三种经济植物抗碱生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,土壤盐碱化已成为制约农业发展的全球性问题,并影响到生态系统的稳定和生物的多样性。然而,直到现在研究者更多关注的是土壤盐化问题,对碱化问题的报道很少。事实上,盐碱是两种不同的胁迫,二者不仅对植物的胁迫作用不同,而且植物对其适应机制也不同。本文选择了三种具有一定耐盐碱能力的经济植物(棉花、沙棘和苜蓿)作为研究对象,在人工控制的盐碱胁迫条件下,研究并比较了盐、碱两种胁迫对它们的影响及它们的抗碱生理机制。主要结果与结论如下:
     1.碱胁迫对三种植物的胁迫作用机制。
     对三种植物的测定结果均表明,碱胁迫对植物生长和光合的抑制均远远大于相同浓度的盐胁迫。碱胁迫与盐胁迫相比,均具有渗透胁迫和离子毒害作用,不同在于碱胁迫还涉及高pH伤害。这种高pH伤害可能是植物生长受抑制作用明显大于盐胁迫的主要原因。因为高pH不仅会直接伤害植物的根部,破坏根系的生长与细胞的分化,改变细胞的结构与膜的稳定性,干扰跨膜电位的形成,致使根细胞功能及代谢紊乱,而且还会导致磷、钙和镁等重要矿质元素大量沉淀,造成植物的营养匮乏。碱胁迫下植物若要生存下去,除了必须进行渗透调节,维持离子稳态外,还必须抵抗这种高pH值胁迫。因此,碱胁迫对植物的胁迫伤害比盐胁迫要更为严重,更为复杂。
     2.碱胁迫下Na~+大量积累是三种植物生长和光合低于盐胁迫的主要原因。
     离子含量的分析结果表明:在pH值相对较低时,茎叶中Na~+含量在盐、碱胁迫之间并无显著差异,但在高pH值时,碱胁迫远远高于盐胁迫。其原因可能是三种植物对高pH值胁迫均具有一定的调节能力,在胁迫强度较低时能将高pH值危害抵御在体外,使体内环境不受影响,因而此时植物对碱胁迫的响应与盐胁迫类似。但是,随着胁迫强度的增大,当强度超过了根系调节能力后,就造成Na~+大量涌入到植物的茎叶之中。虽然液泡能贮存Na~+,但超过阈值时原生质中也不得不积累Na~+,从而造成叶绿体片层结构破坏、叶绿素含量降低、各种酶失活,气孔导度下降等等。因此,碱胁迫下Na~+的大量积累可能就是植物生长和光合低于盐胁迫的主要原因。根据本文的实验结果,并结合已有研究报道,我们推测,碱胁迫下Na~+大量积累可能与高pH值胁迫抑制Na~+外排有关,这一点值得进一步研究。
     3.碱胁迫下有机酸积累是三种植物细胞离子平衡和pH调节的关键生理机制。
     实验结果表明,三种植物在盐胁迫下均不积累有机酸,而碱胁迫下均大量积累有机酸。三种植物在碱胁迫下,Na~+含量不断增加,而无机阴离子总量却在减少,这导致了细胞内负电荷亏缺,水分子解离平衡破坏,最终造成细胞内pH值不稳定,各种代谢受到干扰。碱胁迫下有机酸的大量积累可能正是对细胞内负电荷亏缺的适应性响应,它在维持细胞内离子平衡和pH值稳定方面发挥了极其重要的作用。因此,有机酸积累可能是植物抗碱的关键生理机制。另外,碱胁迫下三种植物有机酸代谢调节有所不同,不同的有机酸在不同的植物中可能起不同的作用。棉花根茎叶中主要积累苹果酸和柠檬酸,未检测到乙酸;沙棘茎叶中主要积累苹果酸、柠檬酸和草酸,而根中苹果酸和柠檬酸含量相对较少,显著积累的是乙酸;苜蓿根茎叶中主要积累苹果酸和柠檬酸,酒石酸虽含量不多,但随胁迫时间的增加不断增加,棉花和沙棘中未见酒石酸积累。
     有机酸的具体调控机制极其复杂,可能涉及三羧酸循环、光合碳固定、无氧呼吸等诸多基础代谢途径,其调控过程可能发生在转录、翻译和相关蛋白质活性调节等不同层面,这些还都需要进一步的研究。
At present, soil salinization has restricted the development of the global issues of agriculture, and affected the stability of global ecosystems and biological diversity. However, to date, more attention has been given to the problem of soil salinization, and few alkalization problems have been reported. In fact, salt and alkali stresses are two different stresses, which damaging actions to plants are different, and there are special responses to two stresses for plants. In present study, we chose three common economic plants (cotton, alfalfa, Sea buckthorn) which have certain salt-alkali-tolerant ability as the objects of study, under salt and alkali stresses in manual control, and compared effects of salt and alkali stress on both of them and physiological mechanisms by which they resist alkali stress. The main results and conclusions are as follows:
     1. The mechanism of alkali stress on three plants
