可注射性纳米晶羟基磷灰石/胶原/硫酸钙复合材料的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     随着年龄的增长,由感染、肿瘤、创伤、外科手术、关节病变和骨不连等造成的骨缺损越来越多。而面对不规则骨缺损和逐渐增长的微创技术,尤其是颅颌面区域的应用,寻找一种有良好的生物相容性和较快的成骨性能的可注射性的生物降解的支架材料变成骨组织工程的热点。
     可注射性骨水泥可分成四类:磷酸钙化合物,丙烯酸骨水泥,硫酸钙及其合成物。在这些材料中,作为骨移植的替代物,硫酸钙因其在缺损部位的原位自固化性能、无炎性反应、以及促进骨愈合等优良性能被临床上广泛应用。可用于牙周病、牙髓病、牙槽骨丧失、上颌窦充填等疾病。然而,硫酸钙与自体骨的骨缺损修复相比有一定的劣势。硫酸钙骨水泥由于其较低的生物活性,其在治疗早期与骨组织缺乏较好的化学键结合力,这些显著的缺点限制了其在临床的应用。而理想的骨支架应能促进骨的早期矿化,并能与此同时促进新骨的形成。基于生物矿化原理的纳米基胶原合成材料,由于其与天然骨相似的结构,并添加了Ⅰ型矿化胶原,而受到广泛的关注。在这个材料中,胶原分子和纳米羟基磷灰石组装成与天然骨的成分和空间结构及其相似的矿化纤维,并有大量的研究证明nHAC且有良好的生物活性和生物相容性。为了提高硫酸钙的骨再生性能,有文献报道可以将羟基磷灰石添加到硫酸钙中,变成可注射性的骨水泥,可替代自体骨用于骨再生的应用。
     本文研究了不同配比的nHAC和CSH的nHAC/CSH复合水泥的凝固时间,及其机械性能,体外的生物活性和降解性,体外及体内的生物相容性,及体内成骨性能等,旨在推进用于无负荷的整形外科的骨缺损修复,以及推进骨肿瘤切除术和骨质疏松症的研究。
     1、通过对不同配比的nHAC和CSH的nHAC/CSH复合水泥的凝固时间,及其机械性能,体外的生物活性和降解性,体外及体内的生物相容性研究,初步评价复合材料的生物相容性和生物活性,筛选出适合临床应用的nHAC和CSH比例。
     2、通过体外材料与骨髓基质细胞共培养来定性和定量地研究材料的生物相容性。在条件培养基的诱导下,将骨髓间充质干细胞向骨髓源成骨细胞诱导,并通过检测细胞的成骨性能的表达,评价骨髓源成骨细胞的成骨性能。将骨髓源成骨细胞用于MTT细胞毒性试验和流式细胞仪检测与材料共培养后,材料对细胞周期的影响,并通过细胞在两种材料表面的培养的扫描电镜结果,观察细胞在材料表面的粘附情况,同时对于材料共培养细胞的Ⅰ型胶原和整合素(31 mRNA相对表达水平的测定,检测细胞粘附发生的机制。
     3、通过溶血试验,热原实验,皮内反应试验来评价复合材料的生物相容性。通过兔下颌骨临界缺损的箱状模型来评价纯硫酸钙(CSH)和纳米晶羟基磷灰石胶原/硫酸钙(nHAC/CSH)复合骨水泥的骨缺损修复性能。采用x光影像学方法观察各组动物的骨缺损修复情况,术后4、8、12周取兔下颌骨,记录骨矿密度(bone mineral density,BMD)数值,骨密度值进行定量分析,以评价骨缺损区的成骨质量。利用脱钙及未脱钙的组织切片及染色技术,观察材料降解、形态改变与组织生长情况,评价其成骨能力。
     结果
     1、XRD用来测试含不同比率nHAC和CSH的复合水泥的晶体构成,凝固后的nHAC/CSH复合水泥的主要成分为nHAC和CSD,与文献报道一致,成功合成了复合材料。结果显示,凝固性、可注射性以及骨水泥的机械性能均取决于nHAC和CSH比率。nHAC能使复合水泥的凝固时间延长,nHAC的在复合水泥中所占的比率越高,凝固时间越长。复合水泥抗压强度和压缩模量随着nHAC比率的增加而降低。EDX结果分析证实添加nHAC显著改进了nHAC/CSH复合水泥的生物活性。除了30% nHAC/CSH复合水泥之间在第14天和第21天的结果外,nHAC/CSH复合水泥和纯CSH水泥相比,降解率无显著差异。因此,可以通过调整nHAC和CSH比率,使nHAC/CSH复合水泥的降解度符合各种临床应用;对含不同比例nHAC的复合水泥性能进行测试,筛选出含10% nHAC的复合材料各项性能比较符合临床要求。
     2、在条件培养基的诱导下,将骨髓间充质干细胞成功诱导为骨髓源成骨细胞,并具有成骨能力。将骨髓源成骨细胞用于MTT试验和流式细胞仪的结果显示,nHAC/CSH有良好的生物相容性。通过将骨髓基质细胞在两种材料表面的培养的扫面电镜结果可见,nHAC/CSH材料更有利于细胞的粘附,Ⅰ型胶原和整合素β1mRNA相对表达水平也表明nHAC/CSH复合水泥有更强的促进细胞粘附的能力。和纯硫酸钙(CSH)相比,纳米晶羟基磷灰石胶原/硫酸钙(nHAC/CSH)复合骨水泥能显著提高材料的生物活性,尤其是在促进细胞粘附方面。
     3、体内试验的结果也显示,该复合水泥未导致明显的炎症反应,无溶血性、无致热性、无皮肤刺激性,具有良好的生物安全性,符合国家生物医用材料相关标准。将材料植入兔下颌骨临界性箱状缺损修复结果表明,:nHAC/CSH复合骨水泥有良好的骨缺损修复能力,尤其是早期成骨性能优异,与纯CSH水泥相比,更有利于促血管生成和骨改建。
     结论
     1、通过调整材料中]nHAC和CSH的比率可控制nHAC/CSH复合水泥的凝固时间、可注射性能、机械性能,使其满足临床需要。与纯CSH水泥相比,复合材料表现出较好的生物活性。并筛选出含10% nHAC的复合材料各项性能比较符合临床要求。
     2、体外细胞培养实验结果表明,nHAC/CSH复合骨水泥无明显的细胞毒性,有较好的细胞相容性,与纯CSH水泥相比,更有利于细胞增殖和黏附。
     3、纳米晶羟基磷灰石胶原/硫酸钙(nHAC/CSH)复合骨水泥有较强的骨改建能力,尤其在早期促成骨方面效果显著,具有潜在的临床利用价值。
Objective
     Bony defects caused by infection, tumor, trauma, surgery, joint fusion, and fracture nonunion have increased as the population ages. Facing the problems of the irregular bony defects and the increasing popularity of minimally invasive techniques, especially in the application of craniofacial regions, the search for injectable biodegradable scaffold materials with satisfactory compatibility and rapid ossify performance became one of the major hotspots in bone tissue engineering.
     Injectable bone cements can be classified into four classes:calcium phosphates, acrylic bone cements, calcium sulfates, and composites. Among these materials, calcium sulfate has a long clinical history for use as bone graft substitute in its form known as plaster or gypsum for its self-setting ability "in situ" after filling the defect, the lack of inflammatory response, and the promotion of bone healing. It has been utilized in periodontal disease, endodontic lesions, alveolar bone loss and maxillary sinus augmentation. However, calcium sulfate is inferior to autografts in bone defect repair. However, calcium sulfate cement has some drawbacks