聚合物、有机-无机复合纳米微粒的制备、表征及摩擦学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究内容包括以下几个方面的工作:
    (1)聚合物纳米微粒的制备、结构表征及摩擦学性能研究
    本课题选择2,5-二巯基-1,3,4-噻二唑单体通过溶液聚合的方法制备了两种聚合物纳米微粒。然后采用多种现代分析仪器对所制备的产物进行结构表征。如采用透射电子显微镜(TEM)来表征纳米微粒的形貌;傅立叶红外光谱仪(FTIR)表征聚合物纳米微粒分子结构;差热分析(DTA)、微分热失重(DTG)和热重分析(TG)表征聚合物纳米微粒的热性能等。结果表明:所制备的纳米微粒粒径大小均匀,约为100nm以下,基本无团聚现象。
    将聚合物纳米微粒用作水基添加剂在四球试验机上考察其宏观摩擦学性能。用扫描电子显微镜(SEM)对磨损表面进行了形貌研究。结果表明:聚合物纳米微粒用作水基添加剂与纯水相比,具有优良的减摩和抗磨作用。并提出如下润滑机理:在低负荷下,聚合物纳米微粒与摩擦表面金属发生物理吸附作用,形成一层起减摩作用的物理吸附膜,从而减小摩擦;随着负荷增加,物理吸附膜不能承受较高压力而部分破坏,吸附在摩擦表面的纳米粒子中的N、S等活性元素在摩擦热的作用下,直接与摩擦表面金属发生化学反应,生成强度较高的化学反应膜,使其具有良好的抗磨和减摩性能。
    (2)四氟苯甲酸修饰SiO2纳米微粒的制备、结构表征及其摩擦学性能研究
    在溶剂中采用表面修饰法合成了四氟苯甲酸修饰SiO2纳米微粒。 在石油醚、无水乙醇和液体石蜡等溶剂中检验了微粒的分散性,采用透射电子显微镜(TEM)、电子衍射(ED)、傅立叶红外光谱仪(FTIR)和热分析系统(DTA&DTG)等多种现代分析手段对微粒的形貌、结构及热性能进行了表征。结果表明:纳米微粒表
    
    面存在有机修饰层,使得其在有机溶剂和润滑基础油中有良好的分散性。所得微粒粒径细小,平均粒径约30 nm,颗粒大小分布均匀。在四球试验机上考察了它们的摩擦学性能,发现修饰SiO2纳米微粒在中低负荷下具有良好的抗磨性能和一定的减摩作用,可明显提高液体石蜡的承载力。以扫描电子显微镜(SEM)对摩擦表面进行了分析,推测纳米微粒的润滑作用机理可能是在摩擦过程中生成了化学反应膜。
    (3)含氟羧酸修饰TiO2纳米微粒的制备、结构表征及其摩擦学性能研究
    在溶剂中采用表面修饰法,合成了两种含氟羧酸修饰的TiO2纳米微粒。采用透射电子显微镜(TEM)、傅立叶红外光谱仪(FTIR)和热分析系统(DTA&TG)X-射线粉末衍射(XRD)等多种现代分析手段对微粒的形貌、结构及热性能进行了表征。结果表明:纳米微粒平均粒径分别约为40 nm和100nm,粒度分布均匀。表面修饰层的存在改善了纳米微粒与有机介质的相容性。摩擦学性能测试表明,在中低负荷下,纳米微粒具有优良的减摩抗磨性能,这是因为纳米微粒与摩擦表面金属发生物理吸附作用,形成一层起减摩作用的物理吸附膜,从而减小摩擦。 随着负荷增加,在摩擦过程中纳米微粒分解并发生摩擦化学作用,生成了含有活性物质的化学反应膜,从而起到了良好的润滑效果。
In this thesis, the polymer and organics/inorganics complex nanoparticles were prepared and their structures and properties were studied. The tribological properties of these nanoparticles as additives were investigated.
