丝素蛋白/磷酸钙骨水泥在肺栓塞动物模型及椎间盘藻酸盐凝胶培养系统中的实验测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分丝素蛋白/磷酸钙骨水泥的制备、抗稀散性及体外凝血实验研究
     【目的】制备丝素蛋白/磷酸钙骨水泥(silk fibroin/calcium phosphate cement,SF/CPC)复合人工骨材料,对骨水泥在液体中的抗稀散性进行测试,试验不同SF添加质量分数对稳定性的影响,同时测试PMMA、CPC和SF/CPC对离体动物血浆凝血指标的影响,为下一部分的动物体内实验提供参照。
     【方法】将家蚕丝纤维脱胶、溶解、透析、喷雾干燥后制得丝素蛋白粉末。通过液相沉淀法制备磷酸四钙,将其和无水磷酸氢钙等摩尔比混合,加入4 wt%羟基磷灰石晶种。配制质量分数分别从0.5 wt%、1.0 wt%、1.5 wt%、2.0 wt%、2.5 wt%到3.0 wt%的丝素复合磷酸钙骨水泥6组,按液固比0.4ml/g与固化液混合,制备6种SF/CPC,未添加SF的CPC组作为空白对照。观察各种材料在液体中的抗稀散性,定量测定骨水泥残余质量百分比。将固化后的PMMA、CPC和SF/CPC骨水泥材料颗粒加入新鲜猪血浆,测定材料对凝血酶原时间(PT)、活化部分凝血活酶时间(APTT)、凝血酶时间(TT)、纤维蛋白原定量(Fig)及D-二聚体(D-D)等凝血指标的影响。
     【结果】由于SF的添加,CPC在液体中的抗稀散性明显提高,随着SF质量分数的提高,SF/CPC的骨水泥残余率逐渐上升,至2.5wt%-3.0wt%时基本达到100%。三种骨水泥作用动物血浆后仅CPC组的PT略有减少,其它凝血指标未见明显改变。
     【结论】丝素蛋白的添加可以明显改善磷酸钙骨水泥在液体中易崩解的特性,SF/CPC的抗稀散性与添加SF的质量分数有同增关系,兼顾稳定性与注射性,选择2.5wt%的SF/CPC进行后续的研究。骨水泥材料对体外血浆的凝血指标影响很小,仅观察到CPC使PT有轻微的缩短,丝素的添加可进一步提高CPC的血液相容性。
     第二部分丝素蛋白/磷酸钙骨水泥在骨水泥肺栓塞动物模型中的测试研究
     【目的】建立骨水泥肺栓塞动物模型,研究PMMA、CPC及SF/CPC三种材料造成肺栓塞后,对心血管系统的血流动力学、肺氧合及抗凝血酶活性的影响,探讨丝素改良骨水泥材料降低心血管系统并发症的可行性。
     【方法】实验动物麻醉后气管插管,呼吸机保持正常的呼气末潮气量和动脉CO2浓度。下肢股动脉置入测压管,供监测有创动脉血压和采集血标本;经颈内静脉置入肺动脉漂浮导管测量肺动脉压及中心静脉压。动物行开胸手术,经肺动脉干注入PMMA、CPC或SF/CPC骨水泥,持续监测血流动力学参数,包括平均肺动脉压(mean pulmonary arterial pressure,MPAP)、平均动脉压(mean arterial pressure,MABP)、中心静脉压(central venous pressure,CVP)和心率(heart rate,HR) ;测定预设时间点的动脉血PH值、动脉血氧分压(PaO2)和动脉血二氧化碳分压(PaCO2)以及注射前后抗凝血酶Ⅲ活性(ATⅢ)。处死后肺标本行CT检查,立体三维重建血管内骨水泥铸形。
     【结果】CPC对心血管系统的影响最为严重,平均肺动脉压的升高最大时为21.33±5.44mmHg(注射后50分钟),平均动脉压下降最大时为-27.15±11.79mmHg(注射后50分钟),在注入骨水泥10分钟时出现心率的瞬时下降(-27.67±6.14次/分)。PMMA组及SF/CPC组的变化较轻微,与CPC组比较差异有统计学意义。注射骨水泥后CPC组血气指标改变明显,PH值下降,变化最大时-0.13±0.02(注射后60分钟),动脉血二氧化碳分压(PaCO2)升高,变化最大时15.9±7.67mmHg(注射后60分钟),注射后10分钟动脉血氧分压(PaO2)即已有明显下降(-23±1.26mmHg); PMMA及SF/CPC对肺栓塞动物动脉血气的影响较小。AT-III在三组均有下降,CPC组降幅最大,与另两组间差异有统计学意义。
     【结论】注射型骨水泥直接注入动物肺动脉干可建立椎体成形术中骨水泥血管渗漏致肺栓塞模型,对PMMA、CPC及丝素复合CPC三种材料进行的测试比较结果证明,骨水泥的抗稀散性对肺栓塞后心血管并发症严重程度起主要影响作用。丝素的复合使CPC在血液中的抗稀散性明显提高,有效地减少了栓子特别是微栓子的产生,能明显减轻骨水泥栓塞后对血流动力学、呼吸功能的影响,降低激活凝血系统的危险,从而降低急性心肺功能障碍的发生率和死亡率。
     第三部分丝素蛋白/磷酸钙骨水泥对藻酸盐凝胶培养系统中椎间盘细胞活性、基质多糖及胶原代谢影响的实验研究
     【目的】研究PMMA、CPC和SF/CPC三种骨水泥材料浸出培养液对藻酸盐凝胶培养系统中椎间盘细胞活性、基质多糖和胶原代谢的影响。
     【方法】兔椎间盘标本取出后,在藻酸盐凝胶系统中分别使用常规培养液(对照组)、PMMA、CPC及SF/CPC材料浸出培养液培养,至1周、2周及3周时,对各组标本行Hoechst33342和PI染色检测细胞坏死率,免疫组化检测I型胶原、Ⅱ型胶原的表达,番红O(Safranin O)染色检测基质蛋白多糖含量。在荧光显微镜下计数Hoechst33342和PI染色切片中强红色荧光+强蓝色荧光重叠的细胞数占总细胞数的百分比;利用Image-pro plus 6.0软件对免疫组化I型胶原、Ⅱ型胶原染色切片中棕黄色阳性沉淀及番红O染色切片中番红色部分作平均光密度(IOD/Area)分析。
     【结果】各周PMMA组及CPC组坏死细胞率均高于对照组及SF/CPC组,第一周时SF/CPC组坏死细胞率明显低于PMMA组和CPC组(P<0.05),第三周时SF/CPC组坏死细胞率与PMMA组无统计学差异,但明显低于CPC组(P<0.05)。纤维环外层Ⅰ型胶原光密度测定结果显示,第一周时PMMA组光密度值明显低于其他组,第二周、第三周时CPC组及SF/CPC组较对照组有升高。纤维环内层及髓核区II型胶原光密度测定结果显示,第二周时,PMMA及CPC组明显低于SF/CPC组和对照组,SF/CPC组近似于对照组。Safranin O染色光密度结果显示,对照组平均光密度值随时间呈下降趋势,PMMA组基质多糖含量下降最早且最为明显。
     【结论】PMMA对藻酸盐凝胶系统中培养的椎间盘细胞活性、基质胶原及多糖代谢影响最为明显,SF/CPC较CPC对椎间盘组织有更好的生物相容性,对椎间盘代谢的干扰最小。椎体成形术所用骨水泥材料可加速椎间盘的退变,影响程度与材料的类型有关,选择适当的填充材料可降低此并发症的发生率。
     第四部分丝素蛋白/磷酸钙骨水泥对椎间盘基因表达影响的实验研究
     【目的】研究骨水泥材料对椎间盘退变相关基因表达的影响,从基因水平分析椎体成形术后椎间盘退变的机理,为预防和治疗措施提供靶基因及作用机制等理论基础。
     【方法】建立藻酸盐凝胶系统对兔椎间盘进行体外培养,分别以常规培养液(对照组)、PMMA、CPC及SF/CPC材料的浸出培养液培养,至1周、2周时提取各组标本RNA行PCR扩增和产物检测以及SYBR? Green I荧光定量PCR检测,对AGC1、COLⅠ、COLⅡ、BMP-2、IL-1β、TIMP-1、MMP-3、MMP-2、SOX-9、TGF-β1、Cox-2在各组的表达水平进行比较,通过内标基因GAPDH和对照组基因对目的基因进行校正,2-△△CT法估算目的基因的相对表达量。
     【结果】第一周时PMMA组AGC1的表达量低于对照组,CPC组及SF/CPC组均高于对照组,第二周时SF/CPC组表达量仍保持较高水平;各骨水泥组COL1的表达量在第一周时较对照组均有反应性的调高,第二周回落仅SF/CPC组表达量仍能保持与对照组接近;各骨水泥组COL2基因表达在第一周时均未测出,第二周时虽可测出但均极低;第一周时PMMA组及CPC组MMP-2、MMP-3的表达量均高于对照组,第二周时CPC组表达量下降,SF/CPC组表达则始终低于对照组;第一周时PMMA组和CPC组的TIMP-1的表达量增高,第二周时各组表达量较第一周时均有下降;各骨水泥组IL-1β的表达在第一周及第二周均高于对照组,第二周时SF/CPC组的表达低于PMMA组和CPC组;CPC组COX-2的表达量高于其他组;第一周时大部分骨水泥组TGF-β1、BMP-2及SOX9表达量高于对照组,第二周时均有不同程度的下降,TGF-β1和SOX9的表达低于对照组。
     【结论】骨水泥材料对椎间盘退变相关基因表达量有影响,能促使体外培养的椎间盘退变,但椎间盘组织本身的保护和修复机制也有相应的反应性激活。不同类型的材料对特定基因表达的影响存在差异,PMMA和CPC使COL1基因表达短暂反应性增高后降至正常对照以下,而SF/CPC作用下COL1基因的表达仍能保持一定水平, PMMA对AGC1的表达抑制作用强,SF/CPC未引起基质降解相关基因MMP-2和MMP-3的表达上升,对炎症因子基因表达增高的刺激作用较PMMA和CPC组小。在影响基因表达水平上,SF/CPC促椎间盘退变的作用最小。
PartⅠ: Preparation of Silk Fibroin/Calcium Phosphate Cement (SF/CPC) Composite, Study of Washout resistance and coagulation test in vitro
     【Objective】To prepare a novel bone substitute of silk fibroin/calcium phosphate cement (SF/CPC) composite, and to explore the influences of silk fibroin and its fraction on the washout resistance of CPC in fluids. The effects of cements including PMMA, CPC and SF/CPC on the plasmatic phase of coagulation were assayed for further animal experiments.
     【Methods】The loosened refined silk fiber were dissolved, dialyzed and spray dried to extract SF powder. Tetracalcium phosphate (TTCP) was prepared with liquid phase precipitation method, then mixed with dicalcium phosphate anhydrous (DCPA) at a mole ratio of 1:1, hydroxyapatite (HA) was also added with 4 wt%. Six groups were set according to the concentrations of SF powder in the solid phase of CPC: 0.5 wt%, 1.0 wt%, 1.5 wt%, 2.0 wt%, 2.5 wt%, 3.0 wt% respectively. Then the solid phase blended with the liquid phase with a ratio of 0.4ml/g to prepare the cement composite. CPC free from SF served as control. Washout behaviour was observed and percent remaining cement was measured to determine the stability of samples in the wet environment. After cements curing, particles were contacted with the fresh porcine plasma, after which the prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen quantitation (Fig) and D-dipolymer were assayed.