     The findings of the three plants indicated that alkali stress on the inhibition of plant growth and photosynthesis was much greater than salt stress at the same salinity.. Alkali stress significantly inhibited root growth, leaf gas exchange disturbances and reduced the photosynthetic rate and transpiration rate, thereby inhibiting the growth and metabolism. Compared to alkali stress and salt stress, both stresses generally involves osmotic and ion stresses, but the difference is that alkali stress adds the high pH effect. This high pH damage caused by alkali stress might be major factor why alkali stresses are more destructive to plants growth than salt stress. This high pH can not only directly harm plant roots, root growth and damage to cell differentiation, alter the cell structure and stability of membrane, and interfere with the formation of transmembrane potential , resulting in root cell function and metabolism disorders, but the high pH can also cause phosphorus and calcium, magnesium and other important mineral elements to precipitate, and lead to lack of plant nutrients. To survive under alkali stress, plant species must carry out osmotic adjustment and maintain ion homeostasis, but also must resist this high pH. Therefore, the injury of alkali stress on the plant is more serious and complex than salt stress.
     2. A large of Na~+ accumulation under alkali stress might be main reason why the three plants growth and photosynthesis was lower than that of under salt stress
     The results about contents of inorganic ion analysis showed that Na~+ content in shoot existed no significant difference between salt and alkali stresses when pH was low, but under the high pH stress the content under alkali stress was much higher than that of under salt stress. Because all three plants had certain pH regulation ability, under low-intensity stress, the harmful effect of high pH was resisted outside the roots and consequently the intracellular environment was not affected, here the response of plants to alkali stress was similar to salt stress. However, with increasing stress intensity, when stress exceeded the capacity of root adjustment, a large number of Na~+ influx into shoot of plants. Although the vacuole can store a certain amount of Na~+, when Na~+ content was more than the threshold value, protoplasm had to accumulated Na +, which resulted in the destruction of chloroplast lamellar structure, the decrease of chlorophyll content, the inactivation of enzymes, the decrease of stomatal conductance. It can be argued that Na~+ accumulation under alkali stress might be main reason why the plant growth and photosynthesis was lower than that of under salt stress. According to the results of this experiment, combined with existing research reports, we hypothesized that Na~+ accumulation under alkaline stress might also be related to possible decreased Na~+ exclusion, which deserves further study.