    The main research works are as follows:
    (1) Preparation, Structure Characterization and Tribological Behavior of Polymer Nanoparticles
    Polymer nanoparticles were synthesized using an solution polymeration method. The nanoparticles were characterized by Fourier transformation infrared ray (FTIR) spectroscopy and transmission electron microscope (TEM). Their thermal stability was investigated by means of differential thermal analysis (DTA),differential thermogravimetry (DTG) and thermogravimetry (TG). TEM micrograph shows that the samples are under 100 nm and dimensionaluniformity. After added polymer nanoparticles into water, its tribological properties were tested with four ball testing machine. The morphologies on the worn surfaces of the lubricated GCr15 steel were investigated by means of scanning electron microscopy (SEM). The results show that those polymer nanoparticles have good reduce-friction and anti-wear properties, compared to water. The proposed mechanism is as follows: under low load, deposition films consisted of these nanoparticles on the surface of steel sphere, which make those nanoparticles have good reduce-friction and anti-wear properties. Under high load, films of 'tribochemical reaction' of those nanoparticles, which make those nanoparticles have a good reduce-friction and anti-wear.
    (2) Preparation, Structure Characterization and Tribological Behavior of Tetrafluorobenzoic Acid-modified SiO2 Nanoparticles
    Tetrafluorobenzoic acid-modified SiO2 nanoparticles were prepared using method
    
    of surface-modified. The nanoparticles were characterized by means of electron diffraction (ED), TEM, FTIR, DTA and differential thermogravimetry (DTG). The surface modified sample disperses in organic solvents such as petroleum ether, liquid paraffin at room temperature. TEM micrograph shows that the mean graininess of the modified sample is about 30 nm, and the ED micrograph indicates that the structure of tetrafluorobenzoic acid-modified SiO2 nanoparticles is amorphous. After added nanometer SiO2 into liquid paraffin, its tribological properties were tested with four ball testing machine. The morphologies on the worn surfaces of the lubricated GCr15 steel were investigated by means of SEM. The results showed: the antiwear and load capability of liquid paraffin increased after adding nanometer SiO2. We inferred that is attributed to the generation of a surface film by way of tribochemical reaction.
    (3) Preparation, Structure Characterization and Tribological Behavior of Surface-modified TiO2 Nanoparticles
    Surface-modified TiO2 nanoparticles were synthesized in the ethanol with the surface modification agent of tetrafluorobenzoic acid and trifluoroacetic acid. Some analytical tools such as X-Ray Diffraction (XRD), TEM, TG and DTA were used to characterize the structure of surface modified nanoparticles. The nanoparticles exhibit good dispersity in the organic solvent and base oil. The results show that the mean sizes of the modified samples are about 40 nm and 100nm, and the XRD micrograph indicates that the structure of nanoparticles is amorphous. The tribological properties of nanoparticles as oil additive were investigated with a four-ball tribometer. The morphologies on the worn surfaces of the lubricated GCr15 steel were investigated by means of SEM. The result show that they are of good anti-wear and reduce-friction properties at mid-low applied load. We inferred that is was attributed to the generation of a surface protective film by way of tribochemical reaction.
