丝素/磷酸钙/硫酸钙复合材料的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在合成磷酸钙骨水泥(CPC)、制备丝素(SF)微球的基础上,通过在CPC中添加以无定形结构为主的丝素微球(SFP)和半水硫酸钙(CSH)制备了可注射可原位固化成孔的SFP/CPC/CSH复合材料,研究SFP比例、CSH比例和液固比对材料的结构、性能的影响,并调查样品在模拟体液(SBF)中结构和性能的变化,研究结果表明:
     在复合材料固化反应的过程中,外观以中空的球形为多、聚集态结构以无定形结构为主的SFP能够在复合材料中形成明显的孔。随着SFP比例增加,复合材料表面的孔有增多趋势,SFP数量多少对复合材料的最大孔径有影响,随着SFP比例增加,最大孔径有增大趋势。复合材料中由SFP形成孔的直径范围在15.2μm-284.6μm之间;固相为含5%SFP、10%CSH的复合材料,在液固比大于等于0.45时,平均孔径无明显差异,但均大于液固比0.40时复合材料的平均孔径;CSH比例对复合材料中孔的大小和数量无明显影响。
     复合材料固化反应4h的固化体已经有产物HA生成,在7周内,随着固化时间的延长HA不断生成。材料中的DCPA在1周内转化为HA,而TTCP到7周时还未完全转化为HA。不同SFP比例复合材料表面均有片状和针状的HA晶体;不同CSH比例复合材料中均有针状的HA晶体;固相成分均为含5%SFP、10%CSH的复合材料,当液固比为0.40时以柱状HA晶体为主,当液固比为0.45和0.50时以针状HA晶体以为主,当液固比为0.55时以片状HA晶体为主。
     含SFP复合材料的孔隙率(大于53%)均高于纯CPC(46.81%),当复合材料中SFP比例小于5%时,随着SFP比例的增加材料的孔隙率从49.3%提高到59.4%;当SFP比例大于5%时,随着SFP比例的进一步增加孔隙率有所下降;随着复合材料中CSH比例从0%增加到30%,材料的孔隙率从55.7%上升到61.6%;随液固比的增加材料孔隙率也有增加的趋势。
     复合材料的压缩强度和压缩断裂功均随着材料中SFP比例增加而提高,复合材料中SFP比例达10%时材料的压缩强度达到7.3MPa,复合材料中SFP比例达10%时材料的压缩断裂功达到330.3mJ,明显高于不含SFP的复合材料的174.8mJ;复合材料的压缩强度和压缩断裂功都随着材料中CSH比例或液固比的增加而降低。
     在本实验确定的液固比条件下,不同SFP比例、不同CSH比例的复合材料的凝固时间无明显差异,都在13-16min之间,注射性也无明显差异,所有样品的注射率均在90%以上。液固比对复合材料的凝固时间和注射性能有明显影响,随液固比的增加材料的凝固时间延长,注射率增加,尤其当液固比从0.40增加到0.45复合材料的注射率从44.9%增加到84.3%。
     纯CPC和不含CSH的SFP/CPC复合材料的重量在SBF中的前五周呈现增加趋势。含有CSH的复合材料在SBF的3周时间里,随着时间延长样品重量有所减少。从第3到第5周样品的重量出现增加,第5周后重量出现下降的趋势。纯CPC样品随着在SBF中时间的延长样品表面孔洞无明显的变化,结构仍致密;不含SFP含10%比例CSH的复合材料随着在SBF中时间的延长,样品表面的微孔数量有增加趋势;含5%SFP、10%CSH的复合材料和含10%SFP、10%CSH的复合材料在SBF中均随着时间的延长,材料变得有些松;不含CSH含5%SFP的复合材料随着在SBF中时间延长,材料的表面形态无明显差异。
In this paper, the SF/CPC/CSH composites which have good injectablity and canbe solidified and form pores in situ was prepared, this composites composed of thecalcium phosphate cement (CPC) and the silk fibroin particle (SFP) microspheres whichwas mainly amorphous structure. The influence of the proportion of SFP, the proportionof calcium sulfate hemihydrate (CSH) and liquid to powder (L/P) ratio on the structureand properties of composites were studied, and the change of structure and properties ofsamples when immersed in SBF were investigated. The results showed that the SFwhich had the morphology of a hollow sphere was prepared, and the aggregationstructure of the SFP was mainly the amorphous. The SFP could form obvious pores incomposites, the number and the largest pore size of pores had increased trend with theincreased proportion of SFP. The size of pore which was formed by SFP ranged from15.2μm to284.6μm. The composites which had5%of SFP and10%of CSH wereprepared by the L/P ratio greater than or equal to0.45ml/g, and the average size of thepores in these composites had not significant difference, but all larger than the averagesize of pores in the composites which prepared by the L/P ratio to0.40ml/g. Theproportion of CSH had no significant effect on the number and size of pores incomposites.