     3. Organic acids accumulation in three plants cells under alkali stress was a key physiological mechanism on ionic balance and pH regulation
     The experimental results showed that none of the three plants under salt stress accumulated organic acids, but all of them accumulated a large of organic acids under alkali stress. For three plants under alkaline stress, Na~+ content increased, the total amount of inorganic anions decreased, which led to deficiency of intracellular negative charge, the damage of water molecular dissociation, eventually led to instability in the intracellular pH and interference of various metabolic activities. The large number of organic acids accumulation under alkaline stress might be a passive response to deficit of negative charge in cells, which played an important role in maintaining ionic balance and pH stability. Organic acids accumulation was the key physiological mechanism which decided the alkali tolerance of plants. In addition, organic acid metabolism regulation pathways in three different plants under alkali stress were different and different organic acids in the different plants might play different roles. Roots and leaves of cotton mainly accumulated malic acid and citric acid, but acetic acid was not detected; shoots of sea buckthorn mainly accumulated malic acid, citric acid and oxalic acid, but the contents of malic acid and citric acid were relatively small, acetic acid accumulation was enhanced significantly; roots and leaves alfalfa, mainly accumulated malic acid and citric acid, the content of tartaric acid was not many, but increased with increasing stress time, and no tartaric acid accumulation in cotton and sea buckthorn.
     However, the regulatory mechanism of organic acids may be extremely complex, possibly involving the citric acid cycle, photosynthetic carbon fixation, anaerobic respiration, and many other basic metabolic pathways. The regulatory process may occur in the transcription, translation and the proteins regulating the activity of various levels, which deserves further study.
引文
[1] Tanji, K.K, (Ed.). Agricultural salinity assessment and management. American Society of Civil Engineers, New York, 1990,1:112
    [2]王遵亲.中国盐渍土[M].北京:科学出版社,1993.
    [3]张福锁.植物营养生态生理学和遗传学[M].北京:中国科技出版社,1993.
    [4] Partrick Boursier. Andre cuchli crop physiology and metabolism. Crop sci, 1990, 30:1226-1233.
    [5]石德成,殷立娟.盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异[J].植物学报,1993,35(2):144-149.
    [6]杨春武.虎尾草和水稻抗碱机制研究[D].2010,1-2.
    [7] Ramadan T. Dynamics of Salt Secretion by Sporobolus spicatus(Vahl)Kunth from Sites of Dierring Salinity.Ann Bot, 2001, 87:259-266.
    [8] Gorham J, Wyn Jones RG, McDonnell E. Some mechanisms of salt tolerance in crop plants. Plant Soil, 1985, 89, 15–40.
    [9] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol, 1980, 31:149-190.
    [10] Flowers T J,Dalmond D. Protein-synthesis in halophytes the influence of potassium, sodium and magnesium in vitro.Plant and Soil, 1992,146:153-161.
    [11] Melchers G and Bergman, Ber Dtsch Bot Ges, 1959, 71:459-473.
    [12]刘祖棋,张石诚.植物抗性生理学.中国农业出版社,1994.
    [13]潘晓华,刘水英,李锋等.低磷胁迫对不同水稻品种叶片膜脂过氧化及保护酶活性的影响[J].中国水稻科学,2003,17(1):58-61.
    [14] Munns R.Comparative physiology of salt and water stress. Plant cell Environ,2002,25:239-250.
    [15]张立新,李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响[J].作物学报,2007,33(3):482-490.
    [16]颜红.碱地肤抗盐碱生理生态机制研究[D].2006,1-2.
    [17]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点[D]. 2006,4-10.
    [18] Parida A K and Das A B. Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe, 2005, 60:324–349.
    [19]赵可夫,李法曾.中国盐生植物.北京:科学出版社, 1999,48-2.
    [20] Munns R. Physiologieal proeesses limiting plant growth in saline soil: Some dogmas and hypothesis. Plant Cell Enviro, 1993, 16:15-24.
    [21]阎秀峰,孙国荣.星星草生理生态学研究[M].北京:科学出版社,2000.
    [22]王征宏,杨起,张亚冰.盐胁迫下紫花苜蓿种子的萌发特性[J].河南科技大学学报(自然科学版),2006,27(1):67-69.
    [23]陈国雄.盐胁迫对西葫芦和黄瓜种子萌发影响的对比研究[J].中国沙漠,1996,16(3):307-310.
    [24] A′lvarez-Rogel J,Alcaraz F,Ortiz R. Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of southeast Spain[J].Wetlands, 2000, 20:357-372.
