抗高温高密度水基钻井液作用机理及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深井高密度水基钻井液面临的主要技术难题是高温流变性和高温滤失性的有效调控,技术核心是钻井液的高温胶体稳定性。搞清高密度水基钻井液抗高温作用机理,研制应用抗高温高密度水基钻井液体系是技术关键。本文首先研制开发了一台高温高压动态评价实验装置——LH-1钻井液高温高压多功能动态评价实验仪,以及三种抗高温的处理剂——高温护胶剂GHJ-1、抗高温降滤失剂GJZA-1和抗高温抗盐钙降粘剂JNL-1,以此为基础研制开发了两套抗高温高密度盐水和淡水钻井液体系,并进行了抗高温作用机理和综合性能评价。针对两套高密度钻井液体系,进行了高温高压流变性研究。
     本文研制的高温高压动态评价实验装置能够模拟钻井液流动状态,能在高温(≤300℃)和高压(≤40MPa)动态条件下评价钻井液的多种高温高压性能,如钻井液的高温高压动态、静态滤失,动态、静态堵漏,动态、静态老化,动态岩屑分散和动态封堵性能等。该仪器所测实验数据准确可靠,智能化操控与数据采集处理,操作简便。高温护胶剂GHJ-1护胶效果好,抗温可达240℃,抗盐、钙性能优良,与深井常用的磺化类处理剂配伍性良好,能大幅度提高钻井液体系的整体性能。树脂类降滤失剂GJZA-1降滤失性能良好,对钻井液体系具有一定的降粘效果。聚合物降粘剂JNL-1抗温可达240℃,抗盐、钙性能优良,能够很好地调节高密度钻井液体系的高温高压流变性能。研制的密度为2.2g/cm3、抗温220℃的盐水钻井液配方和密度2.2g/cm3、抗温240℃的淡水钻井液两种体系抑制能力好、抗污染能力强、流变性和降滤失性易于调控,保护油气层效果好。H-B模式是描述高密度水基钻井液高温流变性的最佳模式。所建立的预测钻井液表观粘度的数学模型能够较准确地描述与温度、压力之间的关系。
The effective regulation and control on the rheology and filtration loss under high-temperature and high-pressure is one of the major technical problems for water-based drilling fluids with high-density in deep wells, the key of which is to increase the colloidal stability of drilling fluids under high-temperature. And to fully understand the mechanism of high-temperature resistance of drilling fluid is the key technology in designing and producing the high-temperature resistant water-based drilling fluids. Based on the designed high-temperature high-pressure (HTHP) multi-function experimental apparatus LH-1 for dynamic evaluation, three kinds of high-temperature resistant additives, which are high temperature colloid protecting agent GHJ-1, high-temperature fluid loss additive GJZA-1 and high-temperature calcium/salt resisting mud thinner JNL-1, and two high-temperature resistant salt/fresh water-based drilling fluid systems with high density were developed in this paper. Focusing on the two systems, researches on the mechanism of high temperature resistance, fluid overall performance and fluid rheology under HTHP are carried out.
     With the designed HTHP multi-function experimental apparatus LH-1 for dynamic evaluation, the fluid properties can be evaluated under 300℃in temperature and 40MPa in pressure, such as dynamic and static HTHP filtration, plugging, aging and dynamic drilling cuttings scattering and sealing of drilling breaks. It is proved that this instrument is of high accuracy and reliability, with intelligent operation and data processing. GHJ-1, high-temperature colloid protecting agent, improves the overall performance of the drilling fluid systems for its good compatibility with sulphonate additives commonly used in deep wells, its high salt/calcium resistance and effective colloid protection under high temperature (240℃). GJZA-1, fluid loss agent, reduces the viscosity of the system effectively. JNL-1, polymer viscosity reducer, has good capability in adjusting the rheology of the system with high-density under HTHP for its high temperature and salt/calcium resistance. The produced salt water-based drilling system, with density as 2.2g/cm3 and temperature resistance as 220℃, and fresh water-based drilling system, with density as 2.2g/cm3 and temperature resistance as 240℃can effectively protect the oil/gas formation because of the good-inhibition, high anti-pollution capability and adjustable rheology and filtration loss. Furthermore, the anolysis on the rheology data showed that H-B model was the best in depicting fluid rheology under high-temperature. A mathematical model was built to simulate the relationship between the apparent viscosity and temperature/pressure.
