均相复合羟基磷灰石/有机高分子骨组织修复材料的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首次利用原位复合和微乳液技术制备均相复合羟基磷灰石(HAp)/壳聚糖(CS)基和HAp/聚乳酸(PLA)复合材料,探索改善HAp作为分散相在CS和PLA基体中的分布均匀性的新方法。
     本论文利用磷酸钙盐在不同pH值下的溶解度差异及CS膜对离子选择性渗透原理,制备了两相分布均匀的HAp/CS基复合支架材料。考察了水化时间、CS浓度、HAp含量、胶原(Collagen)对复合材料的组成、结构、理化性能和生物活性的影响,获得了制备均相HAp/CS基复合支架材料的最佳工艺条件;同时通过细胞增殖能力试验、材料表面细胞生长形态和体内植入试验,对材料进行生物相容性评价。研究结果表明:当无机/有机比例为60/100时,水化24h后复合材料无机相为HAp。复合材料的孔隙率与孔径大小随着CS浓度增加而降低,其压缩强度随着CS浓度增加而增大;CS浓度为2%时,支架材料孔径约为200—800μm,HAp为规则的棒状颗粒,其长度均小于15μm。随着HAp含量增加,均相复合材料的压缩强度增大,其孔隙率均在85%以上。均相复合HAp/CS和HAp/CS/COL与机械共混HAp/CS复合支架材料在相同无机/有机设定投料比—60/100下,水化后前者的质量损失比后者多,而孔隙率与压缩强度均比后者大。SEM和EDS分析表明,均相复合材料中HAp晶体与CS基体紧密复合且呈均匀分布,优于机械共混HAp/CS复合材料。均相复合HAp/CS和HAp/CS/COL复合支架材料的生物活性、细胞相容性和组织相容性均优于CS支架材料和机械共混HAp/CS复合支架材料。
     采用反相微乳液技术制备了纳米HAp微乳液,通过与PLA溶液复合,制备了均相复合HAp/PLA复合材料。探讨了高稳定性的纳米HAp微乳液制备方法和有机溶剂对复合材料结构的影响,获得可改善HAp在PLA基体中的分布均匀性的较优工艺条件。PLA的丙酮溶液与HAp微乳液形成均相体系,复合后材料中HAp颗粒与PLA结合紧密。初步研究证明,纳米HAp微乳液复合的两相分布均匀性优于HAp粉末复合PLA制得的复合材料。
     本文为制备高性能HAp/CS和HAp/PLA复合骨组织修复材料探索了一条新途经。
In this research, in situ preparation and microemulsion techniques were originally used to prepare the Hydroxyapatite (HAp)/Chitosan (CS) and HAp/Polylactic acid (PLA) homogeneous composites. And the point was to find out the new approaches that could improve the distribution of the HAp particles in the matrix and the compatibility of the interphase boundary.
    Considering the principles that calcium phosphate salts have different solubility with diverse pH value and the function of selectivity pervasion of ions of CS film, a HAp/chitosan composite scaffold was developed. The HAp particles were made in situ through a rehydration with alkaline solution and dispersed homogeneously on the porous scaffold. They bounded to the CS scaffolds very well. The effects of the rehydration time, the concentration of CS solution, the content of HAp and collagen on the composition, structure, properties and bioactivity of the composite scaffolds were studied. On the other hand, the test of the proliferation ability of cells, observation the morphology of the cells and in vivo implant test were studied to evaluate the biocompatibility. Results showed that as the ratio of inorganic/organic was 60:100, the inorganic phase of the composite was HAp after 24h rehydration. And the porosity and pore size of composite decreased while the compress strength increased as the concentration of CS solution enhanced. When the concentration of CS solution was 2%, pore size of composite was about 200-800μm, and HAp particles were claviform with 15μm in length. The compress strength of the homogeneous composite scaffolds enhanced as the content of HAp increased, as well as the porosity of the homogeneous composite scaffolds was above 85%. When the ratio of inorganic/organic was 60:100, the homogeneous composite scaffolds of HAp/CS and HAp/CS/COL had higher porosity and compress strength though higher weight loss comparing to those of the composites scaffold prepared by mechanical blending. SEM and EDS results showed that HAp particles of the homogeneous composites were not only scattered more even than the composites prepared by mechanical blending, but also bounded to the CS matrix more well. The bioactivity and biocompatibility test,
引文
[1] 曾文,周天瑞,颜永年。组织工程支架的快速成形制备方法。制造业自动化,2005,27(11):27~29
    [2] 刘阳,谭最。组织工程血管支架研究进展。武汉大学学报(医学版),2006,27(1):124~129
    [3] 赵峰,尹玉姬,宋雪峰等。壳聚糖-明胶网络羟基磷灰石复合材料支架的研究——制备及形貌。中国修复重建外科杂志,2001,15(5):276~279
    [4] 赵峰,尹玉姬,姚康德等。壳聚糖-明胶网络羟基磷灰石复合材料支架的研究——成骨细胞培养。中国修复重建外科杂志,2002,16(2):130~133