     【Results】With the addition of SF, the washout resistance of CPC in fluids were highly developed. Percentage of remaining cement increased with the mass fraction of SF and reached approximately 100% in SF/CPC composites with 2.5 wt% and 3.0 wt% of SF. Only a slight decrease of PT value in CPC group occurred after the plasma in contact with three kinds of cements, without any significant change in other coagulation parameters.
     【Conclusions】The incorporation of SF remarkably improved the anti-decay properties of CPC in an aqueous environment. The washout resistance ability increased with the mass fraction of SF. In consideration of both stability and injectability, SF/CPC containing 2.5 wt% SF served as SF/CPC object in the following research. PMMA, CPC and SF/CPC barely influence the coagulation parameters in vitro. Only a slight decrease of PT value was observed in CPC group compared to control. The incorporation of SF further develops the blood compatibility of CPC.
     PartⅡ: Test of SF/CPC using an animal pulmonary cement embolism model
     【Objective】To develop an animal pulmonary cement embolism model, by which the effect of cements on the hemodynamic change, respiratory function and the antithrombin activity were measured after the pulmonary embolism caused by cement injection. The efficiency of SF reducing the risk of cardiovascular complication was evaluated.
     【Methods】After general anesthesia, animals were endotracheal intubated and mechanically ventilated by a respirator. A normal tidal volume and a normal arterial carbon dioxide were maintained during the experiment. Fluid-filled catheter was inserted into abdominal aorta via the left femoral artery for the monitoring of arterial blood pressure and blood sampling. A pulmonary catheter was placed into the pulmonary artery through the right jugular vein for the measurement of mean pulmonary arterial pressure and central venous pressure. The pulmonary trunk was exposed via a median sternotomy. Cement was injected into the main pulmonary artery via a venous catheter. The following hemodynamics were measured and analyzed: mean arterial blood pressure (MABP, mmHg), mean central venous pressure (MCVP, mmHg), mean pulmonary arterial pressure (MPVP, mmHg) and heart rate (HR, beats/min). Blood samples were drawn at each time point for blood gases analyzing, and pre- and post-injection for measurement of AT III. Postmortem lungs were subject to computer tomography (CT) examination along with three-dimensional reconstructions of cement casts.
     【Results】CPC was showed to have the most severe influence upon cardiovascular system, with a maximum elevation of 21.33±5.44mmHg in PAP, a maximum decrease of -27.15±11.79mmHg in MABP. At the 10 min after injection, a transient decrease (-27.7±6.17 beats/min) of HR was observed in CPC group. The changes in PMMA and SF/CPC group were relatively slight with a statistically significant difference from CPC groups. Blood gases revealed significant hypercarbia, acidemia and hypoxemia in CPC group after injection, while these impairments of respiratory function were mild in PMMA and SF/CPC group. There were a largest change of -0.13±0.02 in PH value (60 min after injection), 15.9±7.67mmHg in partial pressure of arterial carbon dioxide (60 min after injection) and -23±1.26mmHg in arterial oxygen tension (10 min after injection) in CPC group. Although all dropped, the decline degree of AT III activity level was the most in CPC group with statistically significant (p<0.05) difference between other two groups.
     【Conclusions】The pulmonary cement embolism model in animals were successfully developed by directly injecting cements into the pulmonary arterial trunk. The results indicated that, the washout resistance properties of cements significantly influenced the severity of cardiovascular complications post pulmonary embolism. The incorporation of SF evidently improved the stability of CPC that effectively reduced the formation of embolus especially the micro-embolus. The effect on hemodynamic changes and respiratory function were well reduced by the addition of SF, as well as a decreased risk of stimulation of clotting system. The rate of acute cardiovascular deterioration and mortality were therefore decreased.
     PartⅢ: The influence of SF/CPC on cell viability, metabolism of proteoglycan and collagen of the intervertebral disc cultured in an alginate gel system
     【Objective】To investigate the influence of SF/CPC, CPC and PMMA on cell viability, metabolism of proteoglycan and collagen of the intervertebral disc cultured in the alginate gel system.
     【Methods】The discs were taken from rabbits and cultured in alginate gel system with either ordinary complete medium (control group) or complete medium in which cements samples had been extracted. At 1w, 2w and 3w, cell viability was measured by Hoechst 33342–PI cocktail nuclear staining; the expressions of type I, II collagen were detected using immunohistochemistry; proteoglycan contant measurement were done using Safranin O staining. After Hoechst 33342–PI cocktail nuclear staining, the number of cells with both bright blue and bright red were counted under fluorescence microscope in separate fields of view per slide and expressed as percentage of the total cells counted. Integrated option density (IOD) of brown DAB deposits staining type I, II collagen were measured quantitatively using Image Pro Plus software; Integrated option density of orange-red part in safranin O stained sections were also analyzed.
     【Results】The percentage of dead cells in PMMA group and CPC group were significantly higher than that of control and SF/CPC group. The population of dead cells in SF/CPC was lower than that either in PMMA on in CPC group, which was statistically significant at 1w (week). The difference was not significant on the population of dead cells between SF/CPC group and PMMA group, but between SF/CPC group and CPC group at 3w (P<0.05). The percentage of dead cells was and 2w (P<0.05). The results of the IOD measurement of type I collagen staining in the outer layer of the anulus fibrosus showed that, the value in PMMA group at 1w was prominently lower that other groups; at 2w and 3w, the values in CPC and SF/CPC group were higher than control. The results of the IOD measurement of type II collagen staining in the inner layer of the anulus fibrosus and nucleus pulposus field showed that, the values of PMMA and CPC group were markedly lower than SF/CPC group; at 3w, there was some restore in CPC group, the value of SF/CPC group was still equal to the control. The results of the IOD measurement of Safranin O staining showed that, even in the control group the IOD value kept declining, the decline rate was the most in PMMA group.
     【Conclusion】PMMA significantly inhibits the cell viability, metabolism of proteoglycan and collagen of the intervertebral disc cultured in the alginate gel system. Compared to CPC, SF/CPC presents a better biocompatibility with intervertebral disc. The bone cements used in vertebroplasty might accelerate the degeneration of disc with different degree depending on the cement type. Appropriate material should be selected to eliminate the incidence of this complication.
     PartⅣ: Influence of SF/CPC on the genes expression of intervertebral disc
     【Objective】To study the influence of SF/CPC, CPC and PMMA on the degeneration related genes expression of intervertebral disc. To explore the mechanism of the degeneration of intervertebral disc after vertebroplasty at a gene level, which will apply the theoretical basis on target genes and interaction mechanisms for the prevention and treatment.
     【Methods】The discs were taken from rabbits and cultured in alginate gel system with complete medium in which cements samples had been extracted. At 1w and 2w, the mRNA were isolated and a reverse transcription–competitive polymerase chain reaction (RT–PCR) technique was used to measure expression of products, along with the quantitative real-time RT-PCR using SYBR? Green I fluorescent dye to quantitatively detect and compare the expression of AGC1、CollagenⅡ、CollagenⅠ、BMP-2、IL-1β、TIMP-1、MMP-3、MMP-2、SOX-9、TGF-β1、Cox-2 between groups. The housekeeper gene GAPDH was used to calibrate the target gene and the relative expression of genes were calculated using 2-△△CT method.
     【Results】At 1w, the expression of AGC1 in PMMA group was lower than control while were higher in CPC and SF/CPC group. The expression of AGC1 kept elevated in SF/CPC group at 2w. At 1w, the expression of COL1 in all cements group increased reactively. At 2w all felt back except which in SF/CPC group still keeping similar to control. COL2 did not express in detectable amounts in all cements group at 1w and although detectable at 2w was extremely low. At 1w, the expression of MMP-2 and MMP-3 in PMMA and CPC groups were both lower than control and at 2w were expressed in reduced amounts in CPC group, while was expressed in lower amount in SF/CPC group. TIMP-1 expression was stimulated at 1w and declined at 2w in all cements groups. IL-1βoverexpressed in all cements group all the time while the value of SF/CPC group was lower than others at 2w. CPC group showed a higher expression of COX-2 Compared with others. The expression of TGF-β1, BMP-2 and SOX9 were higher than control at 1w and decline back in different degree with the expression of TGF-β1 and SOX9 being lower than control.
     【Conclusion】The bone cements materials have effect on the degeneration related genes expression of intervertebral disc. The effect may accelerate the degeneration process of disc cultured in vitro, while also stimulates the self protective and self healing function. The cements differ from each other on the expression of certain gene. The expression of COL1 drop after a transient reactive increase in PMMA and CPC groups while keep at a fair level in SF/CPC group. AGC1 is sensitive to PMMA characterizing with a down regulation. The expression of matrix degradation relative genes such as MMP-2 and MMP-3 are not elevated by SF/CPC, which also has a less influence on the same elevating of proinflammatory genes with PMMA and CPC group. At the gene level, SF/CPC has the lowest effect on the degeneration of disc.
引文
1. Deramond H, Depriester C, Galibert P, et al. PERCUTANEOUS VERTEBROPLASTY WITH POLYMETHYLMETHACRYLATE Technique, Indications, and Results. Radiologic Clinics of North America, 1998;36:533-46.
    2. Mathis J, Barr J, Belkoff S, et al. Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. American Journal of Neuroradiology, 2001;22:373.
    3. Lieberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures. Spine (Phila Pa 1976), 2001;26:1631-8.
    4.杨惠林,陈亮,陆俭, et al.椎体后凸成形术治疗老年骨质疏松脊柱压缩骨折.中华骨科杂志, 2003;23:262-5.
    5. Padovani B, Kasriel O, Brunner P, et al. Pulmonary embolism caused by acrylic cement: A rare complication of percutaneous vertebroplasty. American Journal of Neuroradiology, 1999;20:375-7.
    6. Scroop R, Eskridge J, Britz GW. Paradoxical cerebral arterial embolization of cement during intraoperative vertebroplasty: Case report (Retracted Article. See vol 25, pg B1, 2004). American Journal of Neuroradiology, 2002;23:868-70.
    7. Yeom JS, Kim WJ, Choy WS, et al. Leakage of cement in percutaneous transpedicular vertebroplasty for painful osteoporotic compression fractures. J Bone Joint Surg Br, 2003;85:83-9.
    8. Schmidt R, Cakir B, Mattes T, et al. Cement leakage during vertebroplasty: an underestimated problem? European Spine Journal, 2005;14:466-73.
    9. Jang JS, Lee SH, Jung SK. Pulmonary embolism of polymethylmethacrylate after percutaneous vertebroplasty: a report of three cases. Spine, 2002;27:E416-8.
    10. Amar AP, Larsen DW, Esnaashari N, et al. Percutaneous transpedicular polymethyl methacrylate vertebroplasty for the treatment of spinal compression fractures. Neurosurgery, 2001;49:1105-14.
    11. Tozzi P, Abdelmoumene Y, Corno AF, et al. Management of pulmonary embolism during acrylic vertebroplasty. Ann Thorac Surg, 2002;74:1706-8.
    12. Charvet A, Metellus P, Bruder N, et al. [Pulmonary embolism of cement during vertebroplasty]. Ann Fr Anesth Reanim, 2004;23:827-30.