    [25] A′lvarez-Rogel J, Martr′nez-Sa′nchez J J, Carrasco L, et al.Vegetal bioindicators for monitoring hydrological and saline gradients in a coastal dune salt marsh of southeast Spain:a conceptual model[J].Wetlands,2006,26:703-717.
    [26] Ungar I A. Ecophysiology of Vascular Halophytes[M].Boca Raton F L:CRC Press,1991.
    [27]王果平,康喜亮,陶锦等.不同盐浓度对芨芨草种子萌发过程中几种生理指标的影响[J].干旱地区农业研究,2006,2(24):139-142.
    [28] Waisel Y, Ovadia S. Biological ora of Israel[J].Suaeda monica Forsk. Isr J Bot,1972,21:42-52.
    [29] Hernandez, J A, Olmos E, Corpas F J, Sevilla F, del Rio L A. Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci, 1995, 105: 151–167.
    [30] Cherian S, Reddy M P, Pandya J B. Studies on salt tolerance in Avicennia marina (Forstk.) Vierh.: effect of NaCl salinity on growth, ion accumulation and enzyme activity. Indian J. Plant Physiol, 1999, 4: 266–270.
    [31] Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z. Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot, 2000, 68:15–28.
    [32] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59: 651–681.
    [33] Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate carboxylase–oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J Hortic Sci Biotechnol, 2000, 75: 623–627.
    [34] Mohammad M, Shibli R, Ajouni M, Nimri L. Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. J Plant Nutr, 1998, 21: 1667–1680.
    [35] Meloni D A, Oliva M A, Ruiz H A, Martinez C A. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J Plant Nutr, 2001, 24: 599–612.
    [36] Parida A K,Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotox.Environ Safe, 2005, 60: 324–349.
    [37] Longstreth D J, Nobel P S. Salinity effects on leaf anatomy[J]. Plant Physiol,1979,63:700–703.
    [38] Delphine S, Alvino A, Zacchini M, Loreto F. Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust. J Plant Physiol, 1998, 25: 395–402.
    [39] Mitsuya S, Takeoka Y, Miyake H. Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro.J Plant Physiol, 2000, 157:661–667.
    [40] Bruns S, Hecht-Buchholz C. Light and electron-microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages.Potato Res, 1990, 33:33–41.
    [41] Romeroaranda R, Soria T, Cuartero J. Tomato plant—water uptake and plant–water relationships under saline growth conditions. Plant Sci, 2001, 160: 265–272.
    [42] Keiper F J. Respiratory, photosynthetic and ultrastructural changes accompanying salt adaptation in culture of Eucalyptus microcorys[J]. J Plant Physiol,1998,152:564–573.
    [43] Khavarinejad R A, Chaparzadeh N. The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants[J]. Photosynthetica, 1998, 35:461–466.
    [44] Khavarinejad R A, Mostofi Y. Effects of NaCl on photosynthetic pigments, saccharides,and chloroplast ultrastructure inleaves of tomato cultivars[J]. Photosynthetica,1998,35:151–154.
    [45]潘瑞炽主编.植物生理学[M].第五版,北京:高等教育出版社. 2004. 300-284.
    [46] Allakhverdiev S I,Nishiyama Y,Miyairi S,et al. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol,2002,130:1443-1453.
    [47] Hayashi H A,Mustardy L,Deshnium P,et al. Transformation of Arabidopsis thaliana with the cod A gene for choline oxidase; accumulation of glycine betaine and enhanced tolerance to salt and cold stress[J]. Plant J,1997:133-142.
    [48]许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511-516.
    [49] Botella M A,et al. Effect of salinity on the growth and nitrogen uptake by wheat seedlings[J]. J Plant Nutr, 1997,20:793–804.
    [50] AbdElBaki G K. Nitrate reductase in Zea mays L. under salinity[J]. Plant Cell Environ,2000,23:15–521.
    [51] Soussi M. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicerarietinum L.) [J].J Exp Bot,1998,49:1329–1337.