引文
[1]鄢捷年.钻井液工艺学[M].山东东营:石油大学出版社,2001:127~148,222~235
    [2]王关清,陈元顿.深探井和超深井钻井的难点分析和对策探讨[J].石油钻采工艺,1998;20(1):1~17
    [3]徐同台,陈乐亮.深井泥浆[M].北京:石油工业出版社,1994:1~40
    [4] Eisen J.M., Mixon III A.M., Broussard M.D., Amoco Production Co.; D.R. LaHue, Baroid Corp:“Application of a Lime-Based Drilling Fluid in a High-Temperature/High-Pressure Environment (includes associated papers 22951 and 23584 )”SPE19 533
    [5] Dorman, J., Hungarian Hydrocarbon Inst.“Chemistry and Field Practice of High-Temperature Drilling Fluids in Hungary”. SPE 21 940
    [6] Ujma, K.H.W., Preussag A.G. Erdol und Erdgas; Plank, J.P., SKW Trostberg A.G.“A New Calcium-Tolerant Polymer Helps To Improve Drilling-Mud Performance and To Reduce Costs”. SPE16 685
    [7]任皓.国外抗高温钻井液及添加剂综述[J].钻采工艺,1994;17(1):34~38
    [8]倪荣富,张祖兴.八十年代国内外深井钻井技术[M].北京:石油工业出版社,1992:16~20,85~100
    [9]徐同台,赵中举.二十一世纪初国外钻井液和完井液技术[M].北京:石油工业出版社,2004:79~142
    [10]宗铁,诸林.油气田工作液技术[M].北京:石油工业出版社,2003:28~37
    [11]李善祥,王振权.高温抗盐降滤失剂SHR的研究与应用[J].石油与天然气化工,1998;27(1):42~49
    [12]张高波,史沛谦,何国军,等.高温抗盐降滤失剂SPX树脂[J].钻井液与完井液,2001;18(2):1~5
    [13]李善祥,晁兵.高温降滤失剂SCUR的研制与应用[J].油田化学,1995;12(4):298~303
    [14]王平全. SPNH(改进型)抗高温降失水稳定剂的试验研究[J].西南石油学院学报,1997;1(2):32~36
    [15]黄宁.改性磺化酚醛树脂降滤失剂MSP[J].油田化学,1996;13(3):256~258
    [16]肖玉颖,赵雄虎.改性磺化酚醛树脂的室内评价[J].钻井液与完井液,1997;14(4):17~19
    [17]张健,李健,李春霞,等.两性磺化酚醛树脂降滤失剂APR的研制[J].油田化学,1999;16(4):295~298
    [18]慰小明,刘喜林.木质素磺酸盐接枝共聚物的合成及应用[J].钻采工艺,2002;25(3):81~84
    [19]张高波,王善举,史沛谦.我国钻井液用降粘剂的研究现状与应用[J].油田化学,2000;17(1):78~81,48
    [20]王中华.对中国钻井液处理剂及钻井液体系发展的认识[J].钻井液与完井液,2001;18(4):32~35
    [21]王松.抗高温钻井液降滤失剂JHW的评价与应用[J].精细石油化工进展,2001;2(8):10~12
    [22]李玉光,李淑廉.新型抗高温钻井液降滤失剂FLA的研究[J].钻井液与完井液,1996;13(3):33~35
    [23]王中华. AM/AA/DMA共聚物泥浆降滤失剂的合成[J].精细石油化工,1996;(4):1~2
    [24]王中华. AM/AMPS/DMDAAC共聚物的合成[J].精细石油化工,2000;(4):5~8
    [25]王中华. AM/AMPS/腐植酸接枝共聚物的合成[J].科技进展,1998;12(10):24~25
    [26]王中华. AM/AMPS/栲胶接枝共聚物的合成[J].河南化工,1999;(2):14~15
    [27]王中华. AM/AMPS/木质素磺酸接枝降滤失剂的合成与性能[J].精细石油化工进展,2005;6(11):1~3
    [28]王中华. AMPS/ AM/DEAM共聚物钻井液降滤失剂的合成[J].四川化工与腐蚀控制,1998;1(6):5~7
    [29]王中华. AMPS/ AM/DMAM共聚物钻井液降滤失剂的合成[J].天津化工,1998;(4):28~30
    [30]王中华. AMPS/ AM/VAC共聚物钻井液降滤失剂合成[J].钻井液与完井液,1999;22(4):55~56
