非洲菊(Gerbera hybrida)耐热变异品系的离体筛选与初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非洲菊(Gerbera hybrida)为世界十大切花之一,属半耐寒性花卉,忌高温,生产上急需培育耐高温的非洲菊新品种。本实验以Lilabella(F3)、Diablo(F25)、Vino(F30)、Sangria(F32)、Pinkas(F39)及深圳五号(S5)等六个非洲菊品种为材料,建立了非洲菊耐热变异的离体筛选体系;探讨了~(60)Co γ射线与EMS、PYM化学诱变处理对离体培养的影响和筛选耐热变异的可能性;确定了再生植株诱导与增殖过程中羟脯氨酸适宜的筛选剂量,并在此基础上开展了非洲菊抗羟脯氨酸变异系的筛选;初步分析了耐热和耐羟脯氨酸筛选获得的三个初选系在高温下耐热表现。主要研究结果如下:
     1.45℃热激处理2h能较为稳定提高组培苗的增殖率。细胞膜相对电解质渗透率与存活率在大多数情况下具有良好的相关性,在很大程度上反应了植物的耐热性,可用于确定筛选的压力和鉴定非洲菊不同品种的耐热性。同一非洲菊品种在35℃与45℃胁迫下的热害表现不同,耐热性也不一致。耐热性不同的非洲菊需选取不同的胁迫压力,35℃下10到25d,45℃下20h左右为各品种适宜的筛选压范围。
     2.5000rad适宜作为~(60)Co γ辐射诱变花托的处理剂量,对于组培苗来说,除了品种F3外,仍可适当提高诱变的剂量。EMS诱变处理中,非洲菊花托对诱变处理时间的变化比对EMS浓度的变化更为敏感,4h适宜作为0.4%EMS的处理时间。PYM作为一种新型诱变剂,40μg/ml浸泡处理1.5 h是预培养花托的适宜处理方法。诱变苗在进行高温筛选时,存活率出现变化、叶色叶型发生变异,表明诱变与筛选是有效的。经6至9次高温定向筛选后,获得了多个S5、F25、F32的耐热初选变异系。
     3.不同浓度HYP对花托和组培苗增殖培养影响的研究表明,0.4mg/ml的HYP是适宜的筛选剂量,对于预培养25d的花托来说,HYP浓度增加到0.6mg/ml比较合适。对花托和组培苗多次HYP间隔胁迫筛选,获得了经5次和6次筛选的初选变异系各1个。
    
    华南师范大学硕士学位论文
    非洲菊耐热变异的离体筛选与初步鉴定
     4.SR7、SHPS、SE6初选系组培苗在模拟高温下与对照的耐热性进行了比
    较,发现它们在45℃和35℃两种高温处理下的存活率都有所提高。其中,SR,
    与对照在35℃处理15d时的存活率具差异显著,是一个耐热变异新材料。SR7
    的Pro含量、POD和SOD活性等指标在35℃处理后与对照55具有显著的差异,
    可能与非洲菊耐热性的提高有关。
     我们的研究结果表明,通过体细胞无性系变异离体筛选技术获得目的变异
    是切实可行的,但需建立在大规模筛选的基础之上。
Gerbera hybrida, one of the ten greatest cut flowers in the world, is a kind of cold-half-resistant flower. Because almost all of the varieties in Gerbera are maladjusted to high temperature, it is necessary to breed thermotolerant varieties in practice. In this research, we established an in vitro screening procedure for thermotolerant variants with six varieties of Gerbera including Lilabella(F3), Diablo(F25), Vino(F30), Sangria(F32), Pinkas(F39) and No.5 Shengzheng( S5). 60Co γ irradiation and EMS/PYM treatment were used for mutation of the plants and the proper HYP dosages for screening in the in vitro culture were investigated. .The physiological and biochemical characteristics of the three thermotolerant variant lines from in vitro screening with high temperature or HYP were analyzed
    comparing with the control. The main results are summarized as follows:
    1. The proliferation rates of in vitro shoots increased steadily after 2 h heat shock of 45 ℃. The relative electrolyte leakage of cell membrane showed well relat-ionship to the survival rate of shoots in vitro. The appearance of heat damage and the thermotolerance at 35℃ or 45℃ were different among the different varieties of Gerbera and it is necessary to screen thermotolerant lines under different pressures for them. The results showed that 10 to 25 d at 35℃and 20 h at 45℃ were the proper intimidate pressure ranges for each variety.
    2. The dosage of 60Co γ irradiation in 5000 rad was proper for thalami mutation and it could be moderately higher for shoots in vitro of all varieties except F3. The thalami were more sensitive to the treatment time than the concentration when EMS was used as a mutagen and 4 h was the proper treatment time under 0.4% EMS. PYM is another mutagen we used and 1.5 h soak with 40 g/ ml PYM was proper for pre-cultured of thalami. The survival rates and the variation of the color and shape in leaves after screening with high temperature showed that our experimental procedure
    