    [52] Soussi M. Comparative study of nitrogen fixation and carbon metabolism in two chick-pea (Ciser arietinum L.) cultivars under salt stress[J]. J Exp Bot,1999, 50: 1701–1708.
    [53] Wu J L, Seliskar D M, Gallagher J L. Stress tolerance in the marsh plane Spartina patens: impact of NaCl on growth and root plasma membrane lipid composition. Physiol Plant, 1998, 102: 307–317.
    [54] Kerkeb L, Donaire J P, RodriguezRosales M P. Plasma membrane H+-ATPase activity is involved in adaptation of tomato calli to NaCl. Physiol Plant, 2001, 111:483–490.
    [55] Munns R,Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol 2008,59: 651–681.
    [56]蒋明义,郭绍川,张学明.OH胁迫下稻苗体内脯氨酸积累及其抗氧化作用,科学通报,1997(06).
    [57]齐永青,肖凯,李雁鸣.作物在渗透胁迫下脯氨酸积累的研究进展[J]. 2003,26:25-28.
    [58] Delauney A J,Verma P S. Proline biosynthesis and osmoregulation in plants[J] . Plant J,1993,4(2):215-223.
    [59] Petrusa L M, Winicol L. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl.[J].Plant Physiol Biochem,1997,35:303-310.
    [60] Landfald B, Storm A R. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia Coli. J Bacterial.,1986,165:849-955
    [61]李秋莉,杨华.高晓蓉等植物甜菜碱合成酶的分子生物学和基因工程[J].生物工程进展,2002,22(1):84-86.
    [62]陈少良,李金克,毕望富,等.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报,2001,18(5):587-596.
    [63]梁新华,刘凤敏.NaCl和Na2CO3胁迫对甘草幼苗渗透调节物质含量的影响[J].农业科学研究,2006,27(2):96-98.
    [64]刘华,舒孝,赵银,等.盐胁迫对碱茅生长及碳水化合物含量的影响[J].草业科学,1997,2(14):18-20.
    [65]冯立田,赵可夫.叶绿体对盐胁迫的某些生理适应机制[J].植物学通报,1998,15(增刊):62-67.
    [66]肖雯,贾恢先.蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825.
    [67] Shannon M C, Grieve C M.Tolerance of vegetable crops to salinity. Sci Hortic, 1999,78:5-38.
    [68] Apse M P, Aharon G S, Snedden W A,et al.Overexpression of a vacuolar Na~+/H+ antiport confers salt tolerance in Arabidopsis.Science.1999,285:1256-1258.
    [69] Zhang HX,Hodson J,Williams JP,et al.Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.Proc Natl Acad Sci USA.2001,98:12832-12836.
    [70] Zhang H X, Blunwald E. Transgenic salt tolerant tomato plants accumulate salt in the foliage but not in the fruits.Nat biotechnol. 2001,19:765-768.
    [71]李长有.盐碱地四种主要致害盐分对虎尾草胁迫作用的混合效应与机制[D]. 2009,1-10.
    [72] Yamada S, Katsuhara M, Kelly W B,et al. A family of transcripts encoding water channel proteins:tissue-specific expression in the common ice plant. Plant Cell.1995,7:1129-1142.
    [73] Chrispeels M J. Aquaporin: water channel proteins of plant and animal cells. Trends Biochem Sci.1994, 19:421-425.
    [74] Yamaguchi-Shinozaki K, Koizumi M, Urao S, et al. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana. Plant Cell Physiol.1992,33:217-224.
    [75] Kaldenhoff R, Kolling A, Meyers J, et al. The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plamalemma. The Plant J. 1995,7(1):87-95.
    [76] Qiu Q S, Guo Y, Dietrich M A, Schumaker K S, et al. Regulation of SOS1, a plasma membraneNa~+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. PNAS, 2002, 99: 8436–8441.
    [77] Quintero F J, Ohta M, Shi H Z, Zhu J K, et al. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na~+ homeostasis[J]. PNAS,2002,99: 9061–9066.