     The composites started up setting reaction and transformed into HA in seven weeks.The dicalcium phosphate anhydrous transformed into HA in the first week, but thetetracalcium phosphate was not totally transformed and still contained after seven weeks.The surface of composites which had different proportion of SFP all had platelet-likeand needle-like HA crystals. The surface of composites which had different ratio ofCSH all were mainly needle-like HA crystals. The surface of composites which had5%of SFP and10%of CSH were mainly rod-like HA crystals when this compositesprepared by the L/P ratio to0.40ml/g, and the surface of the composites were mainlyneedle-like HA crystals when prepared by the L/P ratio to0.45ml/g and0.50ml/g, andthe surface of composites were mainly platelet-like HA crystals when prepared by theL/P ratio to0.50ml/g.
     The average porosity of composites which contained SFP was larger than53%, andthe average porosity of the pure CPC was46.8%. The porosity had increased from49.3%to59.4%with the increased proportion of SFP when the proportion was less than5%, but the porosity had decreased trend with the increased proportion of SF when theproportion was higher than5%. The porosity had increased from55.7%to61.6%withthe increased proportion of CSH from0%to30%of the composites.The porosity hadincreased trend with the increased L/P ratio.
     The compressive strength and work-of-compressive of composites had increasedtrend with the increased proportion of SFP, but had decreased trend with the increasedproportion of CSH or the increased L/P ratio.
     Under the L/P ratio conditions of this experiment, there had no significantdifferences of setting time and injectability between the composites which had differentSF proportion and the composites which had different CSH proportion. All setting timeof composites were within the range of13min to16min, and all the injection rate wereabove90%. The L/P ratio had a significant effect on the setting time and injection ratioof composites, the setting time extended and the injection rate increased with increasedof the L/P ratio, and the injection rate of composites increased from44.9%to84.3%when the L/P ratio increased from0.40ml/g to0.45ml/g.
     The weight of CPC and SFP/CPC composites had increased trend when thesamples immersed in SBF in five weeks. The weight of composites which containedCSH had decreased trend when the composites immersed in SBF in three weeks, but theweight had slightly increased from the third week to the fifth week, and the weight haddecreased trend after five weeks. The pores of pure CPC had not significant changesand still dense when the composites immersed in SBF. The surface of composites whichhad10%of CSH appeared more and more microporous with time extended when thecomposites immersed in SBF. The composites which contained SFP and CSH becomesomewhat loose with time extended when the composites immersed in SBF, The surfacemorphology of composites which without CSH had no significant difference with timeextended when the composites immersed in SBF.
引文
[1] Yuan J, Cui L, Zhang W J, et al. Repair of canine mandibular bone defects withbone marrow stromal cells and porous β-tricalcium phosphate[J]. Biomaterial,2007,28(6):1005-1013.
    [2] Nandi SK, Kundu B, Ghosh S K, et al. Efficacy of nano-hydroxyapatite prepared byan aqueous solution combustion technique in healing bone defects of goat[J]. J VetSci,2008,9(2):183-191.
    [3]甄作均,杨明,李光仪.实用微创外科手册[M].北京,人民军医出版社,2004.
    [4]郑玉峰,李莉.生物医用材料学[M].哈尔滨,哈尔滨工业大学出版社,2005.
    [5] Rodriguez-Lorenzo L M, Salinas A J, Vallet-Regi M, et al. Composite biomaterialsbased on ceramics polymers. I. Reinforced systems based onAl2O3/PMMA/PLLA[J]. J Biomed Mater Res,1996,30(4):515-522.
    [6]邸利芝,刘斌,罗跃娥,等. PPF/(CaSO4/β-TCP)复合生物材料的制备与表征[J].天津师范大学学报(自然科学版),2009,(2):50-53.
