等.水泥混凝土道面施工技术与管理[M].呼和浩特,内蒙古人民出版社,1991:7-8.
    [136]盖国辉,李超,熊建波,等.青岛海湾大桥海工高性能混凝土配制技术研究[J].2009,(9):155-161.
    [137]郝淑敏,刘峰,张天亮.青岛海湾大桥高性能混凝土配合比设计方法的探讨[J].2008,(6):28-34.
    [138]董支宝,梅佳鸿.青岛海湾大桥十合同C50海工高性能混凝土配合比设计[J].建筑设计,2009,(38):238-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700