盐生药用植物黑果枸杞耐盐生理生态机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用野外试验与室内模拟处理相结合的方法,对自然盐渍生境下荒漠盐生药用植物黑果枸杞渗透调节机制、光合作用、叶片超微结构及模拟条件下幼苗生长规律、渗透调节及离子区域化分布等内容进行了深入研究,旨在探讨黑果枸杞耐盐生理生态机制,为引种驯化及种质资源保护提供理论依据。得出的主要结论如下:
     1.随着植株高度的增加,黑果枸杞叶片肉质化程度增加,丙二醛和脯氨酸含量下降,可溶性糖和可溶性蛋白含量在植株高度20~40 cm时含量最低,在小于20 cm时相对最高,而K~+/Na~+、Ca~(2+)/Na~+、Mg~(2+)/Na~+、Si~(4+)/Na~+均在30~40 cm时最大,而在10~20 cm时最小。可见,在野生状态下,黑果枸杞在30~40 cm高度时个体耐盐能力最强,而在20 cm以下时耐盐能力最弱。
     当邻体植物为白刺和柽柳时,黑果枸杞叶片肉质化程度相对较高,丙二醛、脯氨酸、可溶性糖和可溶性蛋白含量也较低,K~+/Na~+、Ca~(2+)/Na~+、Mg~(2+)/Na~+和Si~(4+)/Na~+则较高,而当邻体植物为花花柴和盐爪爪时,各物质积累情况正好相反。通过综合评价,发现黑果枸杞叶片在邻体植物为白刺时隶属函数值最高,其次为柽柳、盐爪爪,花花柴时最小。说明黑果枸杞在邻体植物为白刺时耐盐能力最强,而邻体植物为盐爪爪或花花柴时耐盐能力较弱。
     就不同器官而言,Na~+、K~+、Cl~-主要分布在黑果枸杞地上部分,而Ca~(2+)主要分布在根部,Mg~(2+)在叶片中最高,Si~(4+)则茎中最高;根中K~+/Na~+、Ca~(2+)/Na~+均比叶片为高。同时,K~+/Na~+、Ca~(2+)/Na~+、Mg~(2+)/Na~+、Si~(4+)/Na~+总体呈现随根长增加呈现“两头大,中间小”的变化规律。
     2.在民勤盐渍区生长的5种荒漠植物黑果枸杞、盐爪爪、白刺、花花柴和芦苇,元素平均含量顺序为Cl>Ca>S>K>Si>Na>P>Mg>Al,其中积盐及泌盐盐生植物中Cl、Ca、S三种元素的相对含量较高,而拒盐盐生植物中K和Si两种元素的相对含量比Ca、Cl和S要高。积盐盐生植物中,黑果枸杞的K/Na、Ca/Na、Mg/Na、Si/Na等离子比值高于盐爪爪和白刺,表现出相对较强的耐盐能力。
     黑果枸杞及花花柴Fo、qN从早上6:00到18:00呈倒“V”型走势,最大值均出现在中午13:30,而Fm、Fv/Fm、Fv/Fo及Φ_(PSⅡ)等则呈“V”型走势,最小值出现在13:30。在同一生境中,当环境温度较低时,花花柴热耗散较低,光化学活性比黑果枸杞大,而当环境温度达到全天最高,即接近39~40℃时,黑果枸杞热耗散较高,光化学活性反而比花花柴大,表现出对光抑制较强的适应能力。
     3.轻度盐胁迫可增加枸杞属两种植物的叶片相对含水量,而随着盐胁迫程度的加重,叶片相对含水量迅速下降,同时,在对照及盐处理组,黑果枸杞叶片相对含水量显著高于宁夏枸杞。盐处理组中黑果枸杞和宁夏枸杞叶片叶绿体各光合色素含量显著高于对照,且随盐浓度升高而增加,但chla/chlb比值在低盐时增加,而后随胁迫程度的加重而快速下降。而叶片相对电导率和各器官丙二醛含量随胁迫浓度的增加而呈逐渐升高趋势,但中、高盐胁迫下,黑果枸杞各器官中的丙二醛含量显著低于同浓度胁迫下的宁夏枸杞。
     在对照及盐处理组,黑果枸杞和宁夏枸杞脯氨酸和可溶性糖含量在各器官中的分布规律为根>茎>叶。同时,盐处理组中两种植物各器官中的脯氨酸和可溶性糖含量随着盐胁迫浓度的增加呈逐渐增加态势。其中,在对照及盐处理组,黑果枸杞叶片中积累的脯氨酸含量显著高于宁夏枸杞,茎及根中的脯氨酸含量却显著低于宁夏枸杞;在盐胁迫下,两种植物各器官中的Na~+和Cl~-相对含量均显著高于对照,且随着盐浓度的增加,其含量也逐渐增加,尤以叶片中积累最多;K~+、Ca~(2+)、Mg~(2+)、Si~(4+)在盐处理组各器官中的相对含量比对照降低或无差异。同时,各器官中的K~+/Na~+、Ca~(2+)/Na~+、Mg~(2+)/Na~+及Si~(4+)/Na~+均随盐浓度增加而呈逐渐下降的趋势。盐处理组中,黑果枸杞各器官中K~+/Na~+、Ca~(2+)/Na~+、Mg~(2+)/Na~+和Si~(4+)/Na~+离子比值均显著高于同浓度胁迫下的宁夏枸杞,且高盐胁迫下黑果枸杞各离子比值相对于对照下降的幅度远小于宁夏枸杞。
     综合分析,在盐胁迫下,枸杞属两种植物有机溶质和无机离子同时发生积累,但有机溶质主要在根部积累,而无机离子(主要是Na~+和Cl~-)则选择在叶片中积累,表现出不同类型渗透调节物在植物渗透调节中的互补性。而且,相对而言,黑果枸杞比宁夏枸杞具有较强的耐盐能力。
     4.随着胁迫天数的延长,低盐胁迫均可促进黑果枸杞株高、根长、植株鲜干重及根冠比的增加,高盐胁迫虽抑制了黑果枸杞株高生长,降低了叶片、茎及整株的鲜干重,却促进了根长、根鲜干重的增加,并导致根冠比上升;质膜透性和丙二醛含量随胁迫强度和胁迫时间的增加而逐渐增加,且高盐胁迫比在低盐胁迫下,叶片相关指标随时间的积累幅度较大;脯氨酸积累量呈先增加后降低的倒“V”型趋势,与处理前相比,胁迫结束时脯氨酸含量呈几倍甚至几十倍增加,对盐胁迫的响应较为敏感,可溶性糖在低盐胁迫下虽总体呈增加态势,但积累不明显,而高盐胁迫下其含量随胁迫时间增加呈倒“V“型走势,胁迫前后相比其增幅较大;Na~+和Cl~-相对含量逐渐增加,且高盐胁迫比低盐胁迫积累幅度更大,K~+、Ca~(2+)、Mg~(2+)和Si~(4+)四种离子逐渐下降,且高盐胁迫比低盐胁迫下下降幅度更大,而K~+/Na~+、Ca~(2+)/Na~+、Mg~(2+)/Na~+和Si~(4+)/Na~+离子比值均呈下降趋势。
     5.黑果枸杞叶绿体在高盐环境中结构膨大,有部分变成近圆形,淀粉粒消失,空泡化现象非常明显,似空泡状结构呈增多增大趋势,并从叶绿体边缘向类囊体中转移,类囊体结构被破坏。线粒体紧密分布在叶绿体周围,数量不多,变化不大。
In order to explore physio-ecological mechanism of salt tolerance of Lycium ruthencium, osmotic regulation, photosynthesis, leaf ultrastructure of natural saline habitat and seedling growth, organic solute, ion content in simulation condition were studied deeply adopting field test and indoor simulation method. These results could provide theoretical basis for cultivation and resource protection of Lycium ruthencium. The main conclusions showed that:
     1. With height of Lycium ruthenicum increasing, the degree of leaf succulence was improved, but MDA and proline content decreased. Soluble sugar and soluble protein content of plant that height was below 20 centimeters was the higher than that of plant whose height was between 20 to 40 centimeters. The ratio of K~+/Na~+, Ca~(2+)/Na~+, Mg~(2+)/Na~+ and Si~(4+)/Na~+ were the highest in plant whose height was 30 to 40 centimeters and lowerest in plant that was height of 10 to 20 centimeters. In conclusion, salt tolerance of individuals in the height of 30 to 40 centimeter was the strongest, while the plant whose height was below 20 centimeter was the poorest.