that significantly limit its clinical applications, such as lacking the ability to form a chemical bond with bone tissue at the early stage of therapy because of its poor bioactivity. The ideal bone scaffold should promote early mineralization and support new bone formation while at the same time allowing for replacement by new bone. Based on the biomineralization principles, nano-hydroxyapatite/collagen (nHAC) composite, inspired from investigation on natural bone, had been developed by mineralizing typeⅠcollagen in our lab, which has attracted great attention. In this material collagen molecules and nano-hydroxyapatite assembled into mineralized fibril, with high similarity of natural bone both in composition and hierarchical structure. Extensively studies indicated that the nHAC material is bioactive and biodegradable. In order to optimize bioactivity and the performance of bone regeneration of CSH, the previous study suggested that hydroxyapatite (HA) could be incorporated into CSH, creating a composite grout that could be used for bone regeneration as an alternative or adjunct to autogenous bone.
     In the present study, a novel injectable bone cement was designed as a composite of nHAC and CSH, A series of such injectable composite cements with different ratio of nHAC and CSH were prepared for adjustable self-setting time. Their mechanical properties, in vitro bioactivity and degradability, in vitro and in vivo biocompatibility of the composite cements were determined in this study, which is aimed to have complementary advantages for the non-loading bearing bone defect repair in orthopedics application, such as bone tumor resections and osteoporosis.
     Methods
     1. In order to evaluate the biocompatibility and bioactivity of the composite cements, a series of such injectable composite cements with different ratio of nHAC and CSH were prepared for adjustable self-setting time. Their mechanical properties, in vitro bioactivity and degradability, in vitro and in vivo biocompatibility of the composite cements were also determined in this study. Through this research, the suitable proportion of nHAC should be screened for clinical practice.
     2. Quantitative and qualitative biocompatibility assays with bone marrow stromal cells cultured with materials in vitro were performed for evaluating the biocompatibility. Under the induction of condition culture medium, marrow mesenchyma stem cells were induced to marrow source osteoblast and express the performance of ossification. In vitro, the marrow source osteoblast was detected by MTT assay and Flow cytometric analysis. BMSCs grew on the surface of two samples were detected under scanning electron microscope. Type I collagen and integrinβ1 mRNA relative expression level were also detected to test the mechanism of cell adhesion.
     3. The the hematolysis experiment, the pyrogen experiment and the intracutaneous response experiment were used to appraise biocompatibility of the composite cement. A critical box-shaped defect model in the mandible of the rabbit was used to evaluate the bone-remodeling ability.4,8,12 weeks after operation, rabbit mandibular in box-shaped defect regions were extracted. X-ray study was used to observe the situation of each group of animal's bone defect. BMD analysis the of the defect regions were also used to evaluate the level of ossification. Using the decalcify and not the decalcify tissue slice and the dyeing technology to observe the degradation, the shape change and the bone formation of the defect region and also evaluate the ability of bone regeneration of the composite cement.