    13. Monticelli F, Meyer HJ, Tutsch-Bauer E. Fatal pulmonary cement embolism following percutaneous vertebroplasty (PVP). Forensic Sci Int, 2005;149:35-8.
    14. Shimony J, Gilula L, Zeller A, et al. Percutaneous Vertebroplasty for Malignant Compression Fractures with Epidural Involvement1. Radiology, 2004;232:846.
    15. Peh W, Gilula L, Peck D. Percutaneous Vertebroplasty for Severe Osteoporotic Vertebral Body Compression Fractures1. Radiology, 2002;223:121.
    16. Lin EP, Ekholm S, Hiwatashi A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. Am J Neuroradiol, 2004;25:175-80.
    17. Chang CY, Teng MM, Wei CJ, et al. Percutaneous vertebroplasty for patients with osteoporosis: a one-year follow-up. Acta Radiol, 2006;47:568-73.
    18. Trout AT, Kallmes DF. Does vertebroplasty cause incident vertebral fractures? A review of available data. AJNR Am J Neuroradiol, 2006;27:1397-403.
    19. Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. Am J Neuroradiol, 2006;27:217-23.
    20. Grohs JG, Matzner M, Trieb K, et al. Minimal invasive stabilization of osteoporotic vertebral fractures: a prospective nonrandomized comparison of vertebroplasty and balloon kyphoplasty. J Spinal Disord Tech, 2005;18:238-42.
    21. Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology, 1996;200:525-30.
    22. Krebs J, Aebli N, Goss BG, et al. Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement. J Biomed Mater Res B Appl Biomater, 2007;82:526-32.
    23. Krebs J, Aebli N, Goss BG, et al. Cardiovascular changes after pulmonary cement embolism: an experimental study in sheep. AJNR Am J Neuroradiol, 2007;28:1046-50.
    24. Bernards CMC, J; Mirza, S. Lethality of embolized norian bone cement varies with the time between mixing and embolization. Transactions of the 50th Annual Meeting of the Orthopaedic Research Society, 2004:254.
    25.张亮,陈统一,陈中伟.椎体成形术后心肺功能变化的实验研究.中国脊柱脊髓杂志, 2007.
    26. Mirovsky Y, Anekstein Y, Shalmon E, et al. Intradiscal cement leak following percutaneous vertebroplasty. Spine, 2006;31:1120-4.
    27.赵辉.椎体成形术中骨水泥渗漏对椎间盘影响的实验研究[M], 2005.
    28. Belkoff S, Molloy S. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine, 2003;28:1555.
    29. San Millan Ruiz D, Burkhardt K, Jean B, et al. Pathology findings with acrylic implants. Bone, 1999;25:85-90.
    30. Brown W, Chow L. A new calcium phosphate, water-setting cement. Cements research progress, 1986:352-79.
    31. Xu H, Quinn J, Takagi S, et al. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials, 2004;25:1029-37.
    32. Xu H, Simon C. Fast setting calcium phosphate–chitosan scaffold: mechanical properties and biocompatibility. Biomaterials, 2005;26:1337-48.
    33. Sun L, Xu H, Takagi S, et al. Fast setting calcium phosphate cement-chitosan composite: mechanical properties and dissolution rates. Journal of biomaterials applications, 2007;21:299.
    34. Nakano M, Hirano N, Ishihara H, et al. Calcium phosphate cement leakage after percutaneous vertebroplasty for osteoporotic vertebral fractures: risk factor analysis for cement leakage. J Neurosurg Spine, 2005;2:27-33.
    35. Ishikawa K, Miyamoto Y, Takechi M, et al. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate. J Biomed Mater Res, 1997;36:393-9.
    36. Miyamoto Y, Ishikawa K, Takechi M, et al. Non-decay type fast-setting calcium phosphate cement: setting behaviour in calf serum and its tissue response. Biomaterials, 1996;17:1429-35.
    37. Ishikawa K, Miyamoto Y, Kon M, et al. Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. Biomaterials, 1995;16:527-32.
    38. Xu HH, Takagi S, Quinn JB, et al. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res A, 2004;68:725-34.
    39. Takagi S, Chow LC, Hirayama S, et al. Properties of elastomeric calcium phosphate cement-chitosan composites. Dent Mater, 2003;19:797-804.
    40. Takechi M, Miyamoto Y, Ishikawa K, et al. Non-decay type fast-setting calcium phosphate cement using chitosan. Journal of Materials Science: Materials in Medicine, 1996;7:317-22.
    41.张世明刘李李戴.丝素膜代人工硬脑膜的相容性研究.中华神经外科杂志, 2004.
    42. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials, 2003;24:357-65.
    43. Tsuruta T. Biomedical applications of polymeric materialsed: CRC, 1993.
    44.陈晓庆.丝素蛋白/磷酸钙骨水泥的制备及其强化骨缺损椎体的实验研究, 2009.
    45. Yasuma T, Koh S, Okamura T, et al. Histological changes in aging lumbar intervertebral discs. Their role in protrusions and prolapses. The Journal of Bone and Joint Surgery, 1990;72:220.
    46. Kraemer J, Kolditz D, Gowin R. Water and electrolyte content of human intervertebral discs under variable load. Spine, 1985;10:69.
    47. Bayliss M, Johnstone B, O'BRIEN J. Proteoglycan synthesis in the human intervertebral disc: variation with age, region and pathology. Spine(Philadelphia, PA. 1976), 1988;13:972-81.
    48. Chiba K, Andersson GB, Masuda K, et al. A new culture system to study the metabolism of the intervertebral disc in vitro. Spine (Phila Pa 1976), 1998;23:1821-7; discussion 8.
    49. Lazary A, Speer G, Varga PP, et al. Effect of vertebroplasty filler materials on viability and gene expression of human nucleus pulposus cells. J Orthop Res, 2008;26:601-7.
    50. Sobajima S, Shimer A, Chadderdon R, et al. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. The Spine Journal, 2005;5:14-23.
    51. Kluba T, Niemeyer T, Gaissmaier C, et al. Human anulus fibrosis and nucleus pulposus cells of the intervertebral disc: effect of degeneration and culture system on cell phenotype. Spine (Phila Pa 1976), 2005;30:2743-8.
    52. Sive J, Baird P, Jeziorsk M, et al. Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Molecular Pathology, 2002;55:91.
    53. Oegema Jr T. Biochemistry of the intervertebral disc. Clinics in sports medicine, 1993;12:419.
    54. Goupille P, Jayson IV M, Valat J, et al. Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine, 1998;23:1612.
    55. Frymoyer J, Cats-Baril W. An overview of the incidences and costs of low back pain. The Orthopedic clinics of North America, 1991;22:263.
    56. Matsui Y, Maeda M, Nakagami W, et al. The involvement of matrix metalloproteinases and inflammation in lumbar disc herniation. Spine, 1998;23:863.
    57. Kanemoto M, Hukuda S, Komiya Y, et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral discs. Spine (Phila Pa 1976), 1996;21:1-8.
    58. Doita M, Kanatani T, Ozaki T. Influence of macroproteinases: the clue to intervertebral disc degeneration [J. Spine, 1998;14:1612-26.
    59. Gr nblad M, Displacement-complications I, Displacement-pathology I, et al. Spinal disorders. Basic science. Acta orthopaedica Scandinavica. Supplementum, 1998;69:32-7.
    60. Kang JD, Georgescu HI, McIntyre-Larkin L, et al. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976), 1996;21:271-7.
    61. Miyamoto H, Saura R, Doita M, et al. The role of cyclooxygenase-2 in lumbar disc herniation. Spine (Phila Pa 1976), 2002;27:2477-83.
    62. Konttinen Y, Kemppinen P, Li T, et al. Transforming and epidermal growth factors in degenerated intervertebral discs. JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME-, 1999;81:1058-63.
    63. Kim DJ, Moon SH, Kim H, et al. Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine (Phila Pa 1976), 2003;28:2679-84.
    64. Huang W, Zhou X, Lefebvre V, et al. Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Molecular and Cellular Biology, 2000;20:4149.
    65. Wegner M. From head to toes: the multiple facets of Sox proteins. Nucleic acids research, 1999;27:1409.
    66. Nishida K, Kang J, Gilbertson L, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine, 1999;24:2419.
    67. Osada R, Ohshima H, Ishihara H, et al. Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs. J Orthop Res, 1996;14:690-9.
    68. Matsumoto T, Masuda K, Chen S, et al. Transfer of osteogenic protein-1 gene by gene gun system promotes matrix synthesis in bovine intervertebral disc and articular cartilage cells. Orthop Res Soc Trans, 2001;30.
    69. Matsumoto T, An H, Masuda K, et al. Osteogenic protein-1 gene: gene gun transfer to intervertebral disc cells. Spine;2.
    70. Paul R, Haydon RC, Cheng H, et al. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine (Phila Pa 1976), 2003;28:755-63.
    71. Wallach CJ, Sobajima S, Watanabe Y, et al. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine (Phila Pa 1976), 2003;28:2331-7.
    1. Ishikawa K, Miyamoto Y, Takechi M, et al. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate. J Biomed Mater Res, 1997;36:393-9.
    2. Miyamoto Y, Ishikawa K, Takechi M, et al. Non-decay type fast-setting calcium phosphate cement: setting behaviour in calf serum and its tissue response. Biomaterials, 1996;17:1429-35.
    3. Ishikawa K, Miyamoto Y, Kon M, et al. Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. Biomaterials, 1995;16:527-32.
    4. Xu HH, Takagi S, Quinn JB, et al. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res A, 2004;68:725-34.
    5. Takagi S, Chow LC, Hirayama S, et al. Properties of elastomeric calcium phosphate cement-chitosan composites. Dent Mater, 2003;19:797-804.
    6. Takechi M, Miyamoto Y, Ishikawa K, et al. Non-decay type fast-setting calcium phosphate cement using chitosan. Journal of Materials Science: Materials in Medicine, 1996;7:317-22.
    7.陈晓庆.丝素蛋白/磷酸钙骨水泥的制备及其强化骨缺损椎体的实验研究, 2009.
    8. Gangi A, Kastler B, Dietemann J. Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. American Journal of Neuroradiology, 1994;15:83.
    9. Martin J, Jean B, Sugiu K, et al. Vertebroplasty: clinical experience and follow-up results. Bone, 1999;25:11-5.
    10. Aebli N, Krebs J, Davis G, et al. Fat embolism and acute hypotension during vertebroplasty - An experimental study in sheep. Spine, 2002;27:460-6.
    11. Kaufmann T, Jensen M, Ford G, et al. Cardiovascular effects of polymethylmethacrylate use in percutaneous vertebroplasty. American Journal of Neuroradiology, 2002;23:601.
    12. Padovani B, Kasriel O, Brunner P, et al. Pulmonary embolism caused by acrylic cement: A rare complication of percutaneous vertebroplasty. American Journal of Neuroradiology, 1999;20:375-7.
    13. Koessler M, Fabiani R, Hamer H, et al. The clinical relevance of embolic events detected by transesophageal echocardiography during cemented total hip arthroplasty: a randomized clinical trial. Anesthesia & Analgesia, 2001;92:49.
    14. Hong CL, Liu HP, Wu CY, et al. Delayed hypoxemia after bone cement insertion during total hip replacement under spinal anesthesia--a case report. Acta Anaesthesiol Sin, 2003;41:47-51.
    15. Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol, 1997;18:1897-904.