     When adjacent plant was Nitraria tangutorum and Tamirix, leaves succulent degree of Lycium ruthenicum was relatively higher, but proline, soluble sugar and soluble protein content lower, the ratio of K~+/Na~+, Ca~(2+)/Na~+, Mg~(2+)/Na~+, and Si~(4+)/Na~+ higher. But when adjacent plant was Karelinia caspica and Kalidium foliatum, each matter accumulation appeared opposite with above situation. Through comprehensive evaluation of subordinate function value, it was found that its value was the highest when adjacent plant was Nitraria tangutorum, successively Kalidium foliatum, Kalidium foliatum and Karelinia caspica. It showed that salt tolerance of Lycium ruthenicum was highest when adjacent plant was Nitraria tangutorum, and lowest when adjacent plant was Karelinia caspica and Kalidium foliatum.
     As far as different organs were concerned, Na~+, K~+ and Cl~- mainly distributed in overground part of Lycium ruthenicum, Ca~(2+) mainly accumulated in its root, but Mg~(2+) and Si~(4+) content were highest respectively in leaf and stem. The ratios of K~+/Na~+ and Ca~(2+)/Na~+ in root of Lycium ruthenicum were higher than leaf. And the same time, the change laws of K~+/Na~+, Ca~(2+)/Na~+, Mg~(2+)/Na~+, and Si~(4+)/Na~+ ratios appeared firstly reducing then adding with root length increasing.
     2. In Minqin saline area, the order of element content of five desert plants such as Lycium ruthenicum, Kalidium foliatum, Nitraria tangutorum, Karelinia caspica and Phragmites australis was chlorine>calcium>sulfur>potassium>silicon>sodium> phosphorus>magnesium>aluminum. Chlorine, calcium and sulfur element content of salt accumulating and excreting plants was relatively higher, while potassium and silicon element of salt excluding plants was higher than chlorine, calcium and sulfur. Among three salt accumulating plants, the ratios of K/Na, Ca/Na, Mg/Na and Si/Na of Lycium ruthenicum were higher than Kalidium foliatum and Nitraria tangutorum, which showed stronger ability of salt tolerance.
     Fo and qN of Lycium ruthenicum and Karelinia caspica appeared reverse“V”-type tendency from A.M. 6 o’clock to P.M. 18 o’clock, and their maximum value occurred at noon 13:30. While Fm, Fv/Fm, Fv/Fo andΦ_(PSⅡ) appeared“V”-type tendency, and their minimum value occurred 13:00. In the same habitat, when environment temperature was lower, heat dissipation of Karelinia caspica was lower, its photochemical activity was higher than Lycium ruthenicum. When environment temperature reached the highest, namely close to 39 to 40 centigrade, heat dissipation of Lycium ruthenicum was higher, and its photochemical activity was higher than Karelinia caspica, which showed stronger adapting ability to photoinhibition.
     3. Slight salt stress could increase relative water content in the leaves of Lycium ruthenicum and Lycium barbarum. But their relative water content declined rapidly with salt concentration increasing. At the same time, relative water content of Lycium ruthenicum was significantly higher than Lycium barbarum in contrast and salt treatment groups. Photosynthetic pigment contents of two plants in salt treatment groups were higher than in contrast, and their contents added with salt concentration increasing. But the ratio of chla and chlb increased in lower salt stress, and then decreased rapidly with stress degree aggravating. Also relative conductivity and MDA content of different organs of two plants increased with salt stress concentration rising, but in medium and high salt stress, MDA content of different organs of Lycium ruthenicum was lower than Lycium barbarum under same salt concentration.
     In contrast and salt treatment groups, the distribution law of proline and soluble sugar content of two plants was root>stem>leaf. Meanwhile, proline and soluble sugar content of two plants in salt treatment groups added with the increasing of salt stress concentration. Proline content in the leaves of Lycium ruthenicum was higher than Lycium barbarum, but its contents in stem and root of Lycium ruthenicum were significantly lower than Lycium barbarum. There were higher Na~+ and Cl~- relative content of two seedlings than those of contrast, and its content became gradually higher with salt concentration increasing. Among different organs, accumulation of Na~+ and Cl~- were the most highest in leaves tissue. On the contrary, K~+、Ca~(2+)、Mg~(2+) and Si~(4+) content of seedlings under different salt tolerance reduced or did not vary compared with contrast. At the same time, the K~+/Na~+, Ca~(2+)/Na~+, Mg~(2+)/Na~+ and Si~(4+)/Na~+ ratios in leaves, stems and roots decreased gradually with salt concentration increasing under NaCl stress. The K~+/Na~+, Ca~(2+)/Na~+, Mg~(2+)/Na~+ and Si~(4+)/Na~+ ratios in Lycium ruthenicum under salt stress were markedly higher than those in Lycium barbarum, and the descendant degree of these ratios of Lycium ruthenicum were enormously lower than those of Lycium barbarum especially in higher salt concentration.
     Through comprehensive analysis, it could be found that organic solute and inorganic ions accumulated simultaneously in the organs of Lycium ruthenicum and Lycium barbarum. Differently, organic solute mainly accumulated in roots, but inorganic ions accumulated mainly accumulated in leaves, which showed complementary among different types of osmotic regulation substance. And comparatively speaking, Lycium ruthenicum had stronger ability than Lycium barbarum in salt tolerance.