    [5] 姜华,贾文英,翟弘峰等。组织工程支架—复合细胞载体的研制。透析与人工器官,2003,14(2):28~32
    [6] 曹谊林,崔磊,商庆新等。组织工程的研究现状与应用展望。中国医疗器械信息,2002,8(4):11~14
    [7] Agrawal C M, Ray R B. Biodegradable polymeric scaffolds for musculo skeletal tissue engineering. J Biomed Mater Res, 2001,55:141~150
    [8] Urist M R, Silverman B F, Burig K, et al. The bone induction principle. Clin Orthop Rel Res, 1967, 53:243~283
    [9] Russell J L, Block J E. Clinical utility of demineralized bone matrix for osseous defects, arthrodesis, and reconstruction: impact of processing techniques and study methodology. Othropaedics, 1999, 22:524~531
    [10] Chakkalakal D A, Strates B S, Mashoof A A, et al. Repair of segmental bone defects in the rat: an experimental model of human fracture healing. Bone, 1999, 25: 321~332
    [11] Groeneveld E H J, Van Den Bergh J P A, Holzmann P, et al. Mineralization processes in demineralized bone matrix grafts in human naxillary sinus floor elevations. J Biomed Mater Res (Appl Biomater ), 1999, 8:393~402
    [12] Thalgott J S, Giuttre J M, Klezl Z, et al. Anterior lumbar inter body fusion with titanium mesh cages, coralline hydroxyapatite, and demineralized bone matrix as part of a circumferential fusion. Spine, 2002, 2: 63-69
    [13] Yaylaoglu M B, Yildiz C, Korkusuz F, et al. A novel osteochordral implant, Biomaterials, 1999, 20: 1513-1520
    [14] Du C, Cui F Z, Zhu X D, et al. Three-dimensional nano-Hap/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res, 1999, 44:407-415
    [15] Putnam A J, Mooney D J. Tissue engineering using synthetic extra cellular matrices. Nature Med, 1996, (2): 824
    [16] Sheridan R L, Tompkin R G Skin substitutes in burns. Burns, 1999, 25(4): 97-103
    [17] Lamme E N, Leewen R T J, Jonker A, et al. Living skin substitutes: survival and function of fibroblasts seeded in dermal substitutes in experimental wounds. J Invest Dermatol, 1998,111(3): 989-995
    
    [18]苏映军,陈壁,贾赤宇。体外长期人转化朊细胞系的生物特性。第 四军医大学学报,1999, 20 (5): 382-385
    [19] Saldanha V, Grande D A. Extracellular matrix protein gene expression of bovine chondrocytes cutured on resorbable scaffolds. Biomaterials, 2000, 21:2427-2431
    [20] Holmes R, Hagler H. Porous hydroxyapatite as a bone graft substitute in maxillary augmentation. An histometric study. J Craniomaxillofac Surg, 1988,16(5): 199
    [21] Ohgushi H, Dohi Y, Tamai S. Osteogenic differentiation of marrow stromal stem cells in porous hydroxyapatite ceramics. J Biomed Mater Res, 1993, 27:1401
    [22] Magan A, Ripamonti U. Geometry of porous hydroxyapatite implants influences osteogenesis in baboons. J Craniofac Surg, 1996, 7(1): 71
    [23] Eggli P S, Muller W, Schenk P K. Porous Hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop, 1988, 232:127
    [24] Grimandi G, Weiss P, Millor F, et al. In vitro evaluation of a new injectable calcium phosphate material. Journal of Biomedial Materials Research, 1998, 39: 660~666
    [25] Chen F, Mao T, Tao K. Bone graft in the shape of human mandibular condyle reconstruction via seeding marrow-derived osteoblasts into porous coral in a nude mice model. J Oral Maxillofac Surg, 2002, 60(10): 1155~9
    [26] Ducheyne P, EI-Ghannam A, Shpiro I. Effect of bioactive glass template on osteoblast proliferation and in vitro synthesis of bone-like tissue. J Cellular Biochemis, 1994, 56(2): 162
    [27] 周长忍,王勤,陈建海等。生物材料学。中国医药科技出版社,2004,P172~190,P207
    [28] 张兴栋,硬组织修复与骨组织工程材料。生物医用材料,天津大学出版社,2000:142-145,120~122
    [29] Miyazaki S, Ishii K, Nadai T. The use of chitin and chitosan as drug carders. Chem Pharm Bull (Tokyo), 1981, 29:3067