    [31]王中华. AMPS/ AM/VP共聚物的合成[J].河南化工,2000;(2):16~17
    [32]王中华. MOTAC/AA/AM共聚物泥浆降滤失剂[J].油田化学,1996;13(4):367~370,375
    [33]张宝庆,武玉民.耐高温降滤失剂AMPS/AM/IA共聚物的合成及表征[J].油田化学,2001;18(2):105~107
    [34]王中华. AMPS及其共聚物的研究进展[J].化工纵横,1999;12(8):11~13
    [35]张麒麟.国内新型钻井液处理剂研究进展[J].钻井液与完井液,2000;17(5):31~35
    [36]王展旭,孙伟,张科.新型耐温抗盐钻井添加剂研究进展[J]. 2004;33(8):460~463
    [37]黄进军,蒲晓林,李建波,等.抗220℃高温水基钻井液中降粘剂研究[J].油田化学,2003;20(3):197~199,207
    [38]樊泽霞,王杰祥,孙明波,等.磺化苯乙烯-水解马来酸酐共聚物降粘剂SSHMA的研制[J].油田化学,2005;22(3):195~198
    [39]王松,胡三清.抗高温降粘剂PNK的研制与评价[J].石油钻探技术,2003;31(2):24~26
    [40]刘盈,刘雨晴.新型阳离子抗高温降滤失剂CAP的研制与室内评价[J].油田化学,1996;13(4):294~298
    [41]刘雨晴,孙金生.抗高温抗盐阳离子降滤失剂CHSP-1的合成及其应用[J].油田化学,1996;13(1):21~24
    [42]于进海,石莉莉,王立泉,等.硅氟钻井液的研究与应用[J].钻井液与完井液,2003;20(4):44~46
    [43]秦永宏,董春旭,宋雪艳,等.抗高温降粘剂硅氟共聚物(SF)的研究与应用[J].钻井液与完井液,2001;18(1):12~15
    [44] Carney, L.L.,Guven, N.. Water-Base Mud System Having Most of the Advantages of Any Oil-Base System Plus Ecological Advantages. SPE 17 616
    [45] Abdon, J.C., Jackson, B.L. The Development of a Deflocculated Polymer Mud for HTHP Drilling. SPE 17 924
    [46] Ujma, K.H.W., J.P., SKW. A New Calcium-Tolerant Polymer Helps to Improve Drilling-Mud Performance and to Reduce Costs. SPE 16 685
    [47] Mitchell, R.K.. Design and Application of a High-Temperature Mud System for Hostile Environments. SPE 20 436
    [48] Julianne E.B., Darby J.B.. Rheologically Stable, Nontoxic, High-Temperature Water-Based Drilling Fluid. SPE 24 589
    [49] Eisen J.M., LaHue D.R.. Application of a Lime-Based Drilling Fluid in aHigh-Temperature/High-Pressure Environment (includes associated papers 22951 and 23584 ). SPE19 533
    [50] Dorman, J.. Chemistry and Field Practice of High-Temperature Drilling Fluids in Hungary. SPE21 940
    [51] Cesaroni, Renzo, Repetti, et al.. Solved Problems of High-Density and High-Temperature Drilling Fluid in an Environmentally Sensitive Area. SPE 25 701
    [52] Giovanni B., Fausto M.. New Chemistry for Chromium-Free Bentonite Drilling Fluids Stable at High Temperatures. SPE 28 962
    [53] Thaemlitz. A New Environmentally Safe High-Temperature, Water-Base Drilling Fluid System. SPE 37 606