     4. With the extension of stress days, lower salt stress could increase height, root length, fresh dry weight and root/shoot ratio of Lycium ruthenicum. Though higher salt stress suppressed height growth of Lycium ruthenicum, and reduced fresh dry weight of leaves, stems and whole plants, it increased length, fresh dry weight of root and root/shoot ratio. Membrane permeability and MDA content of Lycium ruthenicum increased gradually with stress strength and time increasing, and the accumulation of above two physiological indexes in higher salt stress was larger than lower salt stress with stress time increasing. The accumulation of proline of Lycium ruthenicum firstly increased then decreased during salt stress, but its accumulation at the end of salt stress increased several or even dozens of times compared with stress before, which showed proline was more sensitive to salt stress. Soluble sugar content of Lycium ruthenicum increased in lower salt stress on the whole, but its accumulation was not obvious. Under higher salt stress, soluble sugar content appeared reverse“V”-type tendency with salt stress time increasing, its accumulation at the end of salt stress were bigger compare with stress before. Na~+ and Cl~- relative content added gradually with salt stress time increasing, and their accumulation in higher salt stress were higher than in lower salt stress. K~+, Ca~(2+), Mg~(2+) and Si~(4+) relative content decreased gradually, and their declining account in higher salt stress were bigger than in lower salt stress. The ratio of K~+/Na~+, Ca~(2+)/Na~+, Mg~(2+)/Na~+ and Si~(4+)/Na~+ appeared declining tendency with salt stress time increasing.
     5. Chloroplasts of Lycium ruthenicum became swollen under higher salt environment, even a part of chloroplasts became suborbicular, and starch grains disappeared. Also vacuolated phenomenon was very obvious, the number of like vacuolated structure increased and size largened. These vacuolated structures transferred from edge to thylakoid, which led to thylakoid structure being destroyed. Mitochondria distributed closely around the chloroplast, and its number were a little, the change was not obvious.
引文
[1]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报, 2008, 45(5): 837-845.
    [2]陈海魁,蒲凌奎,曹君迈,等.黑果枸杞的研究现状及其开发利用[J].黑龙江农业科学, 2008(5): 155-157.
    [3]甘青梅.浅述藏药的研究[J].中草药, 2001, 32(4): 371-373.
    [4]刘勇民.维吾尔药志:下[M].乌鲁木齐:新疆科技卫生出版社, 1999.
    [5]杨春树,马明呈,李文.不同种源野生黑果枸杞容器育苗试验[J].陕西农业科学, 2007, (3): 61-63.
    [6]汪建红,陈晓琴,张蔚佼.黑果枸杞果实多糖抗疲劳生物功效及其机制研究[J].食品科技, 2009, 34(2): 203-207.
    [7]汪建红,陈晓琴,张蔚佼.黑果枸杞果实多糖降血糖生物功效及其机制研究[J].食品科学, 2009, 30(5): 244-248.
    [8]李进,瞿伟菁,刘丛,等.黑果枸杞色素对高脂血症小鼠血脂及脂质过氧化的影响[J].食品科学, 2007, 28(9): 514-518.
    [9]陈海魁,蒲凌奎,倪志婧,等.黑果枸杞硬实种子处理方法研究[J].安徽农业科学, 2009, 37(6): 2540-2541, 2571.
    [10]陈斌.柴达木盆地资源植物黑果枸杞育苗技术[J].北方园艺, 2008, (4): 138-139.
    [11]浩仁塔本,赵颖,郭永盛,等.黑果枸杞的组织培养[J].植物生理学通讯, 2005, 41(5): 631.
    [12]章英才,张晋宁.两种盐浓度环境中的黑果枸杞叶的形态结构特征研究[J].宁夏大学学报(自然科学版), 2004, 25(4): 365-367.
    [13]杨志江,李进,李淑珍,等.不同钠盐胁迫对黑果枸杞种子萌发的影响[J].种子, 2008, 27(9): 19-22.
    [14]赵可夫.植物抗盐生理[M].北京:中国科学技术出版社, 1993.
    [15] Munns R. Comparative physiology of salt and water stress[J]. Plant, Cell and Environment, 2002, 25: 239-250.
    [16] Ziska L H. Dejong T M, Hoffman G F, et al. Sodium and chlorite distribution in salt stressed Prunus salicina, a deciduous tree species[J]. Tree Physiology, 1991, 8: 47-57.
    [17] Jaleel C A, Sankar B, Sridharan R, et al. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus Turkish[J]. Journal of Biology, 2008, 32: 79-83.
    [18] Vicente Q, Boscaiu M, Naranjo M A, et al. Responses tosalt stress in the halophyte Plantago crassifloia(Plantaginaceae)[J]. Journal of Arid Environment, 2004, 58: 463-481.
    [19]秦景,贺康宁,谭国栋,等. NaCl胁迫对沙棘和银水牛果幼苗生长及光合特性的影响[J].应用生态学报, 2009, 20(4): 791-797.
    [20] Jafri A Z, Ahmad R. Plant growth and ionic distribution in cotton under saline environment[J]. Pakistan Journal of Botany, 1994, 26(1): 105-114.
    [21]李品芳,杨志成. NaCl胁迫下高羊茅生长及K~+、Na~+吸收与运输的动态变化[J].草业学报, 2005, 14(4): 58-64.
    [22]王宝山,邹琦,赵可夫.高粱不同器官生长对NaCl胁迫的响应及其耐盐阈值[J].西北植物学报, 1997, 17(3): 270-285.
    [23]石德成,盛艳敏,赵可夫.复杂生态条件的人工模拟及其对羊草生长的影响[J].草业学报, 1998, 7(1): 36-41.
    [24]刘新星,罗俊杰.豌豆幼苗在盐胁迫下的生理生态响应[J].草业科学, 2010, 27(7): 88-93.
    [25]孙景波,孙广玉,刘晓东,等.盐胁迫对桑树幼苗生长、叶片水分状况和离子分布的影响[J].应用生态学报, 2009, 20(3): 543-548.
    [26] Bernstein N, Silk W K, Lauchli A. Growth and development of sorghum leaves under conditions of NaCl stress[J]. Planta, 1993, 191: 433-439.
    [27] Grieve C M, Francois L E, Mass E V. Salinity affects the timing of phasic development in spring wheat[J]. Crop Science, 1994, 34: 1544-1549.
    [28] Grieve C M, Lesch S M, Mass E V, et al. Leaf and spikelet primordial initiation in salt- stressed wheat[J]. Crop Science, 1993, 33: 1286-1292.
    [29] Mass E V, Grieve C M. Spike and leaf development in salt-stressed wheat[J]. Crop Science, 1990, 30: 1309-1313.