    16. Kaufmann TJ, Jensen ME, Schweickert PA, et al. Age of fracture and clinical outcomes of percutaneous vertebroplasty. AJNR Am J Neuroradiol, 2001;22:1860-3.
    17. Garfin SR, Yuan HA, Reiley MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine (Phila Pa 1976), 2001;26:1511-5.
    18. Bai B, Jazrawi LM, Kummer FJ, et al. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine (Phila Pa 1976), 1999;24:1521-6.
    19. Charnley J. Acrylic cement in orthopaedic surgery. 1970.
    20. Schoenfeld CM, Conard GJ, Lautenschlager EP. Monomer release from methacrylate bone cements during simulated in vivo polymerization. J Biomed Mater Res, 1979;13:135-47.
    21. Espigares I, Elvira C, Mano JF, et al. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials, 2002;23:1883-95.
    22. Brown W, Chow L. A new calcium phosphate, water-setting cement. Cements research progress, 1986:352-79.
    23. Lim TH, Brebach GT, Renner SM, et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine (Phila Pa 1976), 2002;27:1297-302.
    24. Tomita S, Kin A, Yazu M, et al. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J Orthop Sci, 2003;8:192-7.
    25. Grafe IA, Baier M, Noldge G, et al. Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Spine (Phila Pa 1976), 2008;33:1284-90.
    26. Driessens F, Boltong M, Bermudez O, et al. Effective formulations for the preparation of calcium phosphate bone cements. Journal of Materials Science: Materials in Medicine, 1994;5:164-70.
    27. Panzavolta S, Fini M, Nicoletti A, et al. Porous composite scaffolds based on gelatin and partially hydrolyzedα-tricalcium phosphate. Acta Biomaterialia, 2009;5:636-43.
    28. Fukase Y, Eanes ED, Takagi S, et al. Setting reactions and compressive strengths of calcium phosphate cements. J Dent Res, 1990;69:1852-6.
    29. Mirtchi A, Lemaitre J, Terao N. Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system. Biomaterials, 1989;10:475.
    30. Khairoun I, Boltong M, Driessens F, et al. Some factors controlling the injectability of calcium phosphate bone cements. Journal of Materials Science: Materials in Medicine, 1998;9:425-8.
    31. Fernández E, Gil F, Best S, et al. Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4-alpha-Ca3 (PO4) 2 system: compressive strength and microstructural development. Journal of biomedical materials research, 1998;41:560.
    32. Driessens F, De Maeyer E, Fernández E, et al. Amorphous calcium phosphate cements and their transformation into calcium deficient hydroxyapatite. Bioceramics, 1996;9:231-4.
    33. Bohner M, Van Landuyt P, Merkle H, et al. Composition effects on the pH of a hydraulic calcium phosphate cement. Journal of materials science. Materials in medicine, 1997;8:675.
    34.刘昌胜,刘子胜.磷酸钙骨水泥的水化放热行为.硅酸盐学报, 2000;28:501-6.
    35. Liu C, Shen W. Effect of crystal seeding on the hydration of calcium phosphate cement. J Mater Sci Mater Med, 1997;8:803-7.
    36. Xu H, Eichmiller F, Giuseppetti A. Reinforcement of a self-setting calcium phosphate cement with different fibers. Journal of biomedical materials research, 2000;52:107-14.
    37. Xu H, Quinn J. Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity. Biomaterials, 2002;23:193-202.
    38. dos Santos L, de Oliveira L, da Silva Rigo E, et al. Fiber reinforced calcium phosphate cement. Artificial Organs, 2000;24:212-6.
    39. Burguera E, Xu H, Takagi S, et al. High early strength calcium phosphate bone cement: Effects of dicalcium phosphate dihydrate and absorbable fibers. Journal of Biomedical Materials Research Part A, 2005;75:966.
    40. Von Gonten A, Kelly J, Antonucci J. Load-bearing behavior of a simulated craniofacial structure fabricated from a hydroxyapatite cement and bioresorbable fiber-mesh. Journal of Materials Science: Materials in Medicine, 2000;11:95-100.
    41. Zhang Y, Xu H. Effects of synergistic reinforcement and absorbable fiber strength on hydroxyapatite bone cement. Journal of Biomedical Materials Research Part A, 2005;75:832.
    42. Guo D, Xu K, Zhao X, et al. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials, 2005;26:4073-83.
    43. Ishikawa K, Takagi S, Chow L, et al. Properties and mechanisms of fast-setting calcium phosphate cements. Journal of Materials Science: Materials in Medicine, 1995;6:528-33.
    44. Miyamoto Y, Ishikawa K, Takechi M, et al. Tissue response to fast-setting calcium phosphate cement in bone. Journal of biomedical materials research, 1997;37:457-64.
    45. Driessens F, Boltong M, Maeyer E, et al. Effect of temperature and immersion on the setting of some calcium phosphate cements. Journal of Materials Science: Materials in Medicine, 2000;11:453-7.
    46. Kurashina K, Kurita H, Hirano M, et al. Calcium phosphate cement: in vitro and in vivo studies of theα-tricalcium phosphate-dicalcium phosphate dibasic-tetracalcium phosphate monoxide system. Journal of Materials Science: Materials in Medicine, 1995;6:340-7.
    47. Bohner M. New hydraulic cements based onα-tricalcium phosphate–calcium sulfate dihydratemixtures. Biomaterials, 2004;25:741-9.
    48. Miyazaki K, Horibe T, Antonucci J, et al. Polymeric calcium phosphate cements: analysis of reaction products and properties. Dental materials: official publication of the Academy of Dental Materials, 1993;9:41.
    49. Ignjatovi N, Tomi S, Daki M, et al. Synthesis and properties of hydroxyapatite/poly-L-lactide composite biomaterials. Biomaterials, 1999;20:809-16.
    50. Lewandrowski K, Gresser J, Wise D, et al. Osteoconductivity of an injectable and bioresorbable poly (propylene glycol-co-fumaric acid) bone cement. Biomaterials, 2000;21:293-8.
    51. Majola A, Vainionp S, Vihtonen K, et al. Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clinical orthopaedics and related research, 1991:260.
    52. Gilles J, Carnes D, Stewart Windeler A. Development of an in vitro culture system for the study of osteoclast activity and function*. Journal of Endodontics, 1994;20:327-31.
    53. De Bruijn J, Bovell Y, Davies J, et al. Osteoclastic resorption of calcium phosphates is potentiated in postosteogenic culture conditions. Journal of biomedical materials research, 1994;28:105-12.
    54. Miyamoto Y, Ishikawa K, Takechi M, et al. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials, 1998;19:707-15.
    55. Bigi A, Torricelli P, Fini M, et al. A biomimetic gelatin-calcium phosphate bone cement. International journal of artificial organs, 2004;27:664-73.
    56. Bigi A, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials, 2004;25:2893-9.
    57. Du C, Cui F, Feng Q, et al. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. Journal of biomedical materials research, 1998;42:540-8.
    58. Du C, Cui F, Zhang W, et al. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. Journal of biomedical materials research, 2000;50:518-27.
    59. Du C, Cui F, Zhu X, et al. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. Journal of biomedical materials research, 1999;44:407-15.
    60. Leroux L, Hatim Z, Freche M, et al. Effects of various adjuvants (lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement. Bone, 1999;25:31-4.
    61. Cherng A, Takagi S, Chow LC. Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J Biomed Mater Res, 1997;35:273-7.
    62. Wang X, Ma J, Wang Y, et al. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials, 2001;22:2247-55.
    63.潘朝晖范蔡马黄姜文.壳聚糖对自制磷酸钙骨水泥性能的影响.第四军医大学学报, 2005.
    64. Blattert TR, Jestaedt L, Weckbach A. Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Spine (Phila Pa 1976), 2009;34:108-14.
    65. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials, 2003;24:401-16.
    66. Minoura N, Tsukada M, Nagura M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials, 1990;11:430-4.
    67.张世明刘李李戴.丝素膜代人工硬脑膜的相容性研究.中华神经外科杂志, 2004.
    68. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets.Biomaterials, 2003;24:357-65.
    69. Panilaitis B, Altman GH, Chen J, et al. Macrophage responses to silk. Biomaterials, 2003;24:3079-85.
    70. Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 2002;23:4131-41.
    71. Tsuruta T. Biomedical applications of polymeric materialsed: CRC, 1993.
    72. Kong X, Cui F, Wang X, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004;270:197-202.
    73. Wang L, Ning G, Senna M. Microstructure and gelation behavior of hydroxyapatite-based nanocomposite sol containing chemically modified silk fibroin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005;254:159-64.
    74. Lin J, Zhang S, Chen T, et al. Calcium phosphate cement reinforced by polypeptide copolymers. J Biomed Mater Res B Appl Biomater, 2006;76:432-9.
    75. Solheim E, Sudmann B, Bang G, et al. Biocompatibility and effect on osteogenesis of poly(ortho ester) compared to poly(DL-lactic acid). J Biomed Mater Res, 2000;49:257-63.
    76. Cenni E, Granchi D, Vancini M, et al. Platelet release of transforming growth factor-βandβ-thromboglobulin after in vitro contact with acrylic bone cements. Biomaterials, 2002;23:1479-84.
    77. Blinc A, Bozic M, Vengust R, et al. Methyl-methacrylate bone cement surface does not promote platelet aggregation or plasma coagulation in vitro. Thromb Res, 2004;114:179-84.
    78.王文波陈陈叶宋刘胡.羟基磷灰石水泥的体外生物学安全性试验.上海生物医学工程, 1996.
    79.戴红莲,余国荣.磷酸钙骨水泥的生物相容性.中国有色金属学报, 2002;12:1252-6.
    80. Liu C, Shao H, Chen F, et al. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials, 2003;24:4103-13.
    81. Takemoto S, Kusudo Y, Tsuru K, et al. Selective protein adsorption and blood compatibility of hydroxy-carbonate apatites. J Biomed Mater Res A, 2004;69:544-51.
    82. Barr J, Barr M, Lemley T, et al. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine, 2000;25:923.
    83. Cenni E, Ciapetti G, Granchi D, et al. Evaluation of the effect of seven acrylic bone cements on erythrocytes and plasmatic phase of coagulation. Biomaterials, 2001;22:1321-6.
    84. Cenni E, Ciapetti G, Granchi D, et al. Evaluation of tissue-factor production by human endothelial cells incubated with three acrylic bone cements. J Biomed Mater Res, 2001;55:131-6.
    85. Cenni E, Ciapetti G, Granchi D, et al. No effect of methacrylate-based bone cement CMW 1 on the plasmatic phase of coagulation, red blood cells and endothelial cells in vitro. Acta Orthop Scand, 2001;72:86-93.
    1. Padovani B, Kasriel O, Brunner P, et al. Pulmonary embolism caused by acrylic cement: A rare complication of percutaneous vertebroplasty. American Journal of Neuroradiology, 1999;20:375-7.
    2. Hulme PA, Krebs J, Ferguson SJ, et al. Vertebroplasty and kyphoplasty: A systematic review of 69 clinical studies. Spine, 2006;31:1983-2001.
    3. Yeom JS, Kim WJ, Choy WS, et al. Leakage of cement in percutaneous transpedicular vertebroplasty for painful osteoporotic compression fractures. J Bone Joint Surg Br, 2003;85:83-9.
    4. Schmidt R, Cakir B, Mattes T, et al. Cement leakage during vertebroplasty: an underestimated problem? European Spine Journal, 2005;14:466-73.