    [7] Pilet P, Amouriq Y, Daculsi G, et al. The safety and efficacy of an injectable bonesubstitute in dental sockets demonstrated in a human clinical trial. Biomaterials,2007,28(22):3295-3305.
    [8] Dunne N J, Orr J F. Thermal characteristics of curing acrylic bone cement[J].Elsevier,2001,22:88-97.
    [9] Brown W E, Chow L C. A new calcium setting cement[J]. Journal of DentalResearch,1983,63:762-765.
    [10]王秀红,卢晓英,姜法兴,等.生物陶瓷及其复合材料表面诱导类骨磷灰石层形成的研究[J].功能材料,2008,39(4):647-650.
    [11] Gauthi er O, Bouler J M, Weiss P, et al. Kinetic study of bone ingrowth andceramic resorption associated with the implantation of different injectable calciumphosphate substitutes[J]. J Biomed Mater Res,1999,47:28-35.
    [12] Constantz B R, Ison I C, Fulmer M T, et al. Skeletal repair by insitu formulation ofmineral phase of bone[J]. Science,1995,267:1796-1799.
    [13] Knaack D, Goad M E P, Aiolova M, et al. Resorbable calcium phosphate bonesubstitute[J]. J Biomed Mater Res,1998,43:399-409.
    [14] Hing K A, Best S M, Tanner K E, et al. Histom orphological and biome chanicalcharacterization of calcium phosphates in the osseous environment[J]. Proc InstMech Eng, H: J Eng Med,1998,212:437-451.
    [15]谢瑞娟,王彪,万琼,王阳.丝素纤维强化磷酸钙骨水泥的性能[J].高分子材料科学与工程,2011,27(1):92-95.
    [16]谢瑞娟,邓启明,詹鸿洲. CPC/SF复合材料的制备[J].纺织学报,2009,30(10):5-9.
    [17]戴红莲,李世普.碳纤维增强α-TCP/TTCP骨水泥的研究[J].无机材料学报,2004,19(5):1025-1030.
    [18] Wang X H, Ma J B, Wang Y N, et al. Structural characterization of phosphorylatedchitosan and their applications as effective additives of calcium phosphatecements[J]. Biomaterials,2001,22:2247.
    [19] Yin Y J, Ye F, Cai S, et al. Gelatin manipulation of latent macroporous formationin brushite cement[J]. J Mater Sci: Mater Med,2003,14(3):255-261.
    [20] Hockin H K, Xu, Janet B, Quinn. Calcium phosphate cement containing resorbablefibers for short-term reinforcement and macroporosity[J]. J Biomed Mater Res,2000,52:107-114.
    [21] Ho-yeon Song, Esfakur Rahman A H M, Byong-Taek Lee. Fabrication of calciumphosphate-calcium sulfate injectable bone substitute using chitosan and citricacid[J]. J Mater Sci: Mater Med,2009(20):935–941.
    [22] Guo DG, XU KW, Zhao XY, et al. Development of a strontium-containinghydroxyapatite bone cement[J]. Biomaterials,2005,26(19):4073-4083.
    [23]魏杰,刘昌胜,洪华,等.新型可降解钙磷骨水泥多孔支架研究[J].无机材料学报,2006,21(4):958-964.
    [24]董浩,叶建东,王秀鹏,杨娟娟.磷酸钙骨水泥大孔径多孔组织工程支架的制备及其纤维增强[J].无机材料学报,2007,22(5):1107-1110.
    [25] Yoshikawa T SY, Ohgushi H, Tamai S, Ichijima K. Self hydroxyapatite cement asa carrier for bone-forming cells[J]. Biomedical Materials and Engineering,1996,6:345-351.
    [26] Habraken W J, Wolke J G, Mikos A G, et al. Injectable PLGAmicrosphere/calcium phosphate cements: physical properties and degradationcharacteristics[J]. J Biomater Sci Polymed,2006,17(9):1057-1074.
    [27]陈芳,李世普,江听,等.发泡法制备TCP陶瓷的工艺及其结构与性能研究[J].武汉工业大学学报,1995,17(4):140-142.