    [30]李伟强,刘小京,赵可夫. NaCl胁迫下3种盐生植物生长发育及离子在不同器官分布特性研究.中国生态农业学报, 2006, 14(2): 49-52.
    [31]赵勐,范海,赵可夫. NaCl、KCl和NaNO_3对盐地碱蓬生长以及植物体内离子组成和分布的效应[J].植物生理学通讯, 2008, 44(2): 263-267.
    [32]李洪燕,郑青松,姜超强,等.籽粒苋幼苗对不同盐离子胁迫响应的比较研究[J].草业学报, 2010, 19(5): 63-70.
    [33] Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses[J]. Plant Cell Environment, 1993, 16:15-24.
    [34] Kuiper D J, Schuit. Actual cytokine in content rat ion in plant tissue as an indicator for salt resistance in cereals[J]. Plant Soil, 1990, 123: 243-250.
    [35] Stoeyr, Wal Kerr. Citrus and salinity[J]. Scientia Horticulturae, 1999, 78: 39-81.
    [36] Kulieva F B, Shanina Z B, Strogonov B P. Effect of high sodium chloride content rations on the invitro cell division of crop is capillaris[J]. Fiziol Rsat, 1975, 22: 131-135.
    [37]孙兰菊,岳国峰.植物耐盐机制的研究进展[J].海洋科学, 2001, 25(4): 28-31.
    [38] Moran J F, Becana M. Drought induces oxidative stress in pea plants[J]. Planta, 1994, 94: 346-352.
    [39]王爱国.丙二醛作为脂质过氧化指标的探讨[J].植物生理学通讯, 1986, 2: 55-57.
    [40]杨劲松,陈德明,沈其荣.作物抗盐机制研究:Ⅰ.小麦水分保持与质膜渗透性[J].土壤学报, 2002,39(4): 524-528.
    [41]时丽冉,牛玉璐,李明哲.苣荬菜对盐胁迫的生理响应[J].草业学报, 2010, 19(6): 272-275.
    [42]周芬,曾长立,王建波.外源钙降低拟南芥幼苗盐害效应[J].武汉植物学研究, 2004, 22(2): 179-182.
    [43]谈建康,安树青,王铮峰,等. NaCl、Na2SO4和Na2CO3胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报, 1998, 15(增刊): 82-86.
    [44] Michel E G, Alfonso A, Cristina M A, et al. Hormonal changes during salinity-induced leaf senescence in tomato(Solanum lycopersicum L.)[J]. Journal of Experimental Botany, 2008, 59(11): 3039-3050.
    [45] Bai X F, Zhu J J, Zhang P, et al. Na~+ and water uptake in relation to the radial reflection coefficient of root in arrow leaf saltbush under salt stress[J]. Journal of Integrative Plant Biology, 2007, 49: 1334-1340.
    [46]邹日,栢新富,朱建军.盐胁迫对三角叶滨藜根选择透性和反射系数的影响[J].应用生态学报, 2010, 21(9): 2223-2227.
    [47] Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grain[J]. Environ Exp Bot, 1999, 42: 211-220.
    [48]王龙强,蔺海明,肖雯,等.盐地宁夏枸杞生理生化指标及抗盐特性研究[J].甘肃农业大学学报, 2004, 39(6): 611-614.
    [49]简令成,王红.逆境植物细胞生物学[M].北京:科学出版社, 2009.
    [50] Strogonov B P. Structure and function of plant cell in saline[M]. New York: Halsted Press, 1975.
    [51]王标,虞木奎,孙海菁,等.盐胁迫对不同种源麻栎叶片光合特征的影响[J].应用生态学报, 2009, 20(8): 1817-1824.
    [52] Rao G G, Rao G R. Pigment composition and chlorophyllase activity in pigment pea and gingelley under NaCl salinity[J]. Indian Journal of Experimental Biology, 1981, 19: 768-770.
    [53] Valentina M. Activities of SOD and the ascorbateglutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii. Plant Physiology, 2000, 110(1): 42-51.
    [54]韩志平,郭世荣,冯吉庆,等.盐胁迫对西瓜幼苗生长、叶片光合色素和脯氨酸含量的影响[J].南京农业大学学报, 2008, 31(2): 32-36.
    [55]尹增芳,何祯祥,王丽霞,等. NaCl胁迫下海滨锦葵种子萌发和幼苗生长过程的生理特性变化[J].植物资源与环境学报, 2006, 15(1): 14-17.
    [56]刘志华,时丽冉,白丽荣,等.盐胁迫对獐毛叶绿素和有机溶质含量的影响[J].植物生理与分子生物学学报, 2007, 33(2): 165-172.
    [57]郑国琦,许兴,徐兆祯,等.盐胁迫对枸杞光合作用的气孔和非气孔限制[J].西北植物学报, 2002, 22(6): 1355-1359.
    [58] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annu. Rev. Plant Physiol., 1982, 33: 317-345.
    [59] Downton W J, Loveys B R, Grant J R. Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid[J]. New Phytol, 1988, 108: 263-266.
    [60]江行玉,窦君霞,正秋. NaCl对玉米和棉花光合作用与渗透调节能力影响比较[J].植物生理学通讯, 2001, 37(4): 303-305.
    [61]吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长于光合作用的影响[J].南京林业大学学报(自然科学版), 2002, 26(3): 19-22.
    [62]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4): 444-448.
    [63]李鹏民,高辉远, Reto J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005, 31(6): 559-566.
    [64]陈建民,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报, 2006, 18(1): 51-55.
    [65] Powle S B. Photoinhibition of photosynthesis induced by visible light[J]. Rev. Plant Physiol, 1984, 35: 15-44.
    [66] Bjorkman O, Powles S B. Inhibition of photosynthetic reactions under water stress: interactions with light level[J]. Planta, 1984, 161: 490-504.
    [67] Ara E M, Virgin I, Andersson B. Photoinhibition and D1 protein degradation in peas acclimated to different growth in irradiance[J]. Plant Pgysiol, 1993, 103: 835-843.
    [68] Everard J D, Gucc R, Kann S C, et al. Gad exchange and carbon partitioning in the leaves of celery(Aptium Graveolens L.) at various level of root zone salinity[J]. Plant Physiol, 1994, 106: 281-292.
    [69]葛江丽,石雷,谷卫彬,等.盐胁迫条件下甜高粱幼苗的光合特性及光系统Ⅱ功能调节[J].作物学报, 2007, 33(8): 1272-1278.
    [70]梁海永,李会平,杨敏生,等. NaCl胁迫对毛白杨试管小植株叶片离子吸收及荧光诱导动力学参数的影响[J].河北林果研究, 1999, 14(3): 199-202.
    [71]惠红霞,许兴,李前荣. NaCl胁迫对枸杞叶片甜菜碱、叶绿素荧光及叶绿素含量的影响[J].干旱地区农业研究, 2004, 22(3): 109-114.