    5. Jang JS, Lee SH, Jung SK. Pulmonary embolism of polymethylmethacrylate after percutaneous vertebroplasty: a report of three cases. Spine, 2002;27:E416-8.
    6. Amar AP, Larsen DW, Esnaashari N, et al. Percutaneous transpedicular polymethyl methacrylate vertebroplasty for the treatment of spinal compression fractures. Neurosurgery, 2001;49:1105-14.
    7. Tozzi P, Abdelmoumene Y, Corno AF, et al. Management of pulmonary embolism during acrylic vertebroplasty. Ann Thorac Surg, 2002;74:1706-8.
    8. Charvet A, Metellus P, Bruder N, et al. [Pulmonary embolism of cement during vertebroplasty]. Ann Fr Anesth Reanim, 2004;23:827-30.
    9. Monticelli F, Meyer HJ, Tutsch-Bauer E. Fatal pulmonary cement embolism following percutaneous vertebroplasty (PVP). Forensic Sci Int, 2005;149:35-8.
    10. Krebs J, Aebli N, Goss BG, et al. Cardiovascular changes after pulmonary embolism from injecting calcium phosphate cement. J Biomed Mater Res B Appl Biomater, 2007;82:526-32.
    11. Krebs J, Aebli N, Goss BG, et al. Cardiovascular changes after pulmonary cement embolism: an experimental study in sheep. AJNR Am J Neuroradiol, 2007;28:1046-50.
    12. Teng M, Cheng H, Ho D, et al. Intraspinal leakage of bone cement after vertebroplasty: a report of
    3 cases. American Journal of Neuroradiology, 2006;27:224.
    13. Harrington K. Major neurological complications following percutaneous vertebroplasty with polymethylmethacrylate: a case report. The Journal of Bone and Joint Surgery, 2001;83:1070.
    14. Shimony J, Gilula L, Zeller A, et al. Percutaneous Vertebroplasty for Malignant Compression Fractures with Epidural Involvement1. Radiology, 2004;232:846.
    15. Peh W, Gilula L, Peck D. Percutaneous Vertebroplasty for Severe Osteoporotic Vertebral Body Compression Fractures1. Radiology, 2002;223:121.
    16. Scroop R, Eskridge J, Britz GW. Paradoxical cerebral arterial embolization of cement during intraoperative vertebroplasty: Case report (Retracted Article. See vol 25, pg B1, 2004). American Journal of Neuroradiology, 2002;23:868-70.
    17. Gangi A, Kastler B, Dietemann J. Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. American Journal of Neuroradiology, 1994;15:83.
    18. Martin J, Jean B, Sugiu K, et al. Vertebroplasty: clinical experience and follow-up results. Bone, 1999;25:11-5.
    19. Aebli N, Krebs J, Davis G, et al. Fat embolism and acute hypotension during vertebroplasty - An experimental study in sheep. Spine, 2002;27:460-6.
    20. Kaufmann T, Jensen M, Ford G, et al. Cardiovascular effects of polymethylmethacrylate use in percutaneous vertebroplasty. American Journal of Neuroradiology, 2002;23:601.
    21. Koessler M, Fabiani R, Hamer H, et al. The clinical relevance of embolic events detected by transesophageal echocardiography during cemented total hip arthroplasty: a randomized clinical trial. Anesthesia & Analgesia, 2001;92:49.
    22. Hong CL, Liu HP, Wu CY, et al. Delayed hypoxemia after bone cement insertion during total hipreplacement under spinal anesthesia--a case report. Acta Anaesthesiol Sin, 2003;41:47-51.
    23. Bernards CMC, J; Mirza, S. Lethality of embolized norian bone cement varies with the time between mixing and embolization. Transactions of the 50th Annual Meeting of the Orthopaedic Research Society, 2004:254.
    24.张亮,陈统一,陈中伟.椎体成形术后心肺功能变化的实验研究.中国脊柱脊髓杂志, 2007.
    25. Butler S, Kader K, Owen J, et al. Rapid localization of indium-111-labeled inhibited recombinant tissue plasminogen activator in a rabbit thrombosis model. Journal of Nuclear Medicine, 1991;32:461.
    26. Nong Z, Hoylaerts M, Van Pelt N, et al. Nitric oxide inhalation inhibits platelet aggregation and platelet-mediated pulmonary thrombosis in rats. Circulation research, 1997;81:865.
    27. Ueno Y, Koike H, Annoh S, et al. Anti-inflammatory effects of beraprost sodium, a stable analogue of PGI2, and its mechanisms. Prostaglandins, 1997;53:279-89.
    28. Garcia-Szabo R, Johnson A, Malik A. Thromboxane increases pulmonary vascular resistance and transvascular fluid and protein exchange after pulmonary microembolism. Prostaglandins, 1988;35:707.
    29. Jensen M, Evans A, Mathis J, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. American Journal of Neuroradiology, 1997;18:1897.
    30. Barr J, Barr M, Lemley T, et al. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine, 2000;25:923.
    31. Belkoff S. Biomechanics of vertebroplasty. Advances in spinal fusion: molecular science, biomechanics, and clinical management, 2003:23.
    32. Kostadima E, Zakynthinos E. Pulmonary embolism: pathophysiology, diagnosis, treatment. Hellenic J Cardiol, 2007;48:94-107.
    33. Hyland JW, Smith GT, Mc GL, et al. Effect of selective embolization of various sized pulmonary arteriesin dogs. Am J Physiol, 1963;204:619-25.
    34. Binder AS, Kageler W, Perel A, et al. Effect of platelet depletion on lung vascular permeability after microemboli in sheep. J Appl Physiol, 1980;48:414-20.
    35. Malik AB, van der Zee H. Time course of pulmonary vascular response to microembolization. J Appl Physiol, 1977;43:51-8.
    36. Alpert JS, Haynes FW, Dalen JE, et al. Experimental pulmonary embolism; effect on pulmonary blood volume and vascular compliance. Circulation, 1974;49:152-7.
    37. Ohkuda K, Nakahara K, Weidner WJ, et al. Lung fluid exchange after uneven pulmonary artery obstruction in sheep. Circ Res, 1978;43:152-61.
    38. Malik AB. Pulmonary microembolism. Physiol Rev, 1983;63:1114-207.
    39. Aebli N, Krebs J, Schwenke D, et al. Cardiovascular changes during multiple vertebroplasty with and without vent-hole - An experimental study in sheep. Spine, 2003;28:1504-11.
    40. Takemoto S, Kusudo Y, Tsuru K, et al. Selective protein adsorption and blood compatibility of hydroxy-carbonate apatites. J Biomed Mater Res A, 2004;69:544-51.
    41. Cenni E, Granchi D, Vancini M, et al. Platelet release of transforming growth factor-βandβ-thromboglobulin after in vitro contact with acrylic bone cements. Biomaterials, 2002;23: 1479-84.
    42. Blinc A, Bozic M, Vengust R, et al. Methyl-methacrylate bone cement surface does not promoteplatelet aggregation or plasma coagulation in vitro. Thromb Res, 2004;114:179-84.
    43.王文波陈陈叶宋刘胡.羟基磷灰石水泥的体外生物学安全性试验.上海生物医学工程, 1996.
    44.戴红莲,余国荣.磷酸钙骨水泥的生物相容性.中国有色金属学报, 2002;12:1252-6.
    45. Liu C, Shao H, Chen F, et al. Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement. Biomaterials, 2003;24:4103-13.
    46. Kong X, Cui F, Wang X, et al. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. Journal of Crystal Growth, 2004;270:197-202.
    47. Cherng A, Takagi S, Chow LC. Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J Biomed Mater Res, 1997;35:273-7.
    48. Takagi S, Chow LC, Hirayama S, et al. Properties of elastomeric calcium phosphate cement-chitosan composites. Dent Mater, 2003;19:797-804.
    49. Bigi A, Bracci B, Panzavolta S. Effect of added gelatin on the properties of calcium phosphate cement. Biomaterials, 2004;25:2893-9.
    50. Kurashina K, Kurita H, Hirano M, et al. Calcium phosphate cement: in vitro and in vivo studies of the -tricalcium phosphate-dicalcium phosphate dibasic-tetracalcium phosphate monoxide system. Journal of Materials Science: Materials in Medicine, 1995;6:340-7.
    51. Lin J, Zhang S, Chen T, et al. Calcium phosphate cement reinforced by polypeptide copolymers. J Biomed Mater Res B Appl Biomater, 2006;76:432-9.
    52. Minoura N, Tsukada M, Nagura M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials, 1990;11:430-4.
    53. Li M, Ogiso M, Minoura N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials, 2003;24:357-65.
    54. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials, 2003;24:401-16.
    55. Panilaitis B, Altman GH, Chen J, et al. Macrophage responses to silk. Biomaterials, 2003;24:3079-85.
    56. Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials, 2002;23:4131-41.
    57. Wang L, Ning G, Senna M. Microstructure and gelation behavior of hydroxyapatite-based nanocomposite sol containing chemically modified silk fibroin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005;254:159-64.
    58. Chen XQ, Yang HL, Gan MF, et al. Influences of silk fibroin on the compressive strength and injectability of calcium phosphate cement. J Clin Rehabilitat Tissue Engine Res, 2008;12:8985-8.
    59. Wang G, Yang H, Li M, et al. The use of silk fibroin/hydroxyapatite composite co-cultured with rabbit bone-marrow stromal cells in the healing of a segmental bone defect. J Bone Joint Surg Br, 2010;92:320-5.
    1. Buckwalter J, Mow V, Boden S, et al. Intervertebral disk structure, composition, and mechanical function. Orthopaedic Basic Science: Biology and Biomechanics of the Musculoskeletal System. Rosemont, IL: American Academy of Orthopaedic Surgeons, 2000;547.
    2. Lin EP, Ekholm S, Hiwatashi A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. Am J Neuroradiol, 2004;25:175-80.
    3. Shimony J, Gilula L, Zeller A, et al. Percutaneous Vertebroplasty for Malignant Compression Fractures with Epidural Involvement1. Radiology, 2004;232:846.
    4. Peh W, Gilula L, Peck D. Percutaneous Vertebroplasty for Severe Osteoporotic Vertebral Body Compression Fractures1. Radiology, 2002;223:121.
    5. Urban JP, Holm S, Maroudas A, et al. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res, 1982:296-302.
    6. Katz MM, Hargens AR, Garfin SR. Intervertebral disc nutrition. Diffusion versus convection. Clin Orthop Relat Res, 1986:243-5.
    7. Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology, 1996;200:525-30.
    8. Chiba K, Andersson GB, Masuda K, et al. A new culture system to study the metabolism of the intervertebral disc in vitro. Spine (Phila Pa 1976), 1998;23:1821-7; discussion 8.
    9. ISO10993. Biological evaluation of medical devices—Part 12: Sample preparation and reference materials, 1994.
    10.胡有谷.腰椎间盘突出症ed:人民卫生出版社, 1985.
    11. Gruber HE, Hanley EN, Jr. Analysis of aging and degeneration of the human intervertebral disc. Comparison of surgical specimens with normal controls. Spine (Phila Pa 1976), 1998;23:751-7.
    12. Walker M, Anderson D. Molecular basis of intervertebral disc degeneration. The Spine Journal, 2004;4:158-66.
    13. Ariga K, Miyamoto S, Nakase T, et al. The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine, 2001;26:2414.
    14. Verzijl N, DeGroot J, Zaken C, et al. Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage. Arthritis Rheum, 2001;46:114-23.