    [30] Hirano S, Itakura C, Seino H, et al. Chitosan as an ingredient for domestic-animal feeds. J Agric Food Chem, 1990, 38:1214
    [31] Aiedeh K, Gianasi E, Orienti I, et al. Chitosan microcapsules as controlled release systems for insulin. J Microencapsul, 1997, 14:567
    [32] Miyazaki S, Yamaguchi H, Takada M, et al. Pharmaceutical application of biomedical polymers. XXIX. Preliminary study on film dosage form prepared from chitosan for oral drug delivery. Acta Pharm Nord, 1990, 2:401
    [33] Muzzarelli R, Biagini G, Pugnaloni A, et al. Reconstruction of parodontal tissue with chitosan. Biomaterials, 1989, 10:598
    [34] Muzzarelli R, Baldassarre V, Conti F, et al. Biological activity of chitosan: ultrastructural study. Biomaterials, 1988,9:247
    [35] Gazdag A, Lane J, Glaser D, et al. Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg, 1995, 3:1
    [36] Cornell C N, Lane J M. Newest factors in fracture healing. Clin Orthop 1992, 277:297
    [37] Hench L L. Bioactive ceramics. Ann N Y Acad Sci, 1988, 523:54~71
    [38] 陈亦平,宋雪峰,曹德勇等。骨修复材料研究进展。化工进展,2003,22(7):673~677
    [39] 唐佩福,王继芳,卢世璧等。抗稀散性碳酸化羟基磷灰石骨水泥的研究。北京生物医学工程,2005,24(3):161~165
    [40] Masaaki M, Michio I. In vitro properties of a chitosan-bonded self-hardening paste with hydroxyapatite granules. Journal of Biomedical Materials Research, 1996, 32:527~532
    [41] Ito M, Yamagishi T, Yagasaki H. In vitro properties of a chitosan-bonded bone- filling paste: Studies on solubility of calcium phosphate compounds. Journal of Biomedical Materials Research, 1996, 32:95~98
    [42] Chen F, Wang Z C, Lin C J. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite / chitosan nano-composite for use in biomedical materials. Materials Letters, 2002, 57:858~861
    [43] Sang-Hoon R, Yasushi S, Junzo T. Biomimetic configurational arrays of hydroxyapatite nanocrystals on bio-organics. Biomaterials, 2001, 22:2843~2847
    [44] Yamaguchi I, Tokuchi K, Fukuzaki H, et al. Preparation and microstrncture analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res, 2001, 55:20~27
    [45] 李保强,胡巧玲,钱秀珍等。原位沉析法制备可吸收壳聚糖/羟基磷灰石棒材。高分子学报,2002,(6):828~833
    [46] Hu Q L, Li B Q, Wang M, et al. Preparation and characterization of biodegradable chitosan / hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials, 2004, 25: 779~785
    [47] Yin Y J, Zhao F, Song X F, et al. Preparation and Characterization of Hydroxyapatite / Chitosan-Gelatin Network Composite. Journal of Applied Polymer Science, 2000, 77:2929~2938
    [48] Zhao F, Yin Y J, Lu W W. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite / chitosan-gelatin network composite scaffolds. Biomaterials, 2002, 23:3227~3234
    [49] Kulkami. Biodegradable materials Research. J Biomadial Materials Research, 1971, 5:169~181
    [50] Hollinger J O, Battistone G. C. Biodegradable Bone Repair Materials. Clinical Orthopedics and Related Research, 1986, 207:290~305
    [51] Verheyen C C P M, de Wijn J R, van Blitterswijk C A, et al. Hydroxylapatite/ poly(L-lactide) composites: an animal study on push-out strengths and interface histology. Journal of Biomedical Materials Research, 1993, 27(4): 433~444
    [52] Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials, 1999, 20(9): 859~877
    [53] Jones N L, Williams D E Poly [L-lactide] and poly[L-lactide]-ceramic filled composites: A long term in vivo/in vitro degradation study. The 5th World Biomaterials Congress, Part 2, 1996, p 441
    [54] 廖凯荣,卢泽俭,薄颖慧等。聚乳酸/羟基磷灰石复合材料的研究Ⅱ聚乳酸/羟基磷灰石复合材料的取向模压增强。中山大学学报(自然科学版),2000,39(6):59~63