引文
1. 张立德,牟季美.纳米材料和纳米结构,北京:科学出版社,2001. 2
    2. 刘吉平,郝向阳.纳米科学与技术,北京:科学出版社,2002. 8
    3. http://nanotech.com.cn/nmkg/pl/2.htm
    4. 顾宁,付德刚,张海黔等. 纳米技术与应用,北京:人民邮电出版社,2002. 4
    5. 李泉,曾广斌,席时权. 纳米粒子,化学通报,1995, (6): 29
    6. Klein D L, Roth R, Lim A K L, et al. Nature, 1997, 389: 699
    7. 张立德,蔡伟平,牟季美.自然科学进展,1999,9 (2):103
    8. 王世敏,许祖勋,傅晶.纳米材料制备技术,北京:化学工业出版社,2001. 12
    9. http://www.casnano.ac.cn/gb/kepu/cailiao/cl008.html
    10. 郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展,化学通报,1996, (3): 1
    11. 周双生,周根陶.纳米材料的制备及应用概况.化学世界,1997, (7): 399
    12. .G. T. Fei, L. Liu, X. Z. Ding et. al., J. Alloys and Compounds,1995, 229: 280
    13. 钱逸泰,朱英杰,张曼维.微米纳米科学与技术,1995, 1 (1): 27
    14. 王增林等,应用化学,1993, 10 (3): 28
    15. K. R. Venkatachari et. al,. J. Mater. Res., 1995, 10: 748-755
    16. G. Gu, W. P. Ding, Y. W. Du et. al. Modern Physics Letters B9 (1995)1327
    17. R. Birringer, H. Gleiter et. al., Phys. Lett., 102A (1984) 365
    18. G. L. Zhang et. al. Nuclear Sci. & Tech. , 1994, 5: 35
    19. 李春忠,胡黎明,陈敏恒等,硅酸盐学报,1993, 21 (1): 93
    20. 刘茜,高濂,严东生,H. Manclal, D. P. Thompson, 无机材料学报,1996, 11(2): 381
    21. J. M. McHale et. al., J. Mater. Res. , 1996, 11: 1199-1208
    22. V. L. Kuznetsov et. al., Carbon, 1991,29: 665
    23. 周根陶,科学通报,1996, 41 (4): 321-323
    24. F. fievet, J. P. Lagier et al., Solid State Ionics, 1989, 32/33: 198
    25. M. R. De Guire, et al., J. Mater. Res., 1993, 8(9): 2327-2335
    26. Lu Chang-Wei, Shi Jian-Lin et. al., Thermochimica Acta, 1994, 232: 77
    
    
    27. Diclier Jezequel et al., J. Mater. Res., 1995, 10 (1): 77-83
    28. Zou Jian, Qian Yitai et. al. J. Appl. Phys., 1994, 75: 1805
    29. Y. Xie, Y. T. Qian et. al., Science, 1996, 272: 1926-1927
    30. Kaiharak et al., J. Am. Chem., Soc. 1983, 105: 2574-2579
    31. G. Pacheco-Malagon et al., J. Mat. Res., 1995, 10 (50): 1264-1269
    32. 霍林,《摩擦学原理》机械工业出版社,1981
    33. 樱井等,《实用摩擦学》,上海科学出版社,1984
    34. 薛群基,刘维民,化学进展,1996, 9 (3): 311
    35. 汪德涛.对摩擦学研究与应用的展望,润滑与密封,1998年增刊,2
    36. Eigier, D. M., Schweizer, E. K., Positioning single atoms with a scanning tunneling microscope, Nature, 1990, 344: 524.
    37. Bhushan, B., Handbook of Micro/Nano Tribology, New York: CRC Press Inc., 1995.
    38. J. F. Belak., Nanotribology., MRS Bulletin, 1993, 18 (5): 15-19.
    39. Bhushan, B., Israelachvili, J. N., and Landman, U., Nanotribology: Friction, Wear and Lubrication at the Atomic Scale, Nature, 1995, 374, 607-616.
    40. Bhushan, B., Micro/Nanotribology and its Applications, NATO ASI Series E:(1997), Applied Sciences-Vol. 330, Kluwer Academic Pub., Dordrecht, Netherlands.
    41. Yoshizawa, H., Chen, Y. L., Israelachvili, J., Recent advances in molecular level understanding of adhesion, friction and lubrication , Wear, 1993,168 (1-2): 161.
    42. Andoh, Y., Oguchi, S., Kaneko, R. et al., Evaluation of very thin lubricant films, J. Phys. D: Appl. Phys., 1992, 25: A71.
    43. S. Granick., Molecular Tribology., MRS Bulletin, 1991, 16 (10): 33-35.
    44. 温诗铸,纳米摩擦学,清华大学出版社,1998
    45. 薛群基,张军.微观摩擦学研究进展,摩擦学学报,1994,14(4):360
    46. 王吉会,温诗铸.材料微观摩擦磨损的研究进展,润滑与密封,1998,(5):8
    Pingyu Zhang,Qunji Xue, Zuliang Du, Zhijun Zhang. The tribological behavior of LB films of
    
    47. fatty acids and nanoparticals, Wear,2000, 242, 147-151
    48. Qunji Xue, Pingyu Zhang,Zhijun Zhang, et al., The structural changes of MoS2 nanopartical LB film during rubbing process. Thin Solid Films, 1999, 346, 234-237.