    
    was effective and several primary thermotolerant lines in S5, F25, F32 were selected after 6 to 9 heat screening.
    3. The effects of HYP with different concentrations on the culture of thalami and shoots in vitro were investigated. The results showed that 0.4mg/ml HYP was the proper dosage for thalami and shoots in vitro and 0.6mg/ml was appropriate for 25 d precultured thalami. The primary variation lines were isolated from S5 after 5 and 6 HYP screening.
    4. The shoots in vitro of three thermotolerant lines of SR7, SHP5 and SE6 showed higher survival rates at 35 ℃and 45 ℃ comparing with the control. Among three lines SR7 had a remarkable difference with the control under the treatment of 15 days with
    35 ℃ and it is a new material of thermotolerant variation we selected. The content of Pro and the activities of POD and SOD in SR7 also increased remarkably indicating
    these biochemical changes may be related to the thermotolerance of Gerbera.
    Our results showed above demonstrated that it was feasible to isolate thermotolerant variant lines by in vitro screening technique and a large scale of screening was required.
引文
[1] 陈大成,胡桂兵,林明宝.园艺植物育种学.华南理工大学出版社(广州),2001年
    [2] 陈发棣,李倩中,房伟民等.两个非洲菊品种叶片的离体培养.江苏林业科学,1998,25(增刊):174-176
    [3] 陈晖,匡柏健,五敬驹.羊草抗羟脯氨酸细胞变异系的筛选及其特性分析。植物学报,1995,37:103-108
    [4] 陈静娴,聂凡,潘美芳.乌菜组织培养及耐热变异体的诱导及筛选.安徽农业科学,1995,23(3):201-205
    [5] 陈受宜,朱立煌,洪建等.水稻抗盐突变体的分子生物学鉴定.植物学报,1991,33(8):569—573
    [6] 高健,卢惠萍.花卉辐射诱变育种研究进展.安徽农业大学学报,2000,27(3):228-230
    [7] 官晓青,蔡智贤,岳庆熙.非洲菊胚珠之组织培养及育种上之应用.台湾花卉园艺,1989,11:36—38
    [8] 韩泰利,冯乐荣,杨长华.早熟耐热大白菜新品种潍白1号.中国蔬菜,1997,2:30-31
    [9] 韩笑冰,利容千,王建波.热胁迫下萝卜不同耐热品种细胞组织结构比较.武汉植物学研究.1997,15(2):73-178
    [10] 何小第,赵统利,鲁金武.非洲菊(棚室花卉栽培技术丛书).江苏科学技术出版社,2000年
    [11] 何晓明,潘瑞炽,廖飞雄.菜心耐热变异体离体筛选研究.广东农业科学,1999,5:17-18
    [12] 何晓明.菜心组织培养体系与耐热性离体筛选体系的建立.华南师范大学博士后工作报告,1998年
    [13] 何亚丽,刘友良,陈权等.水杨酸和热锻炼诱导的高羊茅幼苗的耐热性与抗氧化的关系.植物生理与分子生物学报,2002,28(2):89-95
    [14] 贺道耀,余叔文.水稻高脯氨酸愈伤组织变异体的选择及其耐盐性.植物生理学报,1995,21(1):65-72
    