     Results
     1. XRD was used for testing the composition of cement with a serious of different ratio of nHAC and CSH. The main composition of the final setting cement of nHAC/CSH is nHAC and CSD. The diffraction of the nHAC and CSH powders prepared in this paper were the same as that reported previously. The composite cement was synthesized successfully. The results demonstrated that setting behavior, injectability, and mechanical properties of the bone cement were depend on the composition ratio of nHAC and CSH. nHAC has a retarding effect on the setting time of composite cement, a higher setting time was obtained with the increase of the amount of nHAC. The mechanical results indicated that compressive strength and compressive modulus of composite the cement decreased with the increase of the content ratio of nHAC. The results from the EDX analysis indicated that the bioactivity of the nHAC/CSH composite cements has been improved significantly compared to that of the pure CSH cement. It can be seen that there was no significant difference of the degradation rate between the nHAC/CSH composite cements and the pure CSH cement, except that of 30% nHAC/CSH composite cement at 14th day and 21st day. The nHAC/CSH composite cement can be adjusted by modifying the ratio of nHAC and CSH for various clinical applications.10% nHAC was carefully screened for clinical practice.
     2. Under the induction of condition culture medium, marrow mesenchyma stem cells were induced to marrow source osteoblast. In vitro, favourable biocompatibility was detected by MTT assay and Flow cytometric analysis. BMSCs grew on the surface of two samples were found to be adhered firmly on nHAC/CSH surface compared with pure CSH under scanning electron microscope. Type I collagen and integrinβ1 mRNA relative expression level also suggested nHAC/CSH composite cement have a higher ability to promote cell adhesion than the pure CSH. Results in vitro indicated that the nHAC/CSH significantly improved bioactivity compared with that of CSH, especially in promoting cell adhesion.
     3. In vivo experiment indicated that this composite cement has not caused the obvious inflammation, does not have hemolytic, not sends the thermal property, the non-skin irritating quality, has the satisfactory biological security, conforms to the national biology medical material related standard. The in vivo results also show that nHAC/CSH composite cement exhibit favorable bioactivity of bone regeneration than that of CSH, it also could cause an earlier accelerator and better osseointegration for bone repair.
     Conclusions
     1. The setting time and injectability and mechanical properties of the composite cement could be controlled by adjusting the content ratio of nHAC and CSH. nHAC/CSH exhibit better bioactivity compared to pure CSH.10% nHAC was carefully screened for clinical practice.
     2. The in vitro cell culture test showed that the composite cement have no significant cytotoxicity could benefit cell proliferation and adhesion compared with pure CSH cement.
     3. Furthermore, the in vivo results mean that nHAC/CSH composite have better biocompatibility and a higher bone remodeling activity than that of CSH, especially at the early stage of remodeling. Hence, nHAC/CSH composite cement can be further researched as injectable scaffold for bone regeneration.
引文
1 Yu XW, Xie XH, Yu ZF, et al. Augmentation of Screw Fixation with Injectable Calcium Sulfate Bone Cement in Ovariectomized Rats. J Biomed Mater Res Part B:Appl Biomater. 2009; 89(1-6):36-44.
    2 Yu B, Han K, Ma H, et al. Treatment of tibial plateau fractures with high strength injectable calcium sulphate. Int Orthop.2009; 33(4):1127-1133.
    3 Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty:State-of-the-art review. J Biomed Mater Res Part B:Appl Biomater.2006; 76(2):456-468.
    4 Peltier L.F., Jones R.H. Treatment of unicameral bone cysts by curettage and packing with plaster-of-Paris pellets (reprinted 1978). Clin Orthop.2004; (422):145-147.
    5 Pietrzak W.S., Ronk R. Calcium sulfate bone void filler:A review and a look ahead. J Craniofac Surg.2000; 11(4):327-333.
    6 Doadrio JC, Arcos D, Cabanas MV, et al. Calcium sulphate-based cements containing cephalexin. Biomaterials.2004; 25(13):2629-2635.
    7 Hadjipavlou AG,Simmons JW, Tzermiadianos MN, et al. Plaster of Paris as bone substitute in spinal surgery. Eur Spine J.2001; 10(S2):S189-196.
    8 Orsini G, Ricci J, Scarano A, et al. Bone-defect healing with calcium-sulfate particles and cement:An experimental study in rabbit. J Biomed Mater Res Part B:Appl Biomater 2004; 68(2):199-208.
    9 Jamali A, Hilpert A, Debes J, et al. Hydroxyapatite/calcium carbonate (HA/CC) vs. plaster of Paris:A histomorphometric and radiographic study in a rabbit tibial defect model. Calcif Tissue Int.2002; 71(2):172-178.
    10 Cabanas MV, Rodriguez-Lorenzo LM, Vallet-Regi M. Setting behavior and in vitro bioactivity of hydroxyapatite/calcium sulfate cements. Chem Mate.2002; 14(8):3550-3555.
    13 Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mate Sc & Eng R-Reports.2007; 57(1):1-27.
    12 Zhang W, Liao SS, Cui FZ. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater.2003; 15(16):3221-3226.
    13 Du C, Cui FZ, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res.2000; 50(4):518-527.
    14 Du C, Cui FZ, Zhu XD, et al. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res.1999; 44(4):407-415.
    15 Synthetic bone. Nat Mater.2003; 2(9):566-566.
    16 Liao SS, Cui FZ, Zhang W, et al. Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J Biomed Mater Res Part B:Appl Biomater 2004; 69(2): 158-165.
    17 Liao SS, Cui FZ. In vitro and in vivo degradation of mineralized collagen-based composite scaffold:Nanohydroxyapatite/collagen/poly (L-lactide). Tissue Eng.2004; 10(1-2):73-80.