    49. 王吉会, 张化一, 路新春,温诗铸,磁控溅射MoS2薄膜的结构和微观摩擦磨损特性,润滑与密封,1999,2,25-27.
    50. Xue Q J, Liu W M. Lubrication Science, 1994, (7): 81
    51. D K DULI, R SARIN, A K GUPTA, et al. Lubrication Engineering, 1995, (4): 298
    52. 樱井俊男,《石油制品添加剂》,石油出版社, 1980
    53. 乔玉林等. 硫磷系级压抗磨添加剂的发展动态. 润滑油,1996,11 (2): 56
    54. Mitchell,P.C.H. Wear, 1984, 100: 281
    55. 李玉梅等,摩擦学学报,1992,4
    56. 樊书凤等,摩擦学学报,1997,4
    57. 薛群基等,固体润滑,1989,9
    58. Samuel M D., Lubricating oils containing borate compound [p]. USP 2,975,135(1961)
    59. James F. C., Antiwear lubricants containing boron esters [p]. USP 2,975,134(1961)
    60. Fred J. D., Hydrocarbon fuels containing boron esters [p]. USP 3,030,196 (1962)
    61. Hoornaert P. H., Process for the preparation of an overalkalinized additive containing a derivative of boron [P]. USP 5098587 (1992)
    62. Yao Junbin. Improvement of hydrolytic stability of borate esters used as lubricant additive. Lubr. Eng, 1995, 51 (6): 475-479
    63. Braid. Hindered phenyl esters of cyclic borates and lubricants containing same [p]. USP 447470 (1984)
    64. J.Dony, G. Chen, X..Luo, L.Chen and Z.F.Shi, Lubr. Eng., 1994, 50: 17-22
    65. Miller A H. Boundary Lubricity Studies: Structure-activity Correlation in Alkylpyridines. J Inst. Petrol, 1973, 59 (1): 27-31
    66. Wei Danping, pikes H A. The lubricity of diesel fuels. Wear, 1986, 111: 217-235
    
    
    67. 高永键,张治军,薛群基. 2,5-二烷氧基甲硫基-1,3,4-噻二唑(TD-1, TD-2)的合成及其摩擦学性能. 精细化工,1998, 15 (5): 55-57
    68. Yongjian Gao, Zhishen Wu, Zhijun Zhang, Qunji Xue Study on trionogical properties of 2,5-dialkoxymethylthio-1,3,4-thiadiazoles, Wear, 1998, 222: 129-134
    69. Gao Y J, Zhang Z J, Xue Q J. Study on 1,3,4- thiadiazole derivatives as novel multifunctional oil additives materials. Materials Research Bulletin, 2000,34:1867-1874