    15. Roberts S, Urban J, Evans H, et al. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine, 1996;21:415.
    16. Roughley P. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine, 2004;29:2691.
    17.赵勇,王宸.白介素-1受体拮抗剂(IL-1Ra)与椎间盘基质代谢.中国矫形外科杂志, 2005;13:1668-70.
    18. Roughley P, Alini M, Antoniou J. The role of proteoglycans in aging, degeneration and repair of the intervertebral disc. Biochemical Society Transactions, 2002;30:869-74.
    19. Nussbaum D, Gailloud P, Murphy K. A review of complications associated with vertebroplasty and kyphoplasty as reported to the Food and Drug Administration medical device related web site. Journal of Vascular and Interventional Radiology, 2004;15:1185-92.
    20. Evans A, Jensen M, Kip K, et al. Vertebral compression fractures: pain reduction and improvement in functional mobility after percutaneous polymethylmethacrylate vertebroplasty retrospective report of 245 cases. Radiology, 2003;226:366.
    21. Nakano M, Hirano N, Matsuura K, et al. Percutaneous transpedicular vertebroplasty with calcium phosphate cement in the treatment of osteoporotic vertebral compression and burst fractures. Journal of Neurosurgery: Spine, 2002;97:287-93.
    22. Laredo J, Hamze B. Complications of percutaneous vertebroplasty and their prevention: Elsevier, 2005:65-80.
    23. Weill A, Chiras J, Simon J, et al. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology, 1996;199:241.
    24. Jensen M, Evans A, Mathis J, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. American Journal of Neuroradiology, 1997;18:1897.
    25. Gaughen Jr J, Jensen M, Schweickert P, et al. Relevance of antecedent venography in percutaneous vertebroplasty for the treatment of osteoporotic compression fractures. American Journal of Neuroradiology, 2002;23:594.
    26. Rauschmann M, von Stechow D, Thomann K, et al. Complications of vertebroplasty. Der Orthop de, 2004;33:40.
    27. Martin J, Jean B, Sugiu K, et al. Vertebroplasty: clinical experience and follow-up results. Bone, 1999;25:11-5.
    28. Mirovsky Y, Anekstein Y, Shalmon E, et al. Intradiscal cement leak following percutaneous vertebroplasty. Spine, 2006;31:1120-4.
    29. Deramond H, Depriester C, Galibert P, et al. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am, 1998;36:533-46.
    30. Lin E, Ekholm S, Hiwatashi A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. American Journal of Neuroradiology, 2004;25:175.
    31.陈晓明,李世普.α—TCP骨水化产物的生物相容性研究.中国生物医学工程学报, 1996;15:233-8.
    32.邓忠良,安洪.经皮穿刺椎体成形术中骨水泥表面温度变化的观测.中国脊柱脊髓杂志, 2003;13:98-9.
    33. Chavali R, Resijek R, Knight S, et al. Extending polymerization time of polymethylmethacrylate cement in percutaneous vertebroplasty with ice bath cooling. American Journal of Neuroradiology, 2003;24:545.
    34. Belkoff S, Molloy S. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine, 2003;28:1555.
    35. Aebli N, Goss BG, Thorpe P, et al. In vivo temperature profile of intervertebral discs and vertebral endplates during vertebroplasty: an experimental study in sheep. Spine (Phila Pa 1976), 2006;31:1674-8; discussion 9.
    36.赵辉.椎体成形术中骨水泥渗漏对椎间盘影响的实验研究[M], 2005.
    37. K p E, Han X, t Sten Holm M, et al. Collagen synthesis and types I, III, IV, and VI collagens in an animal model of disc degeneration. Spine, 1995;20:59-67.
    38. Frymoyer J, Ducker T, Hodler, et al. The adult spine: principles and practice. 1991.
    39. Nerlich A, Schleicher E, Boos N. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine, 1997;22:2781-95.
    40. Hutton W, Elmer W, Bryce L, et al. Do the intervertebral disc cells respond to different levels of hydrostatic pressure? Clinical Biomechanics, 2001;16:728-34.
    41.吴闻文,侯树勋.腰椎间盘组织中磷脂酶A2活性水平与神经根性疼痛的关系.中国脊柱脊髓杂志, 1996;6:2-6.
    42. AKESON W, Woo S, TAYLOR T, et al. Biomechanics and biochemistry of the intervertebral disks: the need for correlation studies. Clinical Orthopaedics and Related Research, 1977;129:133.
    43. Yasuma T, Koh S, Okamura T, et al. Histological changes in aging lumbar intervertebral discs. Their role in protrusions and prolapses. The Journal of Bone and Joint Surgery, 1990;72:220.
    44. Kraemer J, Kolditz D, Gowin R. Water and electrolyte content of human intervertebral discs under variable load. Spine, 1985;10:69.
    45. Bayliss M, Johnstone B, O'BRIEN J. Proteoglycan synthesis in the human intervertebral disc: variation with age, region and pathology. Spine(Philadelphia, PA. 1976), 1988;13:972-81.
    46. Nachemson A, Lewin T, Maroudas A, et al. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthopaedica, 1970;41:589-607.
    47. Maroudas A, Stockwell R, Nachemson A, et al. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. Journal of Anatomy, 1975;120:113.
    48. Ciapetti G, Granchi D, Stea S, et al. In vitro testing of ten bone cements after different time intervals from polymerization. J Biomater Sci Polym Ed, 2000;11:481-93.
    49. Granchi D, Ciapetti G, Filippini F, et al. Modulation of pro- and anti-apoptotic genes in lymphocytes exposed to bone cements. J Biomater Sci Polym Ed, 2000;11:633-46.
    50. Doi Y, Shimizu Y, Moriwaki Y, et al. Development of a new calcium phosphate cement that contains sodium calcium phosphate. Biomaterials, 2001;22:847-54.
    51. Hempel U, Reinstorf A, Poppe M, et al. Proliferation and differentiation of osteoblasts on Biocement D modified with collagen type I and citric acid. J Biomed Mater Res B Appl Biomater, 2004;71:130-43.
    52. Julien M, Khairoun I, LeGeros RZ, et al. Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials, 2007;28:956-65.
    53. Ingram JH, Kowalski R, Fisher J, et al. The osteolytic response of macrophages to challenge with particles of Simplex P, Endurance, Palacos R, and Vertebroplastic bone cement particles in vitro. J Biomed Mater Res B Appl Biomater, 2005;75:210-20.
    54. Lazary A, Speer G, Varga PP, et al. Effect of vertebroplasty filler materials on viability and gene expression of human nucleus pulposus cells. J Orthop Res, 2008;26:601-7.
    55. Oshima H, Nakamura M. A study on reference standard for cytotoxicity assay of biomaterials. Bio-medical materials and engineering, 1994;4:327.
    1. Lazary A, Speer G, Varga PP, et al. Effect of vertebroplasty filler materials on viability and gene expression of human nucleus pulposus cells. J Orthop Res, 2008;26:601-7.
    2. Chang CY, Teng MM, Wei CJ, et al. Percutaneous vertebroplasty for patients with osteoporosis: a one-year follow-up. Acta Radiol, 2006;47:568-73.
    3. Trout AT, Kallmes DF. Does vertebroplasty cause incident vertebral fractures? A review of available data. AJNR Am J Neuroradiol, 2006;27:1397-403.
    4. Trout AT, Kallmes DF, Kaufmann TJ. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. Am J Neuroradiol, 2006;27:217-23.
    5. Grohs JG, Matzner M, Trieb K, et al. Minimal invasive stabilization of osteoporotic vertebral fractures: a prospective nonrandomized comparison of vertebroplasty and balloon kyphoplasty. J Spinal Disord Tech, 2005;18:238-42.
    6. Luo J, Skrzypiec DM, Pollintine P, et al. Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Bone, 2007;40:1110-9.
    7. Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine (Phila Pa 1976), 2003;28:991-6.
    8. Baroud G, Nemes J, Heini P, et al. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J, 2003;12:421-6.
    9. Kayanja MM, Togawa D, Lieberman IH. Biomechanical changes after the augmentation of experimental osteoporotic vertebral compression fractures in the cadaveric thoracic spine. Spine J, 2005;5:55-63.
    10. Perry A, Mahar A, Massie J, et al. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model. Spine J, 2005;5:489-93.
    11. Rohlmann A, Zander T, Bergmann G. Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty. Eur Spine J, 2006;15:1255-64.
    12. Baroud G, Vant C, Wilcox R. Long-term effects of vertebroplasty: adjacent vertebral fractures. J Long Term Eff Med Implants, 2006;16:265-80.
    13. Villarraga M, Bellezza A, Harrigan T, et al. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. Journal of spinal disorders & techniques, 2005;18:84.
    14. Lin EP, Ekholm S, Hiwatashi A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. Am J Neuroradiol, 2004;25:175-80.
    15. Syed MI, Patel NA, Jan S, et al. Intradiskal extravasation with low-volume cement filling in percutaneous vertebroplasty. Am J Neuroradiol, 2005;26:2397-401.
    16. Togawa D, Kovacic JJ, Bauer TW, et al. Radiographic and histologic findings of vertebral augmentation using polymethylmethacrylate in the primate spine: percutaneous vertebroplasty versus kyphoplasty. Spine (Phila Pa 1976), 2006;31:E4-10.
    17. Sobajima S, Shimer A, Chadderdon R, et al. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. The Spine Journal, 2005;5:14-23.
    18. Kluba T, Niemeyer T, Gaissmaier C, et al. Human anulus fibrosis and nucleus pulposus cells of the intervertebral disc: effect of degeneration and culture system on cell phenotype. Spine (Phila Pa 1976), 2005;30:2743-8.
    19. Sive J, Baird P, Jeziorsk M, et al. Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Molecular Pathology, 2002;55:91.
    20. Oegema Jr T. Biochemistry of the intervertebral disc. Clinics in sports medicine, 1993;12:419.
    21. Toyodaa T, Seedhoma B, Kirkhamb J, et al. Upregulation of aggrecan and type II collagen mRNA expression in bovine chondrocytes by the application of hydrostatic pressure. Biorheology, 2003;40:79-85.
    22. Lee M, Ikenoue T, Trindade M, et al. Protective effects of intermittent hydrostatic pressure on osteoarthritic chondrocytes activated by bacterial endotoxin in vitro. Journal of Orthopaedic Research, 2003;21:117-22.
    23. Lee M, Trindade M, Ikenoue T, et al. Intermittent hydrostatic pressure inhibits shear stress-induced nitric oxide release in human osteoarthritic chondrocytes in vitro. J Rheumatol, 2003;30:326-8.
    24. Liu G, Ishihara H, Osada R, et al. Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure. Spine, 2001;26:134.
    25. Okuda S, Myoui A, Ariga K, et al. Mechanisms of age-related decline in insulin-like growth factor-I dependent proteoglycan synthesis in rat intervertebral disc cells. Spine (Phila Pa 1976), 2001;26:2421-6.
    26. Maeda S, Kokubun S. Changes with age in proteoglycan synthesis in cells cultured in vitro fromthe inner and outer rabbit annulus fibrosus: responses to interleukin-1 and interleukin-1 receptor antagonist protein. Spine, 2000;25:166.