    [72]韩张雄,李利,徐新文,等. NaCl胁迫对3种荒漠植物幼苗叶绿素荧光参数的影响[J].西北植物学报, 2008, 28(9): 1843-1849.
    [73] Munns R. Comparative physiology of salt and water stress[J]. Plant Cell Environ, 2002, 25: 239-250.
    [74] Tester M, Davenport R. Na~+ tolerance and Na~+ transport in higher plants[J]. Ann Bot, 2003, 91: 503-527.
    [75] Glenn E P, Brown J J. Salt tolerance and crop potential of halophytes[J]. Crit Rev Plant Sci, 1999, 18: 227-255.
    [76] Volkmar K M, Hu Y, Steppuhn H. Physiological responses of plants to salinity: a review[J]. Canadian J Plant Sci, 1998, 78: 19-27.
    [77]李孟收.植物体内的钠及其营养功能[J].甘肃农业科技, 2000, (3): 10-11.
    [78]刘祖琪,张士城.植物抗性生理学[M].北京:中国农业出版社, 1994.
    [79]肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报, 2000, 20(5): 818-820.
    [80]吕湘芳,李利,徐新文,等.准格尔盆地4种盐生植物耐盐机制分析[J].干旱区研究, 2010, 27(1): 97-101.
    [81]马建东.几种盐生植物对盐胁迫反应的研究[D].乌鲁木齐:新疆大学, 2004.
    [82]郑国琦,许兴,邓西平,等.盐分和水分胁迫对枸杞幼苗渗透调节效用的研究[J].干旱地区农业研究, 2002, 20(2): 56-59.
    [83]谭会娟,贾荣亮,刘玉冰,等. NaCl胁迫下红砂愈伤组织中主要离子累积特征的研究[J].中国沙漠, 2010, 30(6): 1305-1310.
    [84]杨帆,丁菲,杜天真.盐胁迫下构树幼苗各器官中K~+、Ca~(2+)、Na~+和Cl-含量分布及吸收特征[J].应用生态学报, 2009, 20(4): 767-772.
    [85] Chary P, Dilion D, Schroeder A L, et al. Superoxide dismutase(sod-1) null mutant of Neurospora crassa: oxidative stress sensitivity, spontaneous mutation rate and response to mutagent[J]. Genetics, 1994, 137: 723-730.
    [86] Hajibagheri M A, Yeo A R, Flowers T J, et al. Salinity resistance in Zea mays: Fluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids[J]. Plant, Cell and Environment, 1989, 12: 753-757.
    [87]田野,张焕朝,方升佐.盐胁迫下土壤-杨树系统中离子运移与分布特征[J].南京林业大学学报(自然科学版), 2003, 27(4): 5-9.
    [88]刘志华.盐生植物獐毛耐盐基础生理的研究[J].衡水学院学报, 2007, 9(1): 5-9.
    [89]高辉远,李卫军. Na_2SO_4胁迫对苇状羊茅和鸭茅Na~+、K~+吸收与分配的影响[J].中国草地, 1995, 5: 43-48.
    [90]麻莹,曲冰冰,郭立泉,等.盐碱混合胁迫下抗碱盐生植物碱地肤的生长及其茎叶中溶质积累特点[J].草业学报, 2007, 16(4): 25-33.
    [91] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7: 405-410.
    [92] Matsumoto H, Yamaya T. Repression of the K~+ uptake and cation-stimulated ATPase activity associated with the plasma membrane-enriched fraction of cucumber roots due to Ca~(2+) starvation. Plant Cell Physiol, 1984, 25: 1501-1508.
    [93] Lynch J, Polito V S, Lauchli A. Salinity stress increases cytoplasmic Ca activity in maize root protoplasts[J]. Plant Physiol, 1989, 90: 1271-1274.
    [94] Perez-Part E, Narasimhan M L, Binzel M L, et al. Induction of a putative Ca~(2+)-ATPase mRNA in NaCl-adapted cells[J]. Plant Physiol, 1992, 100: 1471-1478.
    [95] Wimmers L E, Ewing N N, Bennett A B. Higher plant Ca~(2+)-ATPase: primary structure and regulation ofmRNA abundance by salt[J]. Proc Natl Acad Sci USA, 1992, 89: 9205-9209.
    [96] Parida K, Das A B, Mittra B. Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of themangrove, B ruguiera parviflora[J]. Trees-Struct Funct, 2004, 18: 167-174.
    [97] Maathuis F J M, Amtmann A. K~+ nutrition and Na~+ toxicity: The basis of cellular K~+/Na~+ ratios[J]. Annals of Botany, 1999, 84: 123-133.
    [98]杨帆,丁菲,杜天真.盐胁迫下构树幼苗各部位中K~+、Ca~(2+)、Na~+和Cl-含量分布及吸收特征[J].应用生态学报, 2009, 20(4): 767-772.
    [99] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicol Environ Saf, 2005, 60(3): 324-349.
    [100]杨晓英,章文华,王庆亚,等.江苏野生大豆的耐盐性和离子在体内的分布及选择性运输[J].应用生态学报, 2003, 14(12): 2237-2240.
    [101]朱义,谭贵娥,何池全,等.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响[J].生态学报, 2007, 27(12): 5447-5454.
    [102]宁建凤,郑青松,杨少海,等.高盐胁迫对罗布麻生长及离子平衡的影响[J].应用生态学报, 2010, 21(2): 325-330.
    [103]柏新富,朱建军,王仲礼,等.离子吸收分布与几种荒漠植物适应性的关系[J].生态学报, 2010, 30(12): 3247-3253.
    [104]杨春武,李长有,张美丽,等.盐、碱胁迫下小冰麦体内的pH及离子平衡[J].应用生态学报, 2008, 19(5): 1000-1005.
    [105] Rodriguez H G, Boberts J K M, Jordan W R, et al. Growth, water relations, and accumulation of organic and inorganic solutes in roots of Maize seedlings during salt stress[J]. Plant Physiol, 1997, 113: 881-893.
    [106]许祥明,叶和春,李国风.植物抗盐机理的研究进展[J].应用与环境生物学报, 2000, 6(4 ): 379-384.
    [107]刘家尧,衣艳君,赵可夫.盐分对碱蓬幼苗离子含量、甜菜碱水平和BADH活性的效应[J].植物学报, 1994, 36(8): 622-626.
    [108]高庆义,王宝山.高粱叶中有机渗透调节物质对NaCl胁迫的响应[J].山东师大学报, 1998, 13(3): 300-305.
    [109]刘会超,孙振元,彭镇华. NaCl胁迫对五叶地锦生长及某些生理特性的影响[J].林业科学, 2004, 40(6): 64-67.
    [110] Aspinall D, Paleg L. Proline accumulation: physiological aspects[M]. London: Academic Press, 1981.