    70. 高永建,吴志申,张治军,薛群基,刘维民. 2,5-二烷氧甲硫基-1,3,4-噻二唑的摩擦学性能研究 .石油炼制与化工,1999, 10: 31-33
    71. 高永建,张治军,薛群基. 噻二唑衍生物的合成及摩擦学性能研究. 化学研究,1998, 1: 35-38
    72. Dunji Xue, Wenmin Liu, Proc.of China 1nt.Sym.for youth.
    73. Karol, T.J., U.S.Patent: US 4,761,482
    74. 任天辉,中国科学院兰州化学物理研究所93届博士论文(1993年)
    75. 单石灵,石油炼制,1984, 40: 40
    76. Lin Cao, Danping Wei and Rulin Wang, Proceeding of China Internationa, Symposium for Youth Tribologists, 1992, Lanzhou, p343-348
    77. Bhattacharya, A., Singh, T., et al. Wear, 1990, 136: 345-357
    78. Singh, T., Bhattacharya, A., Verma, V.K., Lubr.Eng., 1990, 46 (10): 681-685,
    79. Singh, T., Verma V.K., J.Tribol., 1990, 112 (4): 614-617,
    80. Bhatlacharya A., Singh T., Verma.V.K., Tribol,1nt., 1990, 23 (5): 361-365,
    81. Singh. T., Singh R., et al., Tribol. 1nt., 1990, 23 (1): 41-46,
    82. Bhatlacharya.A., Singh T.et al., Tribol. Int. 1995, 28: 189-184,
    83. 津谷裕子编,范煜等译. 《固体润滑手册》,机械工业出版社,1986
    84. 陈静,严正泽. 石油商技,1998, (2): 16
    85. 文庆珍等. 石油炼制与化工,1998,29 (4): 61
    86. WILFRIED J. BARTZ, ASLE TRANSACTLONS, 1971,15
    
    
    87. Adams,J.H., Lub. Eng., 1997, 33: 241
    88. 刘维民等,摩擦学学报,1992, 2
    89. 刘维民等,摩擦学学报,1993, 4
    90. 董俊修等,润滑原理及润滑油,北京:中国石化出版社,1998
    91. 何峰,张正义. 润滑与密封,1997, 5
    92. Braithwaite,E.R., Greene,A.B. Wear, 1978, 46: 405
    93. 王月霞,苗望春.润滑油中的纳米材料,润滑油,2002,17 (3): 19-21
    94. 雒键斌, 温诗铸,薄膜润滑进展与问题. 摩擦学进展,1999, 4: 9-20
    95. 叶毅,董浚修. 合成润滑材料,1999, (2): 27
    96. ZhiJun Zhang, Jun Zhang, QunJi Xue. The synthesis and characterization of molybdenum disulfide nanocluster. J. Physical Chemistry, 1994, 49: 12973
    97. 张治军.《表面修饰纳米微粒的化学制备及摩擦学行为的研究》,中国科学院兰州化学物理研究所博士论文,1996
    98. 张军,薛群基.分子有序体系超薄膜及其在摩擦学中的应用,辽宁科学技术出版社,1996
    99. 梁起,张治军,薛群基. LaPO4纳米微粒的制备及表征,物理化学学报,1998,14 (10): 945
    100. S.Q.Qiu, J.X.Dong, G.X.Chen. Tribological properties of CeF3 nanoparticles as additive in lubricating oils. Wear, 1999, 230: 35
    101. Z.F.Zhang, W.M.Liu, Q.J.Xue. Wear, 1998, 218: 139
    102. Shuang Chen, Weimin Liu, Laigui Yu. Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin. Wear, 1998, 218: 153-158
    103. Shuang Chen, Weimin Liu. Study on the structure of surface-coaed ZnS nanoparticles. Langmuir, 1999, 19: 8100-8104
    104. 陈爽. 《表面修饰纳米微粒的制备、结构表征及摩擦学性能研究》中国科学院兰州化学物理研究所博士论文,2000, 6
    Zhou Jingfang, Yang Jianjun, Liu Weimin,et.al. Study on the Structure and Tribological of
    
    105. Surface-Modified Copper Nanoparticles. Materials Research Bulletin, 1999, 34 (9): 1361-1367
    106. Zhou jingfang, Wu Zhishen, Zhang Zhijun et.al. Tribological behaviors and lubrication mechanism of Cu nanoparticles as an oil Additive. Tribology Letters, 2000, 8: 213-218
    107. 周静芳. 《油溶性纳米微粒的制备及作为润滑油添加剂的摩擦学特性研究》中国科学院兰州化学物理研究所博士学位论文,2000,12
    108. 高永建. 《水基抗磨减摩添加剂的合成基摩擦学行为和作用机理研究》,中国科学院兰州化学物理研究所博士论文,1999,12
    109. 赵彦保. 《聚合物、聚合物与无机复合纳米微粒的合成、结构表征级摩擦学行为研究》,河南大学化学化工学院硕士论文,1999,5
    110. 孙磊. 《表面修饰杂多酸盐纳米微粒的制备及摩擦学性能研究》. 河南大学化学化工学院硕士论文,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700