    [54]万绪新,刘绍元,王树强.耐温耐盐深井钻井液技术[J].钻井液与完井液,2002;19(6):59~61
    [55]李祥华,张景阳. Z4超深井钻井液工艺技术[J].西部探矿工程,2005;(10):139~142
    [56]陈小明,徐常生,赵顺亭,等.白56深井高密度钻井液技术[J].钻采工艺,2002;25(5):12~14
    [57]陈迎伟,李军安,刘洪刚.迪纳11井超高密度钻井液技术[J].钻井液与完井液,2002;19(4):46~47
    [58]王松,曾科,袁建强,等.抗盐抗高温水基钻井液体系研究与应用[J].江汉石油学院学报,2006;28(3):105~108
    [59]梁敏,苏中祥,杨青廷,等.低密度新体系钻井液在高温超深井中的运用[J].钻采工艺,2004;27(1):6~7
    [60]张斌,吴正良,曾勇,等.柯深101井钻井液技术[J].钻井液与完井液,2001;18(5):17~20
    [61]周辉,郭保雨,江智君.深井抗高温钻井液体系的研究与应用[J].钻井液与完井液,2005;22(4):46~48
    [62]王松,胡三清,秦绍印,等.高温高密度钻井液完井液体系室内研究[J].河南石油,2003;17(2):46~48
    [63]鄢捷年,罗平亚.抗高温抗盐失水控制剂-磺甲基酚醛树脂(SMP)作用机理研究[C].北京:中国石油工程学会出版;钻井论文集,1982
    [64]张春光,孙明波.降滤失剂作用机理的研究[J].钻井液与完井液,1995;12(4):1~4
    [65]张春光,孙明波.降滤失剂作用机理的研究[J].钻井液与完井液,1996;13(2):5~8
    [66]张春光,孙明波.降滤失剂作用机理的研究[J].钻井液与完井液,1996;13(3):11~17
    [67]刘玉英,候万国.降滤失剂作用机理的研究[J].钻井液与完井液,1996;13(4):12~14
    [68]张金波,鄢捷年.钻井液中暂堵颗粒尺寸分布优选的新理论和新方法[J].石油学报,2004;25(6):88~91,95
    [69]张金波,鄢捷年.钻井液暂堵剂颗粒粒径分布的最优化选择[J].油田化学,2005;22(1):1~5
    [70]刘志广,张华.仪器分析[M].辽宁大连:大连理工大学出版社,2004:250~291
    [71] [美]罗伯特D.布朗.最新仪器分析技术全书.北京和平里:化学工业出版社,1990:274~282
    [72]张高波,史沛谦,何国军,等.高温抗盐降滤失剂SPX树脂[J].钻井液与完井液,2001;18(2):1~5
    [73]邓芹英,刘岚.波谱分析教程[M].北京:科学出版社,2003:1~7
    [74]汤小燕,蒲万芬.阳离子Gem ini表面活性剂的静态吸附规律研究[J].石油与天燃气化工,2005;34(6):508~510
    [75]向兴金,岳前声.聚合醇JLX在粘土上的吸附特性研究[J].钻井液与完井液,1999;16(4):1~4
    [76]姚同玉,赵福麟.季胺盐型表面活性剂的吸附特性研究[J].西安石油学院学报,2003;18(1):36~38
    [77]王中华. AMPS多元共聚物在钻井液中的应用[J].精细石油化工进展,2000;1(10):20~23
    [78].武玉民,孙德军,吴涛,等.耐温抗盐降滤失剂AMPS/AM/IA共聚物泥浆性能的研究[J].油田化学,2001;18(2):101~104
    [79]周进,王宏.却勒构造高密度欠饱和盐水钻井液技术[J].钻井液与完井液,2003;20(5):38~40
    [80]蒲晓林,黄林基.深井高密度水基钻井液流变性、造壁性控制原理[J].天燃气工业,2001;21(6):48~51
    [81] Ward I., Chapman J.W.,Williamson R.. Silicate based muds: chemical optimization based on field experience. SPE drilling & completion. 1999;14(1):57~63
    [82]王富华,邱正松,冯京海,等. KCl-BPS聚合物钻井液体系.石油钻采工艺. 2002;24(3):16~19
    [83]王富群,乔永.苏丹5区Jarayan-1井钻井液技术工艺[J].断块油气田,2002;9(3):63~65
    [84]郭健康,鄢捷年,范维旺,等. KCl/聚合物钻井液的改性及其在苏丹3/7区的应用[J].石油钻探技术,2005;33(6):28~31
    [85] Chiligian G V. Vorabutr P. Pevetopmeatsin Petroleum Science 11. Drilling and Drilling Fluids.