    [111] Leener H R. Adaptation to salinity at the plant cell level[J]. Plant and Soil, 1985, 89:3-14.
    [112] Sabua A, Sheeja T E, Nambison P. Comparison of proline accumulation in callus and seedlings of two cultivation of Oryza sativa L. differing in salt tolerance[J]. Indian J Exp Biol, 1995, 33(2): 139-141.
    [113] Hare P D, Cress W A, Van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction[J]. J Exp Bot, 1999, 50: 413-434.
    [114] Maggio A, Reddy M P, Joly R J. Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grow at moderate salinity[J]. Environ Exp Bot, 2000, 44:31-38.
    [115]贺道耀,余舒文.水稻高脯氨酸愈伤组织变异体的选择及其耐盐性[J].植物生理学报, 1995, 21(1): 65-72.
    [116]刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学学报, 2005, 31(4): 389-395.
    [117] Hassine A B, Ghanem M E, Bouzid S, et al. An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress[J]. Journal of Experimental Botany, 2008, 59(6): 1315-1326.
    [118]陈托兄,张金林,陆妮,等.不同类型抗盐植物整株水平游离氨基酸的分配[J].草业学报, 2006, 15(1): 36-41.
    [119] Bolarin M, Santa-Cruz A, Cayuela E. Short-term solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity[J]. Plant Physiol, 1995, 147: 463-468.
    [120]赵勇,马雅琴,翁跃进.盐胁迫下小麦甜菜碱和脯氨酸含量变化[J].植物生理与分子生物学学报, 2005, 31(1): 103-106.
    [121] Urban L A, Sheman J M, Moyer J M. Higher frequence shoot regeneration and Agrobacteerium mediated transformation of chrysanthemum[J]. Plant Sci, 1994, 98: 69-76.
    [122] Murashige M, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture[J]. Physiol. Plant, 1962, 15: 473-497.
    [123]王锁民,朱兴运,王增荣.渗透调节在碱茅幼苗适应盐逆境中的作用初探[J].草业学报, 1993, 2(3): 40-46.
    [124]李国雷,孙明高,夏阳,等. NaCl胁迫下黄栌、紫荆的部分生理生化反应动态变化规律的研究[J].山东农业大学学报(自然科学版), 2004, 35(2): 173-176.
    [125]阎秀峰,孙国荣,李晶,等.碱性盐胁迫下星星草幼苗中几种渗透调节物质的变化[J].植物研究, 1999, 19(3): 347-355.
    [126] Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants[J]. Plant J, 1993, 4: 215-223.
    [127]陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报, 2001, 18: 587-596.
    [128]汤章成.现代植物生理学实验指南[M].北京:科学技术出版社, 1999.
    [129]张显强,张宇斌,王家远,等. NaCl胁迫对玉米幼苗叶片蛋白质降解和脯氨酸累计的影响[J].贵州农业科学, 2002, 30(2): 3-4.
    [130]杨颖丽,杨宁,王菜,等.盐胁迫对小麦幼苗生理指标的影响[J].兰州大学学报(自然科学版), 2007, 43(2): 29-33.
    [131]肖强,郑海雷,陈瑶,等.盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响[J].生态学杂志, 2005, 24(4): 373-376.
    [132]田晓艳,刘延吉,郭迎春.盐胁迫对NHC牧草Na~+、K~+、Pro、可溶性糖及可溶性蛋白的影响[J].草业科学, 2008, 25(10): 34-38.
    [133]阳成伟,蒋跃明,何生根.月季切花衰老过程中多胺与膜脂过氧化的关系[J].西北植物学报, 2001, 21(6): 1157-1161.
    [134]王聪,朱月林,杨立飞,等. NaCl胁迫对菜用大豆种子游离态多胺含量的影响[J].西北植物学报, 2009, 29(3): 499-505.
    [135]刘正鲁,朱月林,魏国平,等. NaCl胁迫对茄子嫁接苗根系多胺代谢的影响[J].西北植物学报, 2008, 28(3): 523-528.
    [136]段九菊,郭世荣,康云艳,等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响[J].应用生态学报, 2008, 19(1): 57-64.
    [137]尹尚军,石德成,颜红. Na2CO3胁迫下星星草胁变反应部位的差异[J].草业学报, 2001, 10(4): 101-106.
    [138]郑青松,刘兆普,刘友良,等.盐和水分胁迫对海蓬子、芦荟、向日葵幼苗生长极其离子吸收分配的效应[J].南京农业大学学报, 2004, 27(2): 16,20.
    [139]马德源,李发良,朱剑锋,等.盐胁迫下荞麦体内Na~+分配与品种耐盐性的关系[J].安徽农业科学, 2009, 37(13): 5908-5909.
    [140]张金林,陈托兄,王锁民.苄氨基嘌呤(BA)和脱落酸(ABA)对大麦Na~+、K~+选择性和游离脯氨酸分配的调节[J].草业学报, 2006, 15(5): 63-69.
    [141]张海燕.盐胁迫下盐地碱蓬体内无机离子含量分布特点的研究[J].西北植物学报, 2002, 22(1):129-135.
    [142]郑青松,刘海燕,隆小华,等.盐胁迫对油菜幼苗离子吸收和分配的影响[J].中国油料作物学报, 2010, 32(1):65-70.
    [143] Bolsamo R A, Thomson W W. Ultrastructural features associated with secretion in the salt glands of Frankenia grandifolia(Frankeniaceae) and Avicennia germinan(sAvicenniaceae)[J]. Amer J Bot, 1993, 80: 1276-1283.
    [144] Maathuis F J M, Flowers T J, Yeo A R. Sodium chloride compartmentation in leaf vacuoles of the halophyte Suaeda maritime(L.) Dum. and its relation to tonoplast permeability[J]. J Exp Bot, 1992, 43: 1219-1223.
    [145] Niu X, Bressan R A, Hasegawa P M, et al. Ion homestasis in NaCl stress environments[J]. Plant Physiol, 1995, 109: 735-742.
    [146] Yamaguchi T, Apse M P, Shi H, et al. Topological analysis of a plant vacuolar Na~+/H~+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity[J]. Proc Natl Acad Sci USA, 2003, 100:12510-12515.
    [147] Tsiantis M S, Bartholomew D M, Smith J A C. Salt regulation of transcript levels for the c subunit of a leaf vacuolar H~+-ATPase in the halophyte Mesembryanthemum crystallinum[J]. Plant J, 1996, 9: 729-736.
    [148] Zhao F, Wang Z, Zhang Q, et al. Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a wacuolar Na~+/H~+ antiporter gene from Suaeda salsa[J]. J Plant Res, 2006, 119: 95-104.
    [149] Janicka-Russak M, Klobus G. Modification of plasma membrance and vacuolar H~+-ATPase in response to NaCl and ABA[J]. J Plant Physiol, 2006, 141: 97-107.