    
    [15] 胡博然,徐文彪,张双灵等.枸杞杭羟脯氨酸细胞变异系筛选及其耐盐特性的研究.西北植物学报,2003,23(3):422-427
    [16] 胡含,陈英主编.植物体细胞遗传与作物改良.北京大学出版社(北京),1988年
    [17] 黄衡宇,李鹂,杨胜辉.非洲菊的组织培养.吉首大学学报(自然科学版),2001,22(1):4-6
    [18] 黄济明,倪跃元,林满红.非洲菊的快速繁殖.园艺学报,1987,14(2):125-128
    [19] 黄剑华,陆瑞菊,张玉华等.应用离体培养技术鉴定不结球白菜耐热性及诱导耐热变异体.上海农业学报,1995,11(4):18-22
    [20] 黄剑华,陆瑞菊,周志疆等.应用小孢子和花药培养技术筛选油菜抗菌核病材料.植物生理学通讯,2001,37(3):226-227
    [21] 黄丽华,赖宇文,陈庭俊.平阳霉素对烟草诱变作用的初探.作物杂志,1998,4:13
    [22] 黄祥富,黄上志,傅家瑞.植物热激蛋白的功能及其基因表达的调控.植物学通报,1999,16(5):530—536
    [23] 蒋丽娟,周朴华,李培旺等.绿玉树试管苗物理化学诱变及其抗寒突变体的筛选.植物遗传资源学报.2003,4(4)321-325
    [24] 康俊根,翟依仁,张京社等.甘蓝耐热性鉴定方法.中国蔬菜2002,1:4—7
    [25] 孔平.抗病突变体筛选技术及其在蔬菜上的应用.中国蔬菜,1992,(4):51-54
    [26] 李冰,刘宏涛,孙大业等.植物热激反应的信号转导机理.植物生理与分生物学报,2002,28(1):1—10
    [27] 廖飞雄.菜心耐热变异的离体筛选.华南师范大学博士学位论文,1998年
    [28] 林定波,颜秋生,沈德绪.柑桔抗羟脯氨酸细胞变异系的选择及其抗寒性研究.浙江农业大学学报,1999,25(1):94—98
    [29] 林伟,牟中林,吴沿友等.油菜抗羟脯氨酸突变体的筛选.华南师范大学学报,1998,3:16-19
    [30] 刘飞虎,熊丽.简述我国花卉育种现状.中国花卉园艺,2002,3:24-25
    [31] 刘进生,江隆植,李式军等.番茄耐热优良品种筛选初报.中国蔬菜,1994,6:33-35
    [32] 刘宁,高玉葆,贾彩霞等.渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜相对透性的变化.植物生理学通讯,2000,36(1):11-13
    [33] 刘晴,陈日远,张详胜等.蔬菜抗热生理与育种研究进展.广东园艺,2001,2(2):6-8)
    
    
    [34] 刘群良,黄皑冰,李华养等.非洲菊组织培养快繁技术的研究.广东园艺,2001.2(1):21-24
    [35] 刘维信,曹寿椿.高温对不结球白菜细胞膜透性、过氧化物酶活性等的影响.南京农业大学学报,1992,3:115-117
    [36] 刘艳鸣,陈青,张银东.蔬菜耐热育种与耐热栽培研究进展与建议.热带农业科学,2002,22(2):59-63
    [37] 罗广华,王爱国,邵从本.中科院华南植物研究所集刊.1989,169-176
    [38] 孟焕文,张彦峰,程智慧等.黄瓜幼苗对热胁迫的生理反应及耐热鉴定指标筛选.西北农业学报,2000,9(1):96-99
    [39] 苗琛,利容千,王建波.甘蓝热胁迫叶片细胞的超微结构研究.植物学报,1994,36(9):730-732
    [40] 司家钢,孙日飞,吴飞燕等.高温胁迫对大白菜耐热性相关生理指标的影响.中国蔬菜,1995,4:4—6
    [41] 汤章城.逆境条件下植物脯氨酸的累积及其可能意义.植物生理学通讯,1984,(1):15—21
    [42] 王仑山,王鸣刚,王亚馥.利用组织和细胞培养筛选作物耐盐突变体的研究.植物学通报,1996,13(2):7-12
    [43] 王瑛,牛炳韬,贾敬芬.苜蓿培养细胞抗羟脯氨酸变异体的筛选和特性分析.应用与环境生物学报,1998,4(4):340-344
    [44] 吴关庭,夏英武,舒庆尧等.平阳霉素对不同水稻品种的生物学效应.浙江农业大学学报 1997,23(1):1-6
    [45] 吴关庭,夏英武,舒庆尧等.平阳霉素与γ射线及其复合处理对水稻生物学效应用的研究.浙江农业学报,1996,8(2):77—81
    [46] 谢祝捷,周志疆.青菜耐热性田间和电导法鉴定试验.上海蔬菜,2001(6):13-14
    [47] 徐刚.植物离体诱变育种技术在日本的研究.中国花卉园艺,2001,24:24-26
    [48] 徐子勤,贾敬芬.红豆草抗羟脯氨酸变异系原生质体培养后愈伤组织的抗性特征.植物生理学报,1997,23(2):117-122
    [49] 许耀奎,朴铁夫,原亚萍等.平阳霉素对几种作物诱变效应的研究.吉林农业大学学报,1994,16(4):1-6
    