    [78] Kiegle E,Moore C,Haseloff J,et al. Cell-type specific calcium responses to drought,NaCl,and cold in Arabidopsis root:a role for endodermis and pericycle in stress signal transduction[J]. Plant J,2000,23:267–78.
    [79] Knight H. Calciumsignaling during abiotic stress in plants[J]. Int Rev Cytol, 2000,192:269–324.
    [80] Knight H,Trewavas A J,Knight M R,et al.Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J].Plant J,1997,12:1067–78.
    [81] Moore C A, Bowden H C, Scrase-Field S, et al. The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling[J]. Plant J,2002,30:457–65.
    [82] IshitaniM,Liu J P,Halfter U,et al. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding[J]. Plant Cell, 2000, 12:1667–77.
    [83] Halfter U,Ishitani M,Zhu J K,et al. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3[J]. PNAS,2000,97:3735–40.
    [84] Moore C A, Bowden H C, Scrase-Field S, et al. The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling[J]. Plant J,2002,30:457–65.
    [85] Shi D C, Yin L J. Difference between salt (NaCl) and alkaline (Na2CO3) stresses on Puccinellia tenuiflora (Griseb. ) Scribn et Merr. plants[J]. Acta Bot Sin, 1993, 35:144-149.
    [86] Shi D C, and Yin L J. Strain responses in Na2CO3-stressed Leymus chinensis seedlings and their mathematical analysis. Acta Bot Sin, 1992, 34: 386-393.
    [87] Li X, Liu J, Zhang Y, et al. Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses. Soil Sci Plant Nutr, 2009, 55: 680-684.
    [88] Sheng Y M, Shi D C, Xiao H X and Xu Y. Effect of mixed salts with various neutral and alkaline on the growth of sunflower [J]. Chin North Normal Univ J, 1999, 4: 65–69.
    [89] Wang Y, Yang C, Liu G, et al. Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline–alkali stress[J]. Plant Physiol Biochem, 2007, 45: 567–576.
    [90] Shi D C. Relaxation of Na2CO3 stress on Puccinellia tenuiflora (Griseb.) Scribn. et Merr. Plants by neutralizing with H3PO4[J]. Acta Prataculturae Sin, 1995, 4: 34–38
    [91]石德成,盛彦敏.不同浓度的混合盐对羊草幼苗的胁迫效应[J].植物学报, 1998, 40(12): 1136-1142.
    [92] Gao C, Wang Y, Liu G, et al. Expression profiling of salinity–alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid. Plant Mol Biol, 2008, 66: 245–258.
    [93] Zhang J, Mu C. Effects of saline and alkaline stresses on the germination, growth, photosynthesis, ionic balance and anti-oxidant system in an alkali-tolerant leguminous forage Lathyrus quinquenervius[J]. Soil Sci Plant Nutr, 2009, 55 (5): 685-697.
    [94] Shi D C, Wang D L. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense(Trin)Kitag[J]. Plant Soil, 2005, 271: 15-26.
    [95] Shi D C, Zhao K F. Effects of NaCl and Na2CO3 on growth of Puccinellia tenuiflora and on present state of mineral elements in nutrient solution[J]. Acta Pratacu Sin, 1997, 6(2): 51-61.
    [96] Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors[J]. Environ Exp Bot, 2005, 54(1): 8-21.
    [97] Li R, Shi F, Fukuda K. Interactive effects of various salt and alkali stresses on growth, organic solutes, and cation accumulation in a halophyte Spartina alterniflora (Poaceae)[J]. Environ Exp Bot, 2010, 68: 66-74.
    [98] Tang C, Turner N C. The influence of alkalinity and water stress on the stomatalconductance,photosynthetic rate and growth of Lupinus angustifolius L and Lupinus pilosus Murr[J]. Aust Exp Agric, 1999, 39(4): 457-464.