    18 Pins GD, Christiansen DL, Patel R, et al. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J.1997; 73(4):2164-2172.
    19 Huan Z, Chang J. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. Acta Biomater.2007; 3(6):952-960.
    20 Rosenblatt J, Devereux B, Wallace DG. Effect of Electrostatic Forces on the Dynamic Rheological Properties of Injectable Collagen Biomaterials. Biomaterials.1992; 13(12):878-886.
    21 Khairoun I, Boltong MG, Driessens FC, et al. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci-Mater Med.1998; 9(8):425-428.
    22 Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials.2006; 27(15):2907-2915.
    23 Kokubo T. Surface chemistry of bioactive glass-ceramics. J Non Cry Solids.1990; 120 (1-3): 138-151.
    24 Roy S, Basu B. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol.1983; 96(1):191-198.
    25 Zhang SM, Cui FZ, Liao SS, et al. Synthesis and biocompatibility of porous nanohydroxyapatite/collagen/alginate composite. J Mater Sci-Mater Med.2003; 14(7): 641-645.
    26 Lewry AJ, Williamson J. The Setting of Gypsum Plaster part I the Hydration of Calcium-Sulfate Hemihydrate. J Mater Sci.1994; 29(20):5279-5284.
    27 Gibson LJ. The mechanical behavior of cancellous bone. J of Biomech.1985; 18(5):317-328.
    28 Anderson JM. Biological responses to materials. Ann Rev Mater Res 2001; 31:81-110.
    29 Brodie JC, Goldie E, Connel G, et al. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. J Biomed Mater Res Part A.2005; 73(4):409-421.
    30 Li XM, van Blitterswijk CA, Feng QL, et al. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials.2008; 29(23):3306-3316.
    31 Li XM, Liu X, Dong W, et al. In Vitro Evaluation of Porous Poly(L-Lactic Acid) Scaffold Reinforced by Chitin Fibers. J Biomed Mater Res Part B-Appl Biomater.2009; 90(2):503-509.
    32 Li XM, Gao H, Uo M, et al. Effect of carbon nanotubes on cellular functions in vitro. J Biomed Mater Res Part A.2009; 91(1):132-139.
    33 Li XM, Feng QL, Liu X, et al. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials.2006; 27(9):1917-1923.
    34 Hench LL, Polak JM. Third-generation biomedical materials. Science 2002; 295:1014-1017.
    35 Sidqui M, Collin P, Vitte C, et al. Osteoblast Adherence and Resorption Activity of Isolated Osteoclasts on Calcium-Sulfate Hemihydrate. Biomaterials 1995; 16(17):1327-1332.
    36 Orsini M, Orsini G, Benlloch D, et al. Comparison of calcium sulfate and autogenous bone graft to bioabsorbable membranes plus autogenous bone graft in the treatment of intrabony periodontal defects:A split-mouth study. Journal of Periodontology.2001; 72(3):296-302.
    37 Murashima Y, Yoshikawa G, Wadachi R, et al. Calcium sulphate as a bone substitute for various osseous defects in conjunction with apicectomy. International Endodontic Journal. 2002; 35(9):768-774.
    38 Parsons JR, Ricci JL, Alexander H, et al. Osteoconductive composite grouts for orthopedic use. AnnNYAcad Sci.1988; 523:190-207.
    39 Rammelt S, Schulze E, Witt M, et al. Collagen type I increases bone remodelling around hydroxyapatite implants in the rat tibia. Cells Tissues Organs.2004; 178(3):146-157.
    40 Rammelt S, Schulze E, Bernhardt R, et al. Coating of titanium implants with type-Ⅰ collagen. Journal of Orthopaedic Research.2004; 22(5):1025-1034.
    41 Caiazza S, Colangelo P, Bedini R, et al. Evaluation of guided bone regeneration in rabbit femur using collagen membranes. Implant Dent. 2000; 9(3):219-225.
    42 Brunei G, Brocard D, Duffort JF, et al. Bioabsorbable materials for guided bone regeneration prior to implant placement and 7-year follow-up:Report of 14 cases. Journal of Periodontology. 2001; 72(2):257-264.
    43 Winn SR, Hollinger JO. An osteogenic cell culture system to evaluate the cytocompatibility of Osteoset (R), a calcium sulfate bone void filler. Biomaterials.2000; 21(23):2413-2425.
    44 Muller P, Bulnheim U, Diener A, et al. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells. Journal of Cellular and Molecular Medicine.2008; 12(1):281-291
    45 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science.1999; 284(5411):143-147.
    46 Deans RJ, Moseley AB. Mesenchymal stem cells:Biology and potential clinical uses. Experimental Hematology.2000; 28(8):875-884.
    47 Hung SC, Chen NJ, Hsieh SL, et al. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells.2002; 20(3):249-258.
    48 Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. Journal of Cellular Biochemistry.1997; 64(2):278-294.
    49 Cheng SL, Yang JW, Rifas L, et al. Differentiation of human bone-marrow osteogenic stromal cells in vitro-induction of the osteoblast phenotype by dexamethasone. Endocrinology.1994; 134(1):277-286.
    50 Ogston N, Harrison AJ, Cheung HFJ, et al. Dexamethasone and retinoic acid differentially regulate growth and differentiation in an immortalised human clonal bone marrow stromal cell line with osteoblastic characteristics. Steroids.2002; 67(11):895-906.