    
    [50] 薛守旺,周洪生,邓迎海等.化学诱变及其在玉米育种上的应用.玉米科学,1998,2:10-17
    [51] 杨永杰,董树刚,付成秋等.栽培番茄耐盐变异系的离体选择.青岛海洋大学学报,2001,31(1):75-80
    [52] 叶华,苏振喜,陈善娜等.非洲菊基因转化受体体系的建立.云南大学学报(自然科学版),2003,25(增刊):128-130
    [53] 尹贤贵,罗庆熙,王文强等.番茄耐热性鉴定方法研究.2001,2:62-65
    [54] 于惠敏,霍丽云,陈保金.葡萄耐羟脯氨酸变异系的筛选及其特性研究.植物生理通讯,1998,34(5):352-355
    [55] 张继仁,周群初,邹学校.杂交辣椒新组合湘研5号的选育与应用.湖南农业科学,1993,5:20-21
    [56] 张志良,瞿伟菁.植物生理学实验指导.高等教育出版社,2003年
    [57] 赵梁军,宿友民.我国花卉种业现状与发展战略(一).中国花卉园艺,2003,2:4-5
    [58] 郑企成,陈文华,朱耀兰等.应用花药培养途径筛选小麦耐盐变异体.植物学报,1993,35(2):121-128
    [59] 郑秀芳.离体诱变技术在花卉育种中的应用.西南园艺,2000,28(2):37-38
    [60] 中国科学院上海植物生理研究所、上海植物生理学会.现代植物生理学实验指南.科学出版社(北京),1999年
    [61] 朱至清.体细胞无性系变异与品种改良.植物学通报,1991,8:1-8
    [62] Abernethy RH, Thiel DS, Petersen NS etal. Thermotolerance os developmentally dpendent in germinating wheat seed. Plant physiology, 1989, 89: 573-476
    [63] Berninger E. Effects of air and soil temperature on the growth of gerbera. Scientia Horticulturae, 1979, 10: 271-276.
    [64] Chen H H, Shen Z Y, Li P H. Adaptability of crop plants to high-temperature stress. Crop Science. 1982, 22: 719-725.
    [65] Craig A D, Scott A. Heckathorn et al. The methionine-rich low-molecular-weight chloroplast heat-shock protein: evolutionary conservation and accumulation in relation to thermotolerance. American Journal of Botany, 1998, 85(2): 175-183
    