    [99] Degenhard B, Gmmler H, Hose E, et al. Effect of alkaline and saline substrates on ABA contents,distribution and transport in plant roots[J]. Plant Soil, 2000, 225(12): 83-89.
    [100] Kawanabe S, Zhu T C. Degeneration and conservation of Aneurolepidium chinense grassland in northern China[J]. J Jpn Grassl Sci, 1991, 37: 91-99.
    [101] Wei Y, Xu X, Tao H, et al. Growth performance and physiological response in the halophyte Lycium barbarum grown at salt-affected soil[J]. Ann Appl Biol, 2006, 149: 63-269.
    [102] Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.) [J]. Environ Exp Bot, 2006, 56:136-146.
    [103] Zheng G Q, Xu X, Xu Y Z, Liu Z L. The effect of salt stress on the stomatal and non-stomatal limitation of photosynthesis of Lycium barbarum[J]. Acta Bot Boreal-Occident Sin, 2002, 22 (6): l355-l359.
    [104] Munns R, Termaat A. Whole-plant response to salinity[J]. Aust J Plant Physiol, 1986, 13 (1): 143 - 160.
    [105] Bethke, P.C., Drew, M.C.: Stomatal and non-stomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity[J]. Plant Physiol, 99: 219-226, 1992.
    [106] James R A, Munns R, Caemmerer S V, et al. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na~+, K+ and Cl- in salt-affected barley and durum wheat[J]. Plant Cell Environ, 2006, 29: 2185-2197.
    [107] Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotox Environ Safe, 2005, 60: 324–349.
    [108] López-Bucio J, Nieto-Jacobo M F, Ramírez-Rodríguez V, et al. Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils[J]. Plant Sci, 2000, 160: 1–13.
    [109] López-Millán A F, Morales F, Andaluz S, Gogorcena Y, Abadía A, Rivas J D L, Abadía, J. Responses of sugar beet roots to iron deficiency. Changes in carbon assimilation and oxygen use. Plant Physiol, 2000, 124: 885–898.
    [110] Timpa J D, Burke J J, Quiseberry J E, Wendt C W. Effect of water stress on organic acid and carbohydrate composition of cotton plant. Plant Physiol, 1986, 82: 724–730.
    [111] Li X F, Ma J F, Matsumoto H. Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol, 2000, 123: 1537–1544.
    [112] Koyama H, Kawamura A, Kihara T, Hara T, Takita E, Shibata D. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant Cell Physiol, 2000, 41: 1030–1037.
    [113] Yang C W, Chong J N, Kim C M, Li C Y, Shi D C, Wang DL. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263-276.
    [114] Yang C, Shi D, Wang D. Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul, 2008c, 56: 179–190.
    [115] Yang C, Guo W, Shi D. Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte Chloris virgata. Agron. J, 2010,102:1081-1089.
    [116] Shi D, Wang D. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil,2005, 271: 15-26.
    [117] Shi D, Sheng Y. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings andanalysis of their stress factors. Environ exp Bot, 2005,54: 8-21.
    [118] Shi D C, Yin S J, Yang G H, Zhao K F. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Bot Sin, 2002, 44: 537–540.
    [119] Shi D C, Yin S J, Yang G H, Zhao KF. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Bot Sin, 2002, 44: 537–540.
    [120] Zheng H Y, Li J D. Form and dynamic trait of halophyte community. In: Zheng, H.Y. (Ed.), Saline Plants in Songnen Plain and Restoration of Alkaline–saline Grass. Science Press, Beijing, 1999, 137–138.
    [121] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008, 59, 651–681.
    [122] Campbell S A, Nishio J N. Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponics growth system. J Plant Nutr, 2000, 23: 741–757.
    [123] Hartung W, Leport L, Ratcliffe R G, Sauter A, Duda R, Turner N C. Abscisic acid concentration, root pH and anatomy do not explain growth differences of chickpea (Cicer arietinum L.) and lupin (Lupinus angustifolius L.) on acid and alkaline soils. Plant Soil, 2002, 240:191–199.