    51 Marom R, Shur I, Solomon R, et al. Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. Journal of Cellular Physiology.2005; 202(1):41-48.
    52 Stucki U, Schmid J, Hammerle CF, et al. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration-A descriptive histochemical study in humans. Clinical Oral Implants Research.2001; 12(2):121-127.
    53 Anselme K.Osteoblast adhesion on biomaterials.Biomaterials.2000; 21 (7):667-81.
    54 Allampallam K, Chakraborty J, Robinson J. Effect of ascorbic acid and growth factors on collagen metabolism of flexor retinaculum cells from individuals with and without carpel tunnel syndrome. Journal of Occupational and Environmental Medicine,2000; 42(3):251-259.
    55 Bellows CG, Aubin JE, Heersche JN. Initiation and progression of mineralization of bone nodules formed in vitro:the role of alkaline phosphatase and organic phosphate. Bone Miner; 1991,14(1):27-40.
    56 Yang XF, Xi TF. Progress in the studies on the evaluation of biocompatibility of biomaterial.J BiomedEng,2001; 18(1):123-128.
    57 Anselme K.Osteoblast adhesion on biomaterials.Biomaterials.2000; 21(7):667-81
    58 Vassilis K,David K.Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials,2005; 26(27):5474-91.
    59贝建中,屈雪,王身国。生物材料与细胞的相互作用。北京生物医学工程,2005;24(1):64-70.
    60 Anselme K.Osteoblast adhesion on biomaterials.Biomaterials.2000; 21 (7):667-81
    61 Peltier LF, Jones RH. Treatment of unicameral bone cysts by curettage and packing with plaster-of-Paris pellets (reprinted 1978). Clinical Orthopaedics and Related Research.2004; 422:145-147.
    62 Pietrzak WS, Ronk R. Calcium sulfate bone void filler:A review and a look ahead. Journal of Craniofacial Surgery.2000; 11(4):327-333.
    63 Rouahi M, Champion E, Hardouin P, et al. Quantitative kinetic analysis of gene expression during human osteoblastic adhesion on orthopaedic materials. Biomaterials.2006; 27(14): 2829-2844.
    64 Wang CY, Duan YR, Markovic B, et al. Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomaterials.2004; 25(13):2507-2514.
    65 Shu R, McMullen R, Baumann MJ, et al. Hydroxyapatite accelerates differentiation and suppresses growth of MC3T3-E1 osteoblasts. Journal of Biomedical Materials Research Part A. 2003; 67(4):1196-1204.
    66 Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha 2 beta 1 integrin interaction. Journal of Cellular Physiology.2000; 184(2):207-213.
    67 Carvalho RS, Kostenuik PJ, Salih E, et al. Selective adhesion of osteoblastic cells to different integrin ligands induces osteopontin gene expression. Matrix Biology.2003; 22(3):241-249.
    68 Mizuno M, Kuboki Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. Journal of Biochemistry.2001; 129(1): 133-138.
    69 Ruoslahti E, Pierschbacher MD. New Perspectives in Cell-Adhesion-Rgd and Integrins. Science.1987; 238(4826):491-497.
    70 Stock UA, Vacanti JP. Tissue engineering:Current state and prospects. Annual Review of Medicine.2001; 52:443-451.
    71 Hutmacher DW, Kirsch A, Ackermann KL, et al. A tissue engineered cell-occlusive device for hard tissue regeneration-A preliminary report. International Journal of Periodontics & Restorative Dentistry.2001; 21(1):49-59.
    72 Muschler GF, Midura RJ. Connective tissue progenitors:Practical concepts for clinical applications. Clinical Orthopaedics and Related Research.2002;(395):66-80.
    73 崔福斋,冯庆玲.生物材料学.北京:清华大学出版社,2004.
    74 Langer R, Vacanti J P. Tissue engineering. Science.1993; 260(5110):920-926.
    75 杨志明.干细胞、组织工程与再生医学.中国修复重建外科杂志.2006;20(2):95-97.
    76 Thomas MV, Puleo DA. Calcium sulfate:Properties and clinical applications[J]. J Biomed Mater Res B Appl Biomater.2009; 88(2):597-610.
    77张劲松,李雅冬,季平,等。医用硫酸钙(STIMULAN)在颌骨囊肿手术中的临床应用。山西医科大学学报,2007,38(2):167-169.
    78 Turner H, Urban R, Tomlinson M, et al. Early restoration of bone following vertebroplasty using a high strength injectable calcium sulfate bone graft substitute compared to polymethylmethacrylate. The Spine Journal.2004; 4(5) Suppl 1:S106-S107.
    79张健,吕厚山,刘海鹰,等。医用硫酸钙在家兔腰椎融合模型中的成骨能力。中国矫形外科杂志.2007;15(15):1178-1180.
    80 Turner TM, Urban RM, Hall DJ, et al. Osseous healing using injectable calcium sulfate-based putty for the delivery of demineralized bone matrix and cancellous bone chips. Orthopedics. 2003; 26(5S):S571-575.
    81 范猛,胡茂忠,姜文学。注射型人工骨在跟骨复杂骨折中的应用。实用骨科杂志.2008;14(3):133-135.
    82 Wang M, Massie J, Perry A, et al. A Rat Osteoporotic Spine Model for the Evaluation of Bioresorbable Bone Cements. The Spine Journal.2007; 6(5):466-474.