    [150] Kurkova E B, Balnokin Yu V. Pinocytosis and its possible role in ion transport in halophyte salt-accumulating organ cells[J]. Fiziol Biokhim Kul’t Rast(Moscow), 1994, 41: 578-582.
    [151]沈艳华,徐锡增,方升佐,等.硅对盐胁迫下杨树根系中离子微域分布的影响[J].林业科技开发, 2008, 22(2): 15-18.
    [152]刘志华,时丽冉,白丽荣,等.獐茅盐腺结构及其Na~+的X-ray微区分析[J].江苏农业科学, 2010, (2): 379-380.
    [153]姚瑞玲,方升佐.盐胁迫对青钱柳根部离子分布及幼苗生长的影响[J].林业科学, 2008, 44(6): 66-72.
    [154]戴松香,陈少良, Eberhard Fritz,等.盐胁迫下胡杨和毛白杨叶细胞中的离子区隔化[J].北京林业大学学报, 2006, 28(2): 1-5.
    [155]贾亚雄,李向林,万里强,等.盐胁迫下盐草和高羊茅营养器官的离子微区分布[J].中国农业科学, 2009, 42(5): 1595-1600.
    [156]刘爱峰,赵檀方,段友成.盐胁迫对大麦叶片细胞超微结构影响的研究[J].大麦科学, 2000, (3): 20-22.
    [157]刘吉祥,吴学明,何涛,等.盐胁迫下芦苇叶肉细胞超微结构的研究[J].西北植物学报, 2004, 24(6): 1035-1040.
    [158]孔令安,郭洪海,董晓霞.盐胁迫下杂交酸模超微结构的研究[J].草业学报, 2000, 9(2):53-57.
    [159]王丽燕.盐胁迫对海篷子、玉米光合速率和叶绿体超微结构的影响[J].德州学院学报, 2006, 22(3): 91-95.
    [160] Smith M M, Hodson M J. Salt-induced ultrastructural damage to mitochondria in root tips of a salt-sensitive ecotype of Agrostis stolonifera[J]. Exp Bot, 1982, 23(5): 886-895.
    [161]张景云,白雅梅,于萌,等.盐胁迫对二倍体马铃薯叶超微结构的影响[J].东北农业大学学报, 2010, 41(8): 7-10.
    [162] Huang C X, Van Steveninck R F W. Salinity induced structural changes in meristematic cells of barley roots[J]. New Phytol, 1990, 115: 17-20.
    [163]杨静,陈金林,徐柏森,等.盐胁迫对美国白蜡和滨梅根系超微结构的影响[J].西南林学院学报,2009, 29(5): 23-27.
    [164] Koyro H W. Ultrastructural and physiological changes in root cells of sorghum plants(Sorghum bicolor.×S. sudamensis cv. Sweet Sioux) induced by NaCl[J]. Journal of Experimental Botany, 1997, 48(3): 693-706.
    [165]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社, 1999.
    [166]贾恢先,蔺海明,肖雯.中国内陆盐地药产业培植与可持续发展的研究[J].世界科学技术-中医药现代化, 2005, 7(6): 79-82, 95-96.
    [167]林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展, 2000, 20(2): 20-25.
    [168]崔德宝,刘彬.新疆盐生药用植物资源及开发利用建议[J].干旱区资源与环境, 2010, 24(7): 171-175.
    [169]南丽丽,师尚礼,贠旭疆,等.甘肃盐生药用植物资源利用潜力分析及对策[J]. 2008, (2): 148-149, 172.
    [170]牛东玲,彭励,谢亚军.宁夏药用盐生植物资源研究[J].中草药, 2005, 36(2): 307-309.
    [171]孔垂华,胡飞.植物化感(相生相克)作用及其应用[M].北京:中国农业出版社, 2001.
    [172]苏文华,张光飞,李秀华,等.植物药材次生代谢产物的积累与环境的关系[J].中草药, 36(9): 1415-1418.
    [173]李霞,王洋,阎秀峰.水分胁迫对黄檗幼苗三种生物碱含量的影响[J].生态学报, 2007, 27(1): 58-64.
    [174]段宁.干旱胁迫对天麻品质的影响[J].特产研究, 2003, (3): 17-19.
    [175]田桂香,汤绍虎,武敬亮,等.干旱胁迫对黄连生理作用的影响[J].西南师范大学学报(自然科学版), 2006, 31(2): 133-136.
    [176]柯用春,周凌云,徐迎春,等.土壤水分对金银花总绿原酸含量的影响[J].中国中药杂志, 2005, 30(15): 1201-1202.
    [177]李如升,石德成. NaCl胁迫对甘草幼苗的生长及相关生理指标的影响[J].江苏农业科学, 2010, (2): 257-258.
    [178]杨涓,许兴,魏玉清,等.盐胁迫对枸杞果实糖代谢及其相关酶的影响[J].宁夏农学院学报, 2004, 25(3): 28-31.
    [179]陈光登,黎云祥,张浩,等.盐胁迫对两种淫羊藿属植物生长及各器官总黄酮含量的影响[J].西北植物学报, 2008, 28(10): 2047-2054.
    [180]南京农业大学.土壤农化分析[M].北京:农业出版社, 1986.
    [181]张治安,陈展宇.植物生理学实验技术[M].长春:吉林大学出版社, 2008.
    [182] Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthesis electron transport and quenching of chlorophyⅡfluorescence[J]. Biochim. Biophys. Acta, 1989, 990: 87-92.
    [183] Schreiber U. Pulse-amplitude-modulation(PAM) fluorometry and saturation pulse method: anoverview[C]//Papageorgiou G C, Govindjee(Eds). ChlorophyⅡFluorescence: A signature of Photisynthesis. Dordrecht: Springer, 2004: 279-319.
    [184]郑青松,华春,董鲜,等.盐角草幼苗对盐离子胁迫生理响应的特性研究[J].草业学报, 2008, 17(6): 164-168.
    [185] Jae K K, Takeshi B, Kazuo H, et al. Time-course metabolic profiling in Arabidopsis thaliana cell cultures after salt stress treatment[J]. Journal of Experimental Botany, 2007, 58(3): 415-424.
    [186]董志刚,程智慧.番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指标评价[J].生态学报, 2009, 29(3): 1348-1355.
    [187] Bo Ouyang, Ting Yang, Hanxia Li, et al. Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis[J]. Journal of Experimental Botany, 2007, 58(3): 507-520.
    [188]高奔,宋杰,刘金萍,等.盐胁迫对不同生境盐地碱蓬光合及离子积累的影响[J].植物生态学报, 2010, 34(6): 671-677.
    [189]张有福,陈拓,费贯清,等.盐度对三种荒漠植物渗透调节物质积累影响的研究[J].中国沙漠, 2007, 27(5): 787-790.