    [55] 程俊秋,段可,翁杰等。多孔纳米羟基磷灰石—聚乳酸复合材料的制备及其界面研究。化学研究与应用,2001,13(5):517~520
    [56] Alessio N, Luigi D. Ca(OH)_2 nanoparticles from W/O microemulsions. J Am Chem Soc, 2003, 19(3): 933
    [57] Caponetti E, Pedone L, Chillura Martino D, V.Turco Liveri V. Synthesis, size, control, and passivation of CdS nanoparticles in water/AOT/n-heptane microemulsions. Mater Sci Eng C, 2003, 23 (4): 531
    [58] Ni X M, Su X B, Yang Z P, et al. The preparation of nickel nanorods in water- in-oil microemulsion. J Cryst Growth, 2003, 252 (4) : 612
    [59] Lim G K, Wang J, Ng S C, et al. Processing of fine hydroxyapaptite powders via an inverse microemulsion route. Mater Lett, 1996, 28(4): 431
    [60] Geroge C K, Alexandros P K, Athanasios K L, et al. Preparation of hydroxyapatite via microemulsion route. Colloid Interface Sci, 2003, 259 (2):254
    [61] Bose S, Saha S K. Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique. Chem Mater, 2003, 15(23): 4464
    [62] 任卫,李世普,王友法等。超细羟基磷灰石颗粒的反相微乳液合成。硅酸盐通报,2002,21(6):27
    [63] 方丽茹,翁文剑,韩高荣等。在氯仿中合成纳米经基灰石的研究。无机材料学报,2003,18(4):800~806
    [64] Jinawath S, Sujaridworakun P.Fabrication of porous calcium phosphates. Materials Science and Engineering C, 2002, 22:41~46
    [65] Hu Q L, Li B Q, Wang M, et al. Preparation and characterization of biodegradable chitosan / hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials, 2004, 25: 779~785
    [66] 郑昌琼,冉均国。无机生物材料。四川联合大学无机材料系印,1996:341
    [67] Anee T K, Palanichamy M, Ashok M, et al. Influence of iron and temperature on the crystallization of calcium phosphates at the physiological pH. Materials Letters, 2004,58:478~482
    [68] 董炎明,王勉,吴玉松等。壳聚糖衍生物的红外光谱分析。纤维素科学与技术,2001,9(2):42~56
    [69] 廖其龙,徐光亮,尹光福等。纳米羟基磷灰石的水热合成。功能材料,2002,33(3):338
    [70] 骆希明,陈为民。纳米羟基磷灰石的制备、性能及在牙膏中的应用。牙膏工业,2005(2):19~22
    [71] 黄康胜,周贵云。饲料级磷酸氢钙结晶习性研究。磷肥与复肥,2005,20(2):18~20
    [72] 石桂欣 王身国 贝建中等,皮肤组织工程—细胞支架的构筑及其生物相容性评价。北京生物医学工程,2002,21(3):222~225
    [73] Sundararajan V M, Howard W T M. Porous chitosan scalolds for tissue engineering. Biomaterials, 1999, 20:1133~1142
    [74] George C K, Alexandros P K, Athanasios K L, et al. Preparation of hydroxyapatite via microemulsion route. Journal of Colloid and Interface Science, 2003, 259: 254~260
    [75] Shanmugasundaram N, Ravichandran P, Neelakanta Reddy P, et al. Collagen -chitosan polymeric sca!olds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials, 2001, 22:1943~1951
    [76] Silvana N C, Maria I E Poly(vinyl alcohol) and poly(vinylpyrrolidone) blends: 2. Study of relaxations by dynamic mechanical analysis. Polymer, 1999, 40: 4845~4851
    [77] 彭雪林,李玉宝,严永刚等。纳米羟基磷灰石/聚酰胺66复合材料在模拟体液(SBF)中的表面生物活性研究。2003,13(12):38~42
    [78] 张晓东,潘鑫,顾亚军等。自制羟基磷灰石模拟体液中实验研究。2002,25(3):16~17
    [79] Thomas K A, Kay J F, Cook S D, et al. The effect of surface macrotexture and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implant materials. J Biomed Mater Res, 1987, 21:1395
    [80] Wataha J C, Graig R G, Hanks C T. Precision of a New Method for Testing Vitro Alloy Cytotoxicity. Dent. Mater, 1992, 8(1): 65~71
    [81] 吕晓迎,Kapper HF。牙科材料细胞毒性评定的新方法(MTT试验)。中华口腔医学杂志,1995,30(6):377~379
    [82] Lim G K, Wang J, Ng S C, et al. Processing of hydroxyapaptite via microemulsion and emulsion routes. Biomaterials, 1997, 18(21): 1433
    [83] 王英,靳正国,华缜等。超声条件下羟基磷灰石纳米针状晶体的制备。材料导报,2003,17:24~26
    [84] Lai C, Tang S Q, Wang Y J, et al. Formation ofcalcium phosphate nanoparticles in reverse microemulsions. Materials letters, 2005, 59:210~214
    [85] 廖其龙,徐光亮,尹光福等。纳米羟基磷灰石的水热合成。功能材料,2002,33(3):338~340

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700