    83 中华人民共和国国家标准GB/T 14233.2-2005。
    84 Young M F. Bone matrix proteins:More than markers. Calcified Tissue International,2003,
    72(1):2-4.
    85 Tenhuisen KS, Martin RI, Klimkiewicz M, et al. Formation and properties of a synthetic bone composite-hydroxyapatite-collagen. Journal of Biomedical Materials Research.1995; 29(7): 803-810.
    86 Bradt JH, Mertig M, Teresiak A, et al. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chemistry of Materials.1999; 11(10): 2694-2701.
    87 Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials.2001; 22(13):1705-1711.
    88 Chang MC, Ikoma T, Kikuchi M, et al. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. Journal of Materials Science Letters.2001; 20(13):1199-1201.
    89 Wang RZ, Cui FZ, Lu HB, et al. Synthesis of nanophase hydroxyapatite collagen composite. Journal of Materials Science Letters.1995; 14(7):490-492.
    90 Liao SS, Cui FZ, Zhu Y. Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite:nHAC/PLA. Journal of Bioactive and Compatible Polymers,2004,19(2):117-130.
    91 Liao SS, Guan K, Cui FZ, et al. Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine.2003; 28(17):1954-1960.
    92 Strocchi R, Orsini G, Iezzi G, et al. Bone regeneration with calcium sulfate:evidence fo rincreased angiogenesis in rabbits. J Oral Imp lantol.2002; 28(6):273-278.
    93 Young S, Bashoura AG, Borden T, et al. Development and characterization of a rabbit alveolar bone nonhealing defect model. Journal of Biomedical Materials Research Part A.2008; 86(1): 182-194.
    94 Kelly CM, Wilkins RM, Gitelis S, et al. The use of a surgical grade calcium sulfate as a bone graft substitute-Results of a multicenter trial. Clinical Orthopaedics and Related Research. 2001; (382):42-50.
    95 Callaghan JJ, Brown TD. Back to the future:Evolution in hip design. Orthopedics.1998; 21(9): 1007-1008.
    96 Walsh WR, Morberg P, Yu Y, et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clinical Orthopaedics and Related Research.2003; (406):228-236.
    97 Long M W, Robinson J A, Ashcraft E A, et al. Regulation of human bone-marrow-derived osteoprogenitor cells by osteogenic growth-factors. Journal of Clinical Investigation.1995; 96(5):2541-2541.
    98 Mackie EJ. Osteoblasts:novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol.2003; 35(9):1301-1305.
    99 Anselme K. Osteoblast adhesion on biomaterials. Biomaterials.2000; 21 (7):667-681.
    100 Shibata Y, Kawai H, Yamamato H, et al. Antibacterial titanium plate anodized by being discharged in NaCl solution exhibits cell compatibility. J Dent Res.2004; 83(2):115-9.
    101顾国珍,李亦文,孙皎,等.皮肤再生膜的牛物相容性系列研究.中国修复重建外科杂志.2000;14(1):44-48.
    1 《中国组织工程研究与临床康复》学术部。关于植骨材料的临床问答。中国组织工程研究与临床康复。2009;13(3):444.
    2 Thomas MV, Puleo DA. Calcium sulfate:Properties and clinical applications. J Biomed Mater Res B Appl Biomater.2009; 88(2):597-610.
    3 张劲松,李雅冬,季平,等。医用硫酸钙(STIMULAN)在颌骨囊肿手术中的临床应用。山西医科大学学报。2007;38(2):167-169.
    4 Turner H, Urban R, Tomlinson M, et al. Early restoration of bone following vertebroplasty using a high strength injectable calcium sulfate bone graft substitute compared to polymethylmethacrylate. The Spine Journal.2004:4(5) Suppl 1:S106-S107.
    5 张健,吕厚山,刘海鹰,等。医用硫酸钙在家兔腰椎融合模型中的成骨能力。中国矫形外科杂志。2007;15(15):1178-1180.
    6 Turner TM, Urban RM, Hall DJ, et al. Osseous healing using injectable calcium sulfate-based putty for the delivery of demineralized bone matrix and cancellous bone chips. Orthopedics, 2003,26(5S):S571-575.
    7 范猛,胡茂忠,姜文学。注射型人工骨在跟骨复杂骨折中的应用。实用骨科杂志。2008;14(3): 133-135.
    8 Wang M, Massie J, Perry A, et al. A Rat Osteoporotic Spine Model for the Evaluation of Bioresorbable Bone Cements. The Spine Journal.2007; 6(5):466-474.
    9 Zheng Z, Xiang Q, Liu Y, et al. Preparation and ProPerties of medical Calcium Phosphate cement. Sheng Wu Xue Gong Cheng Xue Za Zhi.2006; 23(5):1048-51.
    10 Xu HH, Carey LE, Simon CG, et al. Premixed calcium phosphate cements:synthesis, physical properties, and cell cytotoxicity. Dent Mater.2007; 23(4):433-441.
    11 Burguera EF, Xu HHK, Weir MD. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. J Biomed Mater Res.2006; 77(1):126-134.
    12 Huan ZG, Chang J. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. Acta Biomater.2007; 3(6):952-960.
    13 Kim CK, Chai JK, Cho KS, et al. Effeet of calcium sulphate on the healing of periodontal intrabony defects. Int Dent J.1998; 48 (supple 1):330-337.
    14 Turner TM, Urban RM, Gitelis S, et al. Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect. Orthopedics.2003; 26(5S):s577-579.