    [28]赵萍,储新宏,王峰,等.具有中空贯通管结构的磷酸钙骨水泥的制备研究[J].现代生物医学进展,2010,10(8):1467-1469.
    [29] Hockin H K, Xu, Janet B, Quinn. Calcium phosphate cement containing resorbablefibers for short-term reinforcement and macroporosity[J]. J Biomed Mater Res,2000,52:107-114.
    [30] Kai D, Li D X, et a1. Addition of sodium hyalu-ronate and the effect onperformance of the injectable calcium phosphate cement[J]. J Mater Sci: MaterMed,2009,20:1595.
    [31] Ishikawa K, Takieuchi A, Suzuki Y, et al. Effects of thermal treatment oninjectability and basic properties of apatite cement containing sphericaltetracalcium phosphate made with plasma melting method[J]. Journal of theCeramic Society of Japan,2008,116(1349):63-67.
    [32] Alves H L R, Santos L A, Bergmann C P. Injectability evaluation of tricalciumphosphate bone cement[J]. J Mater Sci: Mater Med,2008,19:2241.
    [33] Uwe Gbureck, Jake E, Barraletb, et al. Ionic modification of calcium phosphatecement viscosity. Part I: hypodermic injection and strength improvement of apatitecement[J]. Biomaterials,2010,21:1867–1874.
    [34] Leroux L, Hatim Z, Freche M, et al. Effects of various adjuvants (lactic acid,glycerol, and chitosan) on the inject ability of a calcium phosphate cement[J].Bone,1999,25(2):31-34.
    [35] Chow L C. Development of self-setting calcium phosphate cements[J]. J CeramSoci Jap,1991,99(10):954.
    [36] Miyamoto Y, Ishikawa K, Takechhi M, et al. Tissue response to fast-settingcalcium phosphate cement in bone[J]. J Biomed Mater Res,1997,37(4):457.
    [37] Van Viet Thai, Byong-Taek Lee. Fabrication of calcium phosphate–calcium sulfateinjectable bone substitute using hydroxy-propyl-methyl-cellulose and citric acid[J].J Mater Sci: Mater Med,2010,21:1867–1874.
    [38] Majekodunmi A O, S Deb. Poly (acrylic acid) modified calcium phosphatecements: the effect of the composition of the cement powder and of the molecularweight and concentration of the polymeric acid[J]. J Mater Sci: Mater Med,2007,(18):1883–1888.
    [39] Xiupeng Wang, Ling Chen, Hong Xiang, et al. Influence of Anti-Washout Agentson the Rheological Properties and Injectability of a Calcium Phosphate Cement[J].Biomaterials,2006,410-418.
    [40] Cherng A, Takagi S, Chow L C. Effects of hydroxypropyl methylcellulose andother gellingagents on the handling properties of calcium phosphate cement[J].Biomed Mater Res,1997,3:273-277.
    [41]赵萍,储新宏,王峰,等.具有中空贯通管结构的磷酸钙骨水泥的制备研究[J].现代生物医学进展,2010,10(8):1467-1469.
    [42]游永刚,唐辉,陈克久,徐永清.硫酸钙在骨修复治疗中的作用[J].中国矫形外科杂志,2008,16(16):1245-1247.
    [43] Pietrzak W S, Ronk R. Calcium sulfate bone void filler: a review and a lookahead[J]. J Craniofac Surg,2000,11(4):327-333.
    [44] Orsini G, Ricci J, Scarano A, et al. Bone-defect healing with calcium-sulfateparticles and cement: an experimental study in rabbit[J]. J Biomed Mater Res,2004,68(2):199-208.
    [45] Strocchi R, Orsini G, Iezzi G, et al. Bone regeneration with calcium sulfate:evidence for increased angiogenesis in rabbits[J]. J Oral Implantol,2002,28(6):273-278.
    [46] Walsh W R, Morberg P, Yu Y, et al. Response of a calcium sulfate bone graftsubstitute in a confined cancellous defect[J]. Clin Orthop Relat Res,2003,40(6):228-236.
    [47] Sidqu M, Collin P, Vtte C, et al. Osteoblast adherence and resorption activity ofIsolated osteoblast on calcium sulphate hemihydrate[J]. Biomaterials,1995,16(13):1327-1332.