    27. Chou AI, Bansal A, Miller GJ, et al. The effect of serial monolayer passaging on the collagen expression profile of outer and inner anulus fibrosus cells. Spine (Phila Pa 1976), 2006;31:1875-81.
    28. Mitchell P, Magna H, Reeves L, et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. Journal of Clinical Investigation, 1996;97:761-8.
    29. Goupille P, Jayson IV M, Valat J, et al. Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine, 1998;23:1612.
    30. Frymoyer J, Cats-Baril W. An overview of the incidences and costs of low back pain. The Orthopedic clinics of North America, 1991;22:263.
    31. Kanemoto M, Hukuda S, Komiya Y, et al. Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral discs. Spine (Phila Pa 1976), 1996;21:1-8.
    32. Matsui Y, Maeda M, Nakagami W, et al. The involvement of matrix metalloproteinases and inflammation in lumbar disc herniation. Spine, 1998;23:863.
    33. Weiler C, Nerlich A, Zipperer J, et al. SSE Award Competition in Basic Science: expression of major matrix metalloproteinases is associated with intervertebral disc degradation and resorption. Eur Spine J, 2002;11:308-20.
    34. Le Maitre CL, Freemont AJ, Hoyland JA. Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol, 2004;204:47-54.
    35. Kang J, Georgescu H, McIntryre L. Herniated cervical intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin EW. Spine, 1995;20:2373.
    36. Kang JD, Georgescu HI, McIntyre-Larkin L, et al. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine (Phila Pa 1976), 1996;21:271-7.
    37. Kang J, Stefanovic-Racic M, McIntyre L, et al. Toward a biochemical understanding of human intervertebral disc degeneration and herniation: contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine, 1997;22:1065.
    38. Docherty A, Murphy G. The tissue metalloproteinase family and the inhibitor TIMP: a study using cDNAs and recombinant proteins. Annals of the rheumatic diseases, 1990;49:469.
    39. Lotz M, Guerne P. Interleukin-6 induces the synthesis of tissue inhibitor of metalloproteinases-1/erythroid potentiating activity (TIMP-1/EPA). Journal of Biological Chemistry, 1991;266:2017.
    40. Tortorella M, Burn T, Pratta M, et al. Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science (New York, NY), 1999;284:1664.
    41. Doita M, Kanatani T, Ozaki T. Influence of macroproteinases: the clue to intervertebral disc degeneration [J. Spine, 1998;14:1612-26.
    42. Gr nblad M, Displacement-complications I, Displacement-pathology I, et al. Spinal disorders. Basic science. Acta orthopaedica Scandinavica. Supplementum, 1998;69:32-7.
    43. Murakami S, Lefebvre V, de Crombrugghe B. Potent inhibition of the master chondrogenic factor Sox9 gene by interleukin-1 and tumor necrosis factor-alpha. Journal of Biological Chemistry,2000;275:3687.
    44. Miyamoto H, Saura R, Doita M, et al. The role of cyclooxygenase-2 in lumbar disc herniation. Spine (Phila Pa 1976), 2002;27:2477-83.
    45.万超.神经根痛的生化机理研究进展.中国中医骨伤科, 1999.
    46. Miyamoto H, Doita M, Nishida K, et al. Effects of cyclic mechanical stress on the production of inflammatory agents by nucleus pulposus and anulus fibrosus derived cells in vitro. Spine (Phila Pa 1976), 2006;31:4-9.
    47. Stichtenoth D, Frolich J. COX-2 and the kidneys. Current pharmaceutical design, 2000;6:1737-53.
    48. Ju W, Neufeld A. Cellular localization of cyclooxygenase-1 and cyclooxygenase-2 in the normal mouse, rat, and human retina. The Journal of Comparative Neurology, 2002;452:392-9.
    49. Neeraja S, Sreenath A, Reddy P, et al. Expression of cyclooxygenase-2 in rat testis. Reproductive BioMedicine Online, 2003;6:302-9.
    50. Konttinen Y, Kemppinen P, Li T, et al. Transforming and epidermal growth factors in degenerated intervertebral discs. JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME-, 1999;81:1058-63.
    51. Kim DJ, Moon SH, Kim H, et al. Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine (Phila Pa 1976), 2003;28:2679-84.
    52. Bell D, Leung K, Wheatley S, et al. SOX9 directly regulates the type-ll collagen gene. Nature genetics, 1997;16:174-8.
    53. Huang W, Zhou X, Lefebvre V, et al. Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9's ability to transactivate a Col2a1 chondrocyte-specific enhancer. Molecular and Cellular Biology, 2000;20:4149.
    54. Lefebvre V, Huang W, Harley V, et al. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1 (II) collagen gene. Molecular and Cellular Biology, 1997;17:2336.
    55. Wegner M. From head to toes: the multiple facets of Sox proteins. Nucleic acids research, 1999;27:1409.
    56. Wright E, Hargrave M, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nature genetics, 1995;9:15-20.
    57. Nerlich AG, Bachmeier BE, Boos N. Expression of fibronectin and TGF-beta1 mRNA and protein suggest altered regulation of extracellular matrix in degenerated disc tissue. Eur Spine J, 2005;14:17-26.
    58. Studer RK, Gilbertson LG, Georgescu H, et al. p38 MAPK inhibition modulates rabbit nucleus pulposus cell response to IL-1. J Orthop Res, 2008;26:991-8.
    59. Guehring T, Omlor GW, Lorenz H, et al. Stimulation of gene expression and loss of anular architecture caused by experimental disc degeneration--an in vivo animal study. Spine (Phila Pa 1976), 2005;30:2510-5.
    60. Murakami H, Yoon ST, Attallah-Wasif ES, et al. The expression of anabolic cytokines in intervertebral discs in age-related degeneration. Spine (Phila Pa 1976), 2006;31:1770-4.
    61. Masuda K, Takegami K, An H, et al. Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. Journal of Orthopaedic Research, 2003;21:922-30.
    62. Takegami K, An H, Kumano F, et al. Osteogenic protein-1 is most effective in stimulating nucleuspulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC–induced in vitro chemonucleolysis. The Spine Journal, 2005;5:231-8.
    63. Malfait A, Liu R, Ijiri K, et al. Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. Journal of Biological Chemistry, 2002;277:22201.
    64. Van der Laan W, Quax P, Seemayer C, et al. Cartilage degradation and invasion by rheumatoid synovial fibroblasts is inhibited by gene transfer of TIMP-1 and TIMP-3. Gene therapy, 2003;10:234-42.
    65. Franceschi R, Wang D, Krebsbach P, et al. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. Journal of cellular biochemistry, 2000;78:476-86.
    66. Ballay A, Levrero M, Buendia M, et al. In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human adenoviruses. The Embo Journal, 1985;4:3861.
    67. Caron J, Fernandes J, Martel-Pelletier J, et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression. Arthritis and rheumatism, 1996;39:1535.
    68. Moon S, Gilbertson L, Nishida K, et al. Human intervertebral disc cells are genetically modifiable by adenovirus-mediated gene transfer: implications for the clinical management of intervertebral disc disorders. Spine, 2000;25:2573.
    69.赵剑,贾连顺. TGF—β1基因转染修饰人退变腰椎间盘髓核细胞.中华医学杂志:英文版, 2002;115:409-12.
    70. Thompson J, OEGEMA T, BRADFORD D. Stimulation of mature canine intervertebral disc by growth factors. Spine, 1991;16:253.
    71. Nishida K, Kang J, Gilbertson L, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine, 1999;24:2419.
    72. Osada R, Ohshima H, Ishihara H, et al. Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs. J Orthop Res, 1996;14:690-9.
    73. Matsumoto T, Masuda K, Chen S, et al. Transfer of osteogenic protein-1 gene by gene gun system promotes matrix synthesis in bovine intervertebral disc and articular cartilage cells. Orthop Res Soc Trans, 2001;30.
    74. Matsumoto T, An H, Masuda K, et al. Osteogenic protein-1 gene: gene gun transfer to intervertebral disc cells. Spine;2.
    75. Zhang Y, An HS, Thonar EJ, et al. Comparative effects of bone morphogenetic proteins and sox9 overexpression on extracellular matrix metabolism of bovine nucleus pulposus cells. Spine (Phila Pa 1976), 2006;31:2173-9.
    76. Minamide A, Boden S, Viggeswarapu M, et al. Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1. The Journal of Bone and Joint Surgery, 2003;85:1030.
    77. Paul R, Haydon RC, Cheng H, et al. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine (Phila Pa 1976), 2003;28:755-63.
    78. Wallach CJ, Sobajima S, Watanabe Y, et al. Gene transfer of the catabolic inhibitor TIMP-1increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine (Phila Pa 1976), 2003;28:2331-7.
    
    1. Galibert P, Deramond H, Rosat P, et al. Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neuro-chirurgie, 1987;33:166.
    2. Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology, 1996;200:525.
    3. Amar AP, Larsen DW, Esnaashari N, et al. Percutaneous transpedicular polymethyl methacrylate vertebroplasty for the treatment of spinal compression fractures. Neurosurgery, 2001;49:1105-14.
    4. Ryu K, Park C, Kim M, et al. Dose-dependent epidural leakage of polymethylmethacrylate after percutaneous vertebroplasty in patients with osteoporotic vertebral compression fractures. Journal of Neurosurgery: Spine, 2002;96:56-61.
    5. Uemura A, Numaguchi Y, Matsusako M, et al. Effect on partial pressure of oxygen in arterial blood in percutaneous vertebroplasty. American Journal of Neuroradiology, 2007;28:567.
    6. Aebli N, Krebs J, Schwenke D, et al. Cardiovascular changes during multiple vertebroplasty with and without vent-hole - An experimental study in sheep. Spine, 2003;28:1504-11.
    7. Gangi A, Kastler B, Dietemann J. Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. American Journal of Neuroradiology, 1994;15:83.
    8. Martin J, Jean B, Sugiu K, et al. Vertebroplasty: clinical experience and follow-up results. Bone, 1999;25:11-5.
    9. Aebli N, Krebs J, Davis G, et al. Fat embolism and acute hypotension during vertebroplasty - An experimental study in sheep. Spine, 2002;27:460-6.
    10. Kaufmann T, Jensen M, Ford G, et al. Cardiovascular effects of polymethylmethacrylate use in percutaneous vertebroplasty. American Journal of Neuroradiology, 2002;23:601.
    11. Padovani B, Kasriel O, Brunner P, et al. Pulmonary embolism caused by acrylic cement: A rarecomplication of percutaneous vertebroplasty. American Journal of Neuroradiology, 1999;20:375-7.
    12. Koessler M, Fabiani R, Hamer H, et al. The clinical relevance of embolic events detected by transesophageal echocardiography during cemented total hip arthroplasty: a randomized clinical trial. Anesthesia & Analgesia, 2001;92:49.
    13. Hong CL, Liu HP, Wu CY, et al. Delayed hypoxemia after bone cement insertion during total hip replacement under spinal anesthesia--a case report. Acta Anaesthesiol Sin, 2003;41:47-51.
    14. Monticelli F, Meyer HJ, Tutsch-Bauer E. Fatal pulmonary cement embolism following percutaneous vertebroplasty (PVP). Forensic Sci Int, 2005;149:35-8.
    15. Luginbühl M. Percutaneous vertebroplasty, kyphoplasty and lordoplasty: implications for the anesthesiologist. Current Opinion in Anesthesiology, 2008;21:504.