    
    [66] Daniel E. Effects of drought on photosynthesis and on the thermotolerance of photosystemⅡ in seedlings of cedar (Cedrus atlantica and C. libanl). Journal of Experimental Botany, 1997, 48(315): 1835-I841
    [67] Dorffling K, Do rffling H, L esselich E, et al. Heritable improvement of forest tolerance in winter wheat by in vitro selection of hydroxyproline-resistant proline overproducing mutants. Euphytica, 1997, 93: 1-10
    [68] Elejah A, Leonard F. Metabolism of proline and the hydroxyprolines. Annual Review of Biochemics, 1980, 49: 1005-1061
    [69] Elomaa P, Honkanan J, Puska R, et al. Agrobacterium mediated transfer of antisense chalcone synthase cDNA to Gerbra hybrida inhibits flower pigmentation. Biotechnology, 1993, 11: 508-511.
    [70] Flowers T J, Yeo A R. Breeding for salinity resistance in plant. Journal of Plant Physiology. 1995, 22: 875-884
    [71] Fritz S, Alf P, and Andreas R. Regulation of the heat-shock response. Plant physiology, 1998, 117: 1135-1141
    [72] Hawker JS, Jenner C F. High temperature affects the activity of enzymes in the committedpathway of starch synthesis in developing wheat endosperm. Australian Journal of Plant Physiology, 1993, 20: 197-209.
    [73] Humberto L D, James F D, Christine H F et al. Induction of thermotolerance in potato microplants by acetylsalicylic acid and H_2O_2. Journal of Experimental Botany, 1998, 49(321): 713-720
    [74] Iba K. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annual Review of Plant Physiology and Plant Molecular Biology. 2002, 53: 225 -245.
    [75] Issa M, Ouzounidou G, Maloupa H, et al. Seasonal and diurnal photosynthetic responses of two gerbera cultivars to different substrates and heating systems. Scientia Horticulturae, 2001, 88: 215-234.
    [76] James F D, Christine H F, and lan M S. Changes in salicylic acid and antioxidants during
    
    induced thermotolerance in mustard seedings. Plant Physiology, 1998, 118: 1455-1461
    [77] James F D, Humberto L D, Christine H F et al. Parallel changes in H_2O_2 and catalase during thermotolernance induced by salicylic acid or heat acclimation in mustard Seedlings. Plant physiology, 1998, 116: 1351-1357
    [78] Jane L and Marc R K. Protection against heat stress-Induced oxidative damage in Arabidopsis involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid. Plant Physiology, 2002, 128: 682-695
    [79] Jerzy M, Zalewska M, Garczewska A. In vitro induction of mutation and separation of chimeras in Gerbera jamesonii. Zeszyty Problemowe Postepow Nauk Rolniczych. 1994, 4: 343-352
    [80] Jiang Y W and Huang B R. Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. Journal of Experimental Botany, 2001, 52(355): 341-349
    [81] John J B, Patrick J O, and Melvin J O. Isolation of Arabidopsis mutants lacking components of acquired thermotolerance. Plant Physiology, 2000, 123: 575-587
    [82] Kavi-Kishor PB, Hong Z, Miao G et al. Overexpression of △~1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 1995, 108(4): 1387-1394
    [83] Laneri U, Franconi R, Altavista P. Somatic mutagenesis of Gerbera jamesonii irradiation and in vitro culture. Acta Horticulturae, 1990, 280: 395-402
    [84] Mullarkwy M and Jones P. Isolation and analysis of thermotolerant mutants of wheat. Journal of Experimental Botany, 2000, 51(342): 139-146
    [85] Mutter GR, Ferreira L, Hall AE. Proline content of the anthers and pollen of heat-tolerant and heat sensitive cowpea subjected to different temperature. Crop Science, 1989, 29(67): 1497-1450
    [86] Nagaraju V, Srinivas G, Sita G. Agrobacterium mediated genetic transformation to Gerbra hybrida. Current Science, 1998, 74: 630-634
    [87] Orlikowska T, Nowak E, Marasek A et al. Effects of growth regulators and incubation
    
    period on in vitro regeneration of adventitious shoots from gerbera petioles. Plant Cell, Tissue and Organ Culture, 1999, 59(2): 95-102
    [88] Pablo B and Abel P. Effect of transition metals on stress, lipid peroxidation and antioxidant enzyme activities in tobacco cell cultures. Plant Growth Regulation, 2002, 36: 161-167
    [89] Park S, Shivaji R, Krans J V et al. Heat-shock response in heat-tolerant and nontolerant variants of Agrostis palustris Huds, Plant Physiology. 1996, 111: 515-524.
    [90] Suk-Whan H and Elizabeth V. Mutants ofArabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proceedings of the National Academy of sciences of the United States of America, 2000, 97(8): 4392-4396
    [91] Wardlaw I F, Wrigley C W. Heat tolerance in temperate cereals: a overview. Australian Journal of Plant Physiology, 1994, 21: 692-695

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700