    15 Scarano A, Orsini G, Pecora G, et al. Peri-implant bone regeneration with calcium sulfate:a light and transmission electron microscopy case report. Implant Dent.2007; 16(2):195-203.
    16 Strocchi R, Orsini G, Iezzi G, et al. Bone regeneration with calcium sulfate:evidence fo rincreased angiogenesis in rabbits. J Oral Imp lantol.2002; 28(6):273-278.
    17 Walsh WR, Morberg P, Yu Y, et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop Relat Res.2003; (406):228-236.
    18 Palmieri A, Pezzetti F, Brunelli G, et al. Calcium sulfate acts on the miRNA of MG63Eosteoblast-like cells. J Biomed Mater Res B Appl Biomater.2008; 84(2):369-374.
    19 Carinci F, Piattelli A, Stabellini G, et al. Calcium sulfate:analysis of MG63 osteoblast-like cell response bymeans of a microarray technology. J BiomedMater Res B Appl Biomater.2004; 71 (2):260-267.
    20 Palmieri A, Pezzetti F, Brunelli G, et al. Calcium sulfate acts on the miRNA of MG63E osteoblast-like cells. J Biomed Mater Res B Appl Biomater.2007; 84(2):369-374.
    21 Lazary A, Balla B, Kosa JP, et al. Effeet of gypsum on Proliferation and differentiation of MC3T3-E1 mouse osteoblastic cells. Biomaterials.2007; 28(3):393-399.
    22 Kelly CM, Wilkins RM. Treatment of benign bone lesions with an injectable calcium sulfate-based bone graft substiutte. Orthopedies.2004; 27(1):s131-135.
    23 Schwartz Z, Doukarsky-Marx T, Nasatzky E, et al. Differential effects of bone graft substitutes on regeneration of bone marrow. Clin Oral Implants Res.2008; 19(12):1233-1245.
    24 Kelly CM, Wilkins RM, Gitelis S, et al. The use of a surgical grade calcium sulphate as a bone graft substitute:results of a multicenter trial. Clin Orthop.2001; 382(1):42-50.
    25 Borrelli J, Priekett WD, Rieei WM, et al. Treatment of nonunions and osseous defects with bone graft and calcium sulphate.Clin Orthop Relat Res.2003; 411(1):245-254.
    26 Derincek A, Wu C, Mehbod A, et al. Biomechanical comparison of anatomic trajectory pedicle screw versus injectable calcium sulfate graft-augmented pedicle screw for salvage in cadaveric thoracic bone. Spinal Disord Tech.2006; 19(4):286-291.
    27王宇,邑晓东,李淳德。可注射硫酸钙强化椎弓根螺钉内固定的实验研究。中国脊柱脊髓杂志。2009,19(1):64-68.
    28 Yi X, Wang Y, Lu H, et al. Augmentation of Pedicle Screw Fixation Strength Using an Injectable Calcium Sulfate Cement:An In Vivo Study. Spine.2008; 33(23):2503-2509.
    29曾冠强。颌骨囊肿摘除术后石膏充填骨腔23例疗效评价。华夏医学。2003;16(3):390-391.
    30张咏,周许辉,陈雄生,等。骨质疏松大鼠胫骨骨缺损应用硫酸钙骨水泥填充后密度的变化。第二军医大学学报。2008;29(5):569-571.
    31陈华,田学忠,张伯勋,等。硫酸钙骨内植入修复兔包容性骨缺损的力学分析。中国矫形外科杂志。2008;16(5):373-375.
    32 Roberto C, Paolo C, Enrico G. Magnesium-Enriched Hydroxyapatite Compared to Calcium Sulfate in the Healing of Human Extraction Sockets:Radiographic and Histomorphometric Evaluation at 3 Months. Journal of Periodontology.2009; 80(2):210-218.
    33 Mamidwar S, Weiner M, Alexander H, et al. In vivo bone response to calcium sulfate/poly L-lactic acid composite. Implant Dent.2008; 17(2):208-16.
    34 Aiderman NE. Sterile Plaster of Paris as an implant in infirabony environment:A Preliminaly study. J Periodontol.1969; 40(1):11-12.
    35 Huan Z, Chang J. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. Acta Bimater.2007; 3(6):952-960.
    36 Hung KA, Wilson LF, Buckland T. Comparative performance of three ceramic bone graft substitutes. Spine J.2007; 7(4):475-490.
    37 Frame JW, Rout PG, Browne RM, et al. Ridge augmentation using solid and porous hydroxyapatite particles with and without autogenous bone or plaster. J Oral Maxiallofac Surg. 1987; 45(9):771-777.
    38 Shigeru S, Tomihisa K, Tomoyuki S. Osteogenic response of rabbit tibia to hydroxyapatite particle-Plaster of Paris mixture. Biomaterials.1998; 19(20):1895-1900.
    39张民,王建生,卫小春,等。可注射性硫酸钙/羟基磷灰石骨替代材料的性能研究。中国康复杂志。2006;21(1):16-17.
    40 Nilsson M, Wang JS, Wielane L, et al. Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.J Bone Joint Surg Br.2004; 86(1):120-125.
    41李广州,蒋电明。纳米羟基磷灰石生物安全性评价与研究进展。生物骨科材料与临床研究。2009;6(1):31-33.
    42 Fukui N, Sato T, Kuboki Y, Aoki H, et al. Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation. Biomed Mater Eng,2008; 18(1):25-33.