    [86]胡德云.超高密度(ρ≧3.0 g/cm3)钻井液的研究与应用[J].钻井液与完井液,2001;18(1):6~11
    [89] Cesaroni, Renzo. Solved Problems of High-Density and High-Temperature Drilling Fluid in an Environmentally Sensitive Area. SPE 25 701,1993
    [90]李克向.保护油气层钻井完井技术[M].北京:石油物探局制图印刷厂,1993:116~143
    [91]崔迎春.屏蔽暂堵剂优选的新方法[J].现代地质,2000;14(1):91~94
    [92] Hands N., Kowbel K. Maikranz S..Drilling-in Fluid Reduces Formation Damage, Increases Production Rates.Oil & Gas J., 1998;96(28):65~68
    [93] Cobianco S., Pitoni E. Ricci P.N.,et al.Optimized Drill-in Fluid Leads to Successful Open Hole Gravel Pack Completion Installation in Unconsolidated Reservoirs-Case History.SPE 82 279,2003
    [94] Santos H.,Olaya J..No-Damaging Drilling: How to Achieve this Challenging Goal?.SPE 77 189, 2002
    [95] Davidson, E. Stewart, S..Open-hole Completions: Drilling Fluid Selection.SPE 39 284,1999
    [96] Cargnel R. D.,Luzardo J. P.. Particle Size Distribution Selection of CaCO3 in Drill-in Fluids:Theory and Applications. SPE 53 937,1999
    [97] Cheng Y.F., Guo S.J.,Lai H.Y., Dynamic Simulation of Random Packing of Spherical Particles, Powder Technology,2000,107:123-130
    [98]乔岭山.水泥的最佳颗粒分布及其评价方法[J].水泥,2001;13(8):1~5
    [99]曾凡,胡永平,杨毅,等.矿物加工颗粒学m].徐州:中国矿业大学出版社, 2001:101
    [100] Kaeuffer M..Determination de L’Optimum de Remplissage Granulometrique et Quelques Proprietes S’y Rattachant.Oct 1973:1-12
    [101]周祖康,顾惕人,马季铭.胶体化学基础[M].北京:北京大学出版社,1996:212~235
    [102]龚伟安.钻井液固相控制技术与设备[M].北京:石油工业出版社,1995: 4~10
    [103]周福建,刘雨晴,杨贤友,等.水包油钻井液高温高压流变性研究[J].石油学报,1999;20(3):77~81
    [104]何育荣,王瑞和,邱正松,等.高渗透水泥浆高温高压流变性研究[J].石油大学学报(自然科学版),2005;29(3):57-60.
    [105]蒋官澄,吴学诗,鄢捷年,等.深井水基钻井液高温高压流变特性的研究[J].钻井液与完井液,1994;11(5):18~23,71
    [106]常兆光,王清河,宋岱才,等.随机数据处理方法[M].山东东营:石油大学出版社,1997:162~173
    [107] Politte M D. Invert-oil Mud Rheology As a Function of Temperature and Pressure. SPE/IADC 13 458
    [108]王书琪,张彬,吕志强.英深1井钻井液技术[J].钻井液与完井液,2006,23(6):24-26.