    16. Koessler MJ, Aebli N, Pitto RP. Fat and bone marrow embolism during percutaneous vertebroplasty. Anesthesia and Analgesia, 2003;97:293-.
    17. Bernhard J, Heini PF, Villiger PM. Asymptomatic diffuse pulmonary embolism caused by acrylic cement: an unusual complication of percutaneous vertebroplasty. Ann Rheum Dis, 2003;62:85-6.
    18. Bonardel G, Pouit B, Gontier E, et al. Pulmonary cement embolism after percutaneous vertebroplasty: a rare and nonthrombotic cause of pulmonary embolism. Clinical Nuclear Medicine, 2007;32:603.
    19. Hulme PA, Krebs J, Ferguson SJ, et al. Vertebroplasty and kyphoplasty: A systematic review of 69 clinical studies. Spine, 2006;31:1983-2001.
    20. Ploeg W, Veldhuizen A, The B, et al. Percutaneous vertebroplasty as a treatment for osteoporotic vertebral compression fractures: a systematic review. European Spine Journal, 2006;15:1749-58.
    21. Becker S, Meissner J, Tuschel A, et al. Cement leakage into the posterior spinal canal during balloon kyphoplasty: a case report. J Orthopaed Surg, 2007;15:222-5.
    22. Eck J, Nachtigall D, Humphreys S, et al. Comparison of vertebroplasty and balloon kyphoplasty for treatment of vertebral compression fractures: a meta-analysis of the literature. The Spine Journal, 2008;8:488-97.
    23.孙钢,金鹏,易玉海, et al.椎体后凸成形术治疗老年骨质疏松性椎体压缩骨折.介入放射学杂志, 2006;15:410-2.
    24. Yeom JS, Kim WJ, Choy WS, et al. Leakage of cement in percutaneous transpedicular vertebroplasty for painful osteoporotic compression fractures. J Bone Joint Surg Br, 2003;85:83-9.
    25. Schmidt R, Cakir B, Mattes T, et al. Cement leakage during vertebroplasty: an underestimated problem? European Spine Journal, 2005;14:466-73.
    26. Tomita S, Kin A, Yazu M, et al. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J Orthop Sci, 2003;8:192-7.
    27. Frankel B, Monroe T, Wang C. Percutaneous vertebral augmentation: an elevation in adjacent-level fracture risk in kyphoplasty as compared with vertebroplasty. The Spine Journal, 2007;7:575-82.
    28. Scroop R, Eskridge J, Britz GW. Paradoxical cerebral arterial embolization of cement during intraoperative vertebroplasty: Case report (Retracted Article. See vol 25, pg B1, 2004). American Journal of Neuroradiology, 2002;23:868-70.
    29. Chee Y, Culligan D, Watson H. Inferior vena cava malformation as a risk factor for deep venous thrombosis in the young. British journal of haematology, 2001;114:878-80.
    30. Chung S, Lee S, Kim T, et al. Renal cement embolism during percutaneous vertebroplasty.European Spine Journal, 2006;15:590-4.
    31. Choe D, Marom E, Ahrar K, et al. Pulmonary embolism of polymethyl methacrylate during percutaneous vertebroplasty and kyphoplasty. American Journal of Roentgenology, 2004;183:1097.
    32. Burton A, Hamid B. Kyphoplasty and vertebroplasty. Current Pain and Headache Reports, 2008;12:22-7.
    33.王雨,王爱民.与骨水泥相关的肺栓塞.中国矫形外科杂志, 2005;13:615-6.
    34.庞金辉,姜建元,黄煌渊, et al.骨水泥致急性弥漫性血管内凝血一例.中华创伤杂志, 2004;20:167-.
    35. Blinc A, Bozic M, Vengust R, et al. Methyl-methacrylate bone cement surface does not promote platelet aggregation or plasma coagulation in vitro. Thromb Res, 2004;114:179-84.
    36. Teng M, Cheng H, Ho D, et al. Intraspinal leakage of bone cement after vertebroplasty: a report of 3 cases. American Journal of Neuroradiology, 2006;27:224.
    37.贾中伟,苏云星,刘芳, et al.椎体成形术和球囊椎体后凸成形术在骨质疏松性椎体压缩骨折中的应用与比较.山西医科大学学报, 2008;39:1142-4.
    38.邓忠良,安洪.经皮穿刺椎体成形术中骨水泥表面温度变化的观测.中国脊柱脊髓杂志, 2003;13:98-9.
    39.柯珍勇,邓忠良,黄朝粱, et al.椎体成形术骨水泥聚合温度变化实验研究.脊柱外科杂志, 2004;2:152-3.
    40. Harrington K. Major neurological complications following percutaneous vertebroplasty with polymethylmethacrylate: a case report. The Journal of Bone and Joint Surgery, 2001;83:1070.
    41. Lim K, Yoon S, Jeon Y, et al. An intraatrial thrombus and pulmonary thromboembolism as a late complication of percutaneous vertebroplasty. Anesthesia & Analgesia, 2007;104:924.
    42. Kim S, Seo J, Do K, et al. Cardiac perforation caused by acrylic cement: a rare complication of percutaneous vertebroplasty. AMERICAN JOURNAL OF ROENTGENOLOGY-NEW SERIES-, 2005;185:1245.
    43. Groen RJM, du Toit DF, Phillips FM, et al. Anatomical and pathological considerations in percutaneous vertebroplasty and kyphoplasty: A reappraisal of the vertebral venous system. Spine, 2004;29:1465-71.
    44. Rhyne III A, Banit D, Laxer E, et al. Kyphoplasty: report of eighty-two thoracolumbar osteoporotic vertebral fractures. Journal of orthopaedic trauma, 2004;18:294.
    45. Kasperk C, Hillmeier J, Noldge G, et al. Treatment of painful vertebral fractures by kyphoplasty in patients with primary osteoporosis: a prospective nonrandomized controlled study. J Bone Miner Res, 2005;20:604-12.
    46. Harrop J, Prpa B, Reinhardt M, et al. Primary and secondary osteoporosis' incidence of subsequent vertebral compression fractures after kyphoplasty. Spine, 2004;29:2120.
    47. Lindsay R, Silverman S, Cooper C, et al. Risk of new vertebral fracture in the year following a fracture. Jama, 2001;285:320.
    48. Grados F, Depriester C, Cayrolle G, et al. Long-term observations of vertebral osteoporotic fractures treated by percutaneous vertebroplasty. Rheumatology (Oxford), 2000;39:1410-4.
    49. Fribourg D, Tang C, Sra P, et al. Incidence of subsequent vertebral fracture after kyphoplasty. Spine, 2004;29:2270.
    50. Mueller C, Berlemann U. Kyphoplasty: Chances and limits. Neurology India, 2009;53:451.
    51. Uppin A, Hirsch J, Centenera L, et al. Occurrence of New Vertebral Body Fracture afterPercutaneous Vertebroplasty in Patients with Osteoporosis1. Radiology, 2003;226:119.
    52. Trout A, Kallmes D, Kaufmann T. New fractures after vertebroplasty: adjacent fractures occur significantly sooner. American Journal of Neuroradiology, 2006;27:217.
    53. Berlemann U, Ferguson S, Nolte L, et al. Adjacent vertebral failure after vertebroplasty: a biomechanical investigation. Journal of bone and joint surgery. British volume, 2002;84:748-52.
    54. Polikeit A, Nolte LP, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine (Phila Pa 1976), 2003;28:991-6.
    55. Ledlie JT, Renfro M. Balloon kyphoplasty: one-year outcomes in vertebral body height restoration, chronic pain, and activity levels. J Neurosurg, 2003;98:36-42.
    56. Villarraga M, Bellezza A, Harrigan T, et al. The biomechanical effects of kyphoplasty on treated and adjacent nontreated vertebral bodies. Journal of spinal disorders & techniques, 2005;18:84.
    57. Melton Iii L, Atkinson E, Cooper C, et al. Vertebral fractures predict subsequent fractures. Osteoporosis International, 1999;10:214-21.
    58. Lavelle W, Cheney R. Recurrent fracture after vertebral kyphoplasty. The Spine Journal, 2006;6:488-93.
    59. Moon E, Kim H, Park J, et al. The incidence of new vertebral compression fractures in women after kyphoplasty and factors involved. Yonsei medical journal, 2007;48:645.
    60. Oddsson L, De Luca C. Activation imbalances in lumbar spine muscles in the presence of chronic low back pain. Journal of Applied Physiology, 2003;94:1410.
    61. Tanigawa N, Komemushi A, Kariya S, et al. Relationship between cement distribution pattern and new compression fracture after percutaneous vertebroplasty. American Journal of Roentgenology, 2007;189:W348.
    62. Lin E, Ekholm S, Hiwatashi A, et al. Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. American Journal of Neuroradiology, 2004;25:175.
    63. Komemushi A, Tanigawa N, Kariya S, et al. Percutaneous vertebroplasty for osteoporotic compression fracture: multivariate study of predictors of new vertebral body fracture. Cardiovascular and interventional radiology, 2006;29:580-5.
    64. Ahn Y, Lee J, Lee H, et al. Predictive factors for subsequent vertebral fracture after percutaneous vertebroplasty. Journal of Neurosurgery: Spine, 2008;9:129-36.
    65. Deramond H, Depriester C, Galibert P, et al. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am, 1998;36:533-46.
    66. Shimony J, Gilula L, Zeller A, et al. Percutaneous Vertebroplasty for Malignant Compression Fractures with Epidural Involvement1. Radiology, 2004;232:846.
    67. Peh W, Gilula L, Peck D. Percutaneous Vertebroplasty for Severe Osteoporotic Vertebral Body Compression Fractures1. Radiology, 2002;223:121.
    68. Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology, 1996;200:525-30.
    69. Kallmes D, Schweickert P, Marx W, et al. Vertebroplasty in the mid-and upper thoracic spine. American Journal of Neuroradiology, 2002;23:1117.
    70. Barr J, Barr M, Lemley T, et al. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine, 2000;25:923.
    71. Yu S, Lee P, Ma C, et al. Vertebroplasty for the treatment of osteoporotic compression spinal fracture: comparison of remedial action at different stages of injury. The Journal of Trauma, 2004;56:629.
    72. Evans A, Jensen M, Kip K, et al. Vertebral compression fractures: pain reduction and improvement in functional mobility after percutaneous polymethylmethacrylate vertebroplasty retrospective report of 245 cases. Radiology, 2003;226:366.
    73. McGraw JK, Lippert JA, Minkus KD, et al. Prospective evaluation of pain relief in 100 patients undergoing percutaneous vertebroplasty: results and follow-up. J Vasc Interv Radiol, 2002;13:883-6.
    74. Hodler J, Peck D, Gilula LA. Midterm outcome after vertebroplasty: predictive value of technical and patient-related factors. Radiology, 2003;227:662-8.
    75. Diamond T, Champion B, Clark W. Management of acute osteoporotic vertebral fractures: a nonrandomized trial comparing percutaneous vertebroplasty with conservative therapy. The American journal of medicine, 2003;114:257-65.
    76. Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol, 1997;18:1897-904.
    77. Lieberman IH, Dudeney S, Reinhardt MK, et al. Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures. Spine (Phila Pa 1976), 2001;26:1631-8.
    78. Yu S, Chen W, Lin W, et al. Serious pyogenic spondylitis following vertebroplasty-a case report. Spine, 2004;29:E209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700