    43葛亮,杨四川,苟三怀,等。纳米羟基磷灰石/硫酸钙人工骨在模拟体液浸泡环境下的行为研究。中国生物医学工程学报。2007;26(4):578-583.
    44葛亮,苟三怀,杨四川,等.纳米羟基磷灰石/硫酸钙复合人工骨的生物安全性研究[J].生物骨科材料与临床研究。2007;4(2):4-8.
    45田川,孙晓宇,汪世龙,等。载药复合纳米人工骨的注射、凝固、抗稀散性及药物缓释放的性能研究。北京生物医学工程。2008;27(2):130-133.
    46 Liao SS, Cui FZ, Zhang W, et al. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater.2004; 69(2): 158-165.
    47 Du C, Cui FZ, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res.2000; 50(4):518-527.
    48 Wang RZ, Cui FZ, Lu HB, et al. Synthes is of nanophase hydroxyapatite collagen composite. J Mater Sci Lett.1995; 14(7):490-492.
    49 Weiner S, Wagne HD. The material bone:structure-mechanical function relations. Annu Rev Mater Sci.1998; 28:271-298.
    50 Liu L, Zhang L, Ren B, et al. Preparation and characterization of collagen-hydroxyapatite composite used for bone tis sue engineering scaffold. Artif Cells Blood Substit Immobil Biotechnol.2003; 31(4):435-448.
    51 Sachlos E, Gotora D, Czernuszka JT. Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels.Tissue Eng.2006; 12(9):2479-2487.
    52刘新晖,张锡庆,刘进炼,等。纳米相羟基磷灰石胶原复合材料与人骨髓基质干细胞体外相容性的研究。中华小儿外科杂志。2005;26(4):204-206.
    53冯庆玲,崔福斋,张伟。纳米羟基磷灰石/胶原骨修复材料。中国医学科学院学报。2002;24(2):124-128.
    54关凯,孙天胜,时述山,等。纳米晶羟基磷灰石/胶原复合材料。兔腰椎横突间融合中的观察。颈腰痛杂志。2003;24(4):218-222.
    55沈铁城,夏青,黄永辉,等。纳米晶胶原基骨材料在骨科疾病中的应用。中国组织工程研究与临床康复。2007;11(1):48-51.
    56 Park JW, Jang JH, Bae SR, et al. Bone formation with various bone graft substitutes in critical-sized rat calvarial defect. Clin Oral Impl.2009; 20(4):372-378.
    57于学忠,陈华,徐风华,等。硫酸钙/庆大霉素、硫酸钙/聚乳酸/庆大霉素释药系统的制备与特性分析。2009;6(1):1-4.
    58 Song HY, Esfakur Rahman AH, Lee BT. Fabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid. J Mater Sci Mater Med.2009; 20(4): 935-941.
    59 Mark L.W, Jennifer M, Richard T.A, et al. Altered bioreactivity and limited osteo-conductivity of calcium sulfate-based bone cements in the osteoporotic rat spine. The Spine Journal.2008; 8(2):340-350.
    60 Zhiguang Huan, Jiang Chang, Self-setting properties and in vitro bioactivity of the calcium sulfate hemihydrates/tricalcium silicate composite bone cements. Acta Biomaterialia.2007; 3(6):952-960.
    61 Zhiguang H, Jiang Ch, Xiang-Hui H. Self-setting properties and in vitro bioactivity of Ca2SiO4 /CaSO4·1/2H2O composite bone cement. Journal of Biomedical Materials Research.2008; 87B (2):387-394.
    62 Intini G, Andreana S, Intini FE, et al. Calcium sulfate and platelet-rich plasma make a novel osteoinductive biomaterial for bone regeneration. J Transl Med.2007; 7(5):13.
    63 Cui X, Zhang B, Wang Y, et al. Effects of chitosan-coated pressed calcium sulfate pellet combined with recombinant human bone morphogenetic protein 2 on restoration of segmental bone defect. J Craniofac Surg.2008; 19(2):459-465.
    64 Hui T, Yongqing X, Tiane Z, et al. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate. Arch Orthop Trauma Surg.2009; 129(10):1301-1308.
    65赵文韬,陈涛,王琦,等。含硫酸庆大霉素的硫酸钙治疗硬化性骨髓炎术后骨缺损的疗效评价。实用医技杂志。2009;16(2):135-136.
    66吴宏斌,杜靖远,杨述华。经皮注射微创可注射型硫酸钙人工骨X3联合甲泼尼龙治疗复发性骨囊肿。中国微创外科杂志。2008;8(8):688-690.
    67 Papagelopoulos PJ, MavrogenisAF, Tsiodras S, et al. Calcium sulphate delivery system with tobramycin for the treatment of chronic calcaneal osteomyelitis. J IntMed Res.2006; 34(6):704-712.
    68 Turner TM, Urban RM, Hall DJ, et al. Local and systemic levels of tobramycin delivered from calcium sulfate bone graft substitute pellets. Clin Orthop Relat Res.2005; (437):97-104.
    69 Beardmore AA, BrooksDE, Wenke JC, et al. Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. J Bone Joint Surg Am.2005; 87 (1): 107-112.
    70 Byung CC, Ho YC, Dong GL, et al. The effect of chitosan bead encapsulating calcium sulfate as an injectable bone substitute on consolidation in the mandibular distraction osteogenesis of a dog model. Journal of oral and maxillofacial surgery.2005; 63 (12):1753-1764.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700