    [48] Muzzarelli R A, Biagini G, Bellardini M, et al. Osteoconduction exerted by methylpyrolid inone chitosan used in dental surgery[J]. Biomaterials,1993,14(1):39-43.
    [49] Peltier L F. The use of plaster of Paris to fill defects in bone[J]. J Clin Orthop,1961,(21):1-31.
    [50] Oh C W, Kim P T, Ihn J C. The use of calcium sulfate as a substitute[J]. J orthopsurg, l998,6(2):l-l0.
    [51] Lotz B, Keith H D. Crystal structure of (poly-Ala-Gly) II: A model for silk I[J].Mol Biol,1971,61:201.
    [52] Marsh R E, Corey R B, Pauling L. Crystal structure of silk fibroin[J]. BiochemicalBiophysical Acta,1955,16:1.
    [53] Regina V, Samuel P G, Wayne M, Kaplan D L. Orientation of silk III at theair-water interface[J]. Biological Macromolecules,1999,24:237.
    [54] Sofia S, Mc Carthy M B, Gronowicz G, et al. Functionalized silk-basedbiomaterials for bone formation[J]. J Biomed Mater Res,2001,54(1):139-148.
    [55] Kyoung-Hwa Kim, Lim Jeong, Ho-Nam Park, et al. Biological efficacy of silkfibroin nanofiber membranes for guided bone regeneration[J]. Journal ofBiotechnology,2005,120:327-339.
    [56] Li C, Vepari C, Jin H, et al. Electrospun silk-BMP-2scaffolds for bone tissueengineering[J]. Biomaterials,2006,27:3115.
    [57]谢瑞娟.丝素载药微球及其制备方法[P]. CN101244277,2008,8-20.
    [58] Furuzono T, Taguchi T, Kishida A, et al. Preparation and characterization ofapatite deposited on silk fabric using an alternate soaking process[J]. J BiomedMater Res,2000,50(3):344-352.
    [59] Tadashi Kokubo, Hiroaki Takadama. How useful is SBF in predicting in vivo bonebioactivity[J]. Biomaterials,2006,27:2907-2915.
    [60] M. Bohner. Physical and chemical aspects of calcium phosphates used in spinalsurgery[J]. Eur Spine J,2001,10:S114–S121.
    [61]沈卫,刘昌胜,顾燕芳,胡黎明.磷酸钙骨水泥的水化反应机理研究[J].无机材料学报,1996,11(4):685-690.
    [62] Nilsson M, Ferna′ndez E, Sarda S, et al. Characterization of a novel calciumphosphate/sulphate bone cement[J]. Wiley Periodicals,2002,30:600-607.
    [63]刘佳佳,李明忠,卢神州.羟基磷灰石/丝素蛋白复合材料的制备[J].高分子材料科学与工程,2006,22(5):245-248.
    [64] Furuzono T, Taguchi T, Kishida A, et al. Preparation and characterization ofapatite deposited on silk fabric using an alternate soaking process[J]. J BiomedMater Res,2000,50(3):344-352.
    [65]丰强,闵思佳,张海萍,等.不同结构丝素蛋白对羟基磷灰石结晶的调控作用[J].蚕业科学,2008,34(3):472-476.
    [66] Ginebra M P, Fernandez E, Boltong M G, et al. Compliance of an apatite calciumphosphate cement with the short-term clinical requirements inbone surgery,orthopaedics and dentistry[J]. Clinic Mater,1994,17:99-104.
    [67] Burguera E, Xu HHK, Weir M D. Injectable and Rapid-Setting Calcium PhosphateBone Cement with Dicalcium Phosphate Dihydrate[J]. Biomed Mater Res,2006,(77):126-134.
    [68] Li P, Ohtsuki C, kokubo T, et al. Apatite formation induced by silicagel in asimulated body fluid[J]. J Am Ceram Sic,1992,75(14):2094-2097.
    [69]魏杰,刘昌胜,洪华,等.新型可降解磷酸钙骨水泥多孔支架的研究[J].无机材料学报,2006,21(4):958-964.
    [70]唐佩福,王继芳,卢世璧,等.抗稀散性碳酸羟基磷灰石骨水泥的研究[J].北京生物医学工程,2005,24(3):161-165.
    [71]阮孜炜,李东旭.磷酸四钙合成机理及其稳定性研究[J].材料科学与工程学报,2004,22(2):193-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700