    [190]陈建妙,郑青松,刘兆普,等.两种麻疯树苗对盐胁迫的生理生态响应[J].生态学报, 2010, 30(4): 933-940.
    [191]王耀晶,郭修武,王英.盐胁迫下硅对草莓生长发育的影响[J].北方园艺, 2008, (1): 22-24.
    [192]赵昕,赵敏桂,谭会娟,等. NaCl胁迫对盐芥和拟南芥K~+、Na~+吸收的影响[J].草业学报, 2007, 16(4): 21-24.
    [193]李博,陈家宽,沃金森.植物竞争研究进展[J].植物学通报, 1980, 15: 18-29.
    [194] Galdwell M M, Richards J H. Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots[J]. Oecologia, 1989, 79: 1-5.
    [195]肖春旺,刘玉成.不同邻体大头茶幼苗的适应特征[J].植物生态学报, 1997, 21(3): 274-284.
    [196]张志祥,刘鹏,徐根娣,等.不同群落类型下南方铁杉金属元素含量差异及其与土壤养分因子的关系[J].植物生态学报, 2010, 34(5): 505-516.
    [197]孙璐,黎云祥,权秋梅,等.不同群落类型柔毛淫羊藿总黄酮和淫羊藿苷含量及其与土壤因子的关系[J].应用生态学报, 2010, 21(10): 2517-2522.
    [198] Gallaway R M. Facilitative and interfering effects of Arthrocnemum subterminale on winter annuals[J]. Ecology, 1994, 75: 681-686.
    [199] Bertness M D. Interspecific interactions among highmarsh perennials in a New England saltmarsh[J]. Ecology, 1991, 72: 125-137.
    [200] Bertness M D, Shumway S W. Competition and facilitation inmarsh plants[J]. The American Naturalist, 1993, 142: 718-724.
    [201] Bertness M D, Hacker S D. Physical stress and positive associations among marsh plants[J]. The American Naturalist, 1994, 144: 363-372.
    [202] Wilson S D, Keddy P A. Measuring diffuse competition along an environmental gradient: results from a shoreline plant community[J]. The American Naturalist, 1986, 127: 862-869.
    [203]李鸿儒,王继和,蒋志荣,等.白刺沙包发育过程的土壤水分与根系生物量的关系[J].甘肃农业大学学报, 2010, 45(6): 133-138.
    [204]杨小林,张希明,单立山,等.塔克拉玛干沙漠腹地塔克拉玛干柽柳根系构筑型研究[J].干旱区研究, 2008, 25(5): 659-667.
    [205]高瑞如,赵瑞华,杜新民,等. 2种盐生植物根系的适盐特性[J].林业科学, 2010, 46(7): 176-182.
    [206]蔺海明,王龙强,贾恢先,等.盐地枸杞不同营养器官中盐离子分布规律[J].果树学报, 2006, 23(5): 732-735.
    [207]孔令韶,郭柯,王其兵.新疆南准噶尔荒漠优势植物的化学成分含量特点[J].生态学报, 2002, 22(8): 1202-1210.
    [208]孔令韶,王其兵,郭柯.内蒙古阿拉善地区植物元素含量特征及数量分析[J].植物学报, 2001, 43(5): 534-540.
    [209]种培芳,李毅,苏世平.荒漠植物红砂叶绿素荧光参数日变化及其与环境因子的关系[J].中国沙漠, 2010, 30(3): 539-545.
    [210]刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜脂组成和功能的影响[J].植物生理学报, 1997, 23(2): 105-110.
    [211]张新平.盐胁迫对番茄幼苗生长发育的影响研究[J].安徽农业科学, 2007, 35(19): 5713-5714, 5752.
    [212]冯志红,闫立英,王久兴,等. Na2SO4和CaCl2胁迫对不同黄瓜品种种子萌发和幼苗生长的影响[J].河北农业科学, 2004, 8(4): 47-51.
    [213]王素平,郭世荣,胡晓辉,等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响[J].江西农业大学学报, 2006, 28(1): 32-38.
    [214] Ott J C, Clarke J, Birks K, et al. Regulation of the photosynthetic electron transport chain[J]. Planta, 1999, 209: 250-258.
    [215]杨洪兵,丁顺华,邱念伟,等.耐盐性不同的小麦根和根茎结合部的拒Na~+作用[J].植物生理与分子植物学报, 2001, 27(2): 179-185.
    [216] Zhu J K. Plant salt tolerance[J]. Trends Plant Science, 2001, 6(2): 66-71.
    [217] Bressan R A, Bohnert H J, Hasegawa P M. Genetic engineering for salinity stress tolerance[J]. Adv Plant Biochem Mol Biol, 2008, (1): 347-384.
    [218]郑青松,王仁雷,刘友良.钙对盐胁迫下棉花离子吸收分配的影响[J].植物生理学报, 2001, 27(4): 325-330.
    [219] Fang J Y, Wang H, Chen Y, et al. Silica nanospheres formation induced by peroxidase-catalyzed phenolpolymerization[J]. Progress in Natural Science, 2003, 13(7): 501-504.
    [220] Liu J H, Nada K, Honda C, et al. Polyamine biosynthesis of apple callus under salt stress:importance of the arginine decarboxylase pathway in stress response[J]. Journal of Experimental Botany, 2006, 57(11): 2589-2599.
    [221]毛桂莲,许兴,许兆桢.植物耐盐生理生化研究进展[J].中国生态农业学报, 2004, 12(1): 43-46.
    [222]黄玮,李志刚,乔海龙,等.旱盐互作对盐地碱蓬生长及其渗透调节物质的影响[J].中国生态农业学报, 2008, 16(1): 173-178.
    [223]张海燕,赵可夫.盐分和水分胁迫盐地碱蓬幼苗渗透调节效应的研究[J].植物学报, 1998, 40(1): 56-61.
    [224] Epstein E. The anomaly of silicon in plantbiology. Proceedings of the National Academy of Science of USA, 1994, 91(1):11-17.
    [225]郑文菊,王勋陵,沈禹颖.几种盐地生植物同化器官的超微结构研究[J].电子显微学报, 1999, 18(5): 507-512.
    [226]朱宇旌,张勇.盐胁迫下小花碱茅超微结构的研究[J].中国草地, 2000, (4): 30-32, 58.
    [227] Bruns S, Hecht-Buchholz C. Light and electron-microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages[J]. Potato Res., 1990, 33: 33-41.
    [228] Khavari-Nejad R A, Chaparzadeh N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants[J]. Photosynthetica, 1998, 35: 461-466.
    [229]郑文菊,张承烈.盐生和中生环境中中宁枸杞叶显微和超微结构研究[J].草业学报, 1998, (3): 72-76.
    [230]何涛,吴学明,张文静,等.高山植物叶绿体与线粒体位置相关性研究[J].西北植物学报, 2004, 24(4): 728-731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700