    [124] Shi D C, Wang, D. Effects of various salt–alkali mixed stresses on Aneurolepidium chinense (Trin.) Kitag. Plant Soil, 2005, 271: 15–26.
    [125] Shi D C, Sheng Y. Effect of various salt–alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environ Exp Bot, 2005, 54: 8–21.
    [126] Yang C, Chong J, Kim C, Li C, Shi D, Wang D. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant Soil, 2007, 294: 263–276.
    [127] Yang C, Jianaer A, Li C, Shi C, Wang D. Comparison of the effects of salt-stress and alkali-stress on the photosynthetic production and energy storage of an alkali-resistant halophyte Chloris virgata. Photosynthetica, 46, 2008a, 273–278.
    [128] Yang C, Shi D, Wang D. Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca (Bge.). Plant Growth Regul, 2008b,56: 179–190.
    [129] Yang C, Wang P, Li C, Shi D, Wang D. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica, 2008c, 46: 107–114.
    [130] Gao C, Wang Y, Liu G, Yang C, Jiang J, Li H. Expression profiling of salinity–alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid. Plant Mol Biol, 2008, 66: 245–258.
    [131] Xu G, Li C, Yao Y, 2008. Proteomics analysis of drought stress-responsive proteins in Hippophae rhamnoides L. Rep. DOI: 10.1007/s11105-008-0067-y, in press.
    [132] Purushothaman J, Suryakumar G, Shukla D, Malhotr, A S, Kasiganesan H, Kumar R, Sawhney R C, Chami A. Modulatory effects of seabuckthorn (Hippophae rhamnoides L.) in hypobaric hypoxia induced cerebral vascular injury. Brain Res Bull, 2008, 77: 246-252.
    [133] Zadernowskia R, Naczk M, Czaplickia S, Rubinskiene M, Szalkiewicz M. Composition of phenolic acids in sea buckthorn (Hippophae rhamnoides L.) berries. J. Am. Oil Chem Soc, 2005, 82:175-179.
    [134] Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59: 651–681.
    [135] Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002, 25:239–250.
    [136] Yang C W, Xu H H, Wang L L, Liu J, Shi D C, Wang D L. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica, 2009, 47: 79-86.
    [137] Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants, Trends Plant Sci, 1998,3: 389–395.
    [138] Blumwald E. Sodium transport and salt tolerance in plants [J]. Curr Opin Cell Biol, 2000, 12: 431-434.
    [139] Short D C, Colmer T D. Salt tolerance in the halophyte Halosarcia pergranulata [J] subsppergranulata Ann Bot, 1999, 83: 207-213.
    [140] Yin S J, Shi D C, Yan H. Difference of strain responses between the plant of Na2CO3 stressed Puccinellia tenuiflora[J]. Acta Prataculturae Sin, 2001, 10:101-106.
    [141] Lv Y F, Wang D H, Liu G J, et al. The location patterns of inorganic ions in different parts of Polygonum sibiricum under salt and alkaline stress condition [J]. Guihaia, 2006, 26: 304-307.
    [142] Yin L J, Shi D C, Xue P. The distribution and accumulation of Kand Nain five salt-tolerant forage plants in a song-nen plain steppe [J]. Acta Phytoecologica Sinica, 1994, 18: 34-40.
    [143] Ghoulam C, Foursy A, Fares K. Effects of salt-stress on growth, inorganic ions a proline accumulation in relation to osmotic adjustment in five sugar beet cultivar [J]. Environ Exp Bot, 2002, 47: 39-50.31.
    [144] L?uchli A, Lüttge U. Salinity: Environment-Plants-Molecules [M]. Boston: Boston Kluwer Academic Publishers, 2002.
    [145] Scheible W R, Gonzalez-Fontes A, Lauerer M, et al. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco[J]. Plant Cell, 1997, 9: 783–798.
    [146] Touraine B, Grignon N, Grignon C. Charge Balance in N03–-Fed Soybean[J]. Plant Physiol, 1998, 88: 605–612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700