    [109]吴正良,甘平西,王悦坚.塔深1井8408米钻井液技术[J].钻采工艺,2008;31(5):17~21
    [110] AL-Yami A.H.,Nasr-El-Din A.. Formation Damage Induced by Various Water-Based Fluids Used to Drill HP/HT Wells. SPE 11 2421,2007
    [111] Saasen A.,Ekrene S.,Breviere J.,et al.. Automatic Measurement of Drilling Fluid and Drilling Cuttings Properties .SPE 11 2687,2008
    [112]吉永忠,张熙,于永刚,等.深井聚合物高密度钻井液处理剂CUD研制与应用[J].油田化学,1999;22(2):54~56
    [113]马喜平.钻井液用聚合物处理剂的开发应用现状展望[J].油田化学,1999;22(2):23~24
    [114] Audiert A., Argillier J.F.. Thermal Stability of Sulfonated Polymers. SPE 28 953,1995
    [115]夏俭英.钻井液有机处理剂[M].山东东营:石油大学出版社,1991
    [116] Plank J.P.. Field Experience with a Novel Calcium-Tolerant Fluid-Loss Additive for Drilling Fluid. SPE 18 372,1988
    [117] Perricone,A.C.. Vinyl Sulfonate Copolymers for High-Temperature Filtration Control of Water-Based Muds. SPE134 55,1986
    [118]王善琦.高分子化学原理[M].第一版.北京:北京航空航天大学出版社,1993:21-41
    [119]唐培堃.精细有机合成化学及工艺学[M].第二版.天津:天津大学出版社,2002:348-358
    [120]全国塑料标准化技术委员会,GB1200.5.1-89,聚丙烯酰胺特性粘数测定方法,1989-12-2
    [121]梁为民.凝聚与絮凝[M].北京:冶金工业出版社,1987:21-25
    [122]罗文利,牛亚斌,欧阳坚,等.二甲基二烯丙基氯化胺与丙烯酰胺水溶液共聚合.油田化学,1998;15(3):193-196
    [123]张爱华,许振举,孙孝恭,等.CN 1051366,1991
    [124]徐雄立. AM-DMDAAC共聚物的合成[J].合成化学,2003;11(5):509-512.
    [125]夏俭英.泥浆高分子化学.第一版.东营:石油大学出版社,1994:24-29.
    [126]黄进军,蒲晓林,李建波,等.抗220℃高温的水基钻井液用降粘剂研究[J].油田化学,2003;20(3):197-207
    [127]张高波,王善举,史沛谦.我国钻井液用降粘剂的研究应用现状[J].油田化学,2000;17(1):78-81
    [128]张家栋,王秀艳,姚烈,等.聚合物降粘剂的研究与应用.钻井液与完井液,2006;23(1):5-10
    [129] Eric V. O.. Improving HPHT Stability of Water Based Driiling Fluids. SPE 37 605,1997
    [130]鄢捷年,黄林基.钻井液优化设计与实用技术[M].山东东营:石油大学出版社,1993
    [131]黄进军,蒲晓林,李建波,等.抗220℃高温的水基钻井液用降粘剂研究[J].油田化学,2003;20(3):197-199
    [132]汪海阁,刘希圣.钻井液流变模式比较与优选[J].钻采工艺,1996;19(1):63-67
    [133]鲁凡.泥浆的动切力、塑性粘度、动塑比与剪切稀释作用的关系[J].西部探矿工程,1994;6(1):64-65
    [134]郭金爱.从相同的表观粘度出发比较泥浆的剪切稀释能力[J].西部探矿工程,1999;11(2):35-37
    [135]鄢捷年.钻井液工艺学[M].山东东营:石油大学出版社,2001.5:130-131
    [136]夏俭英.钻井液有机处理剂[M].山东东营:石油大学出版社,1991.12:169-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700