羧甲基壳聚糖复合磷酸钙骨水泥的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壳聚糖作为磷酸钙骨水泥的改性材料已有许多文献报道,研究结果表明壳聚糖可以改善材料的临床适用性。但由于壳聚糖必须溶解在酸性溶液中,酸性液相限制了复合型骨水泥作为修复材料与细胞的复合性能。为了解决这一问题,本论文采用水溶性壳聚糖衍生物——羧甲基壳聚糖作为添加剂,并选用磷酸盐缓冲溶液作为液相溶剂,在控制固化初期pH值的基础上,研制出一种非酸性液相的壳聚糖改性磷酸钙骨水泥。
     首先,参照已有成熟技术制备了本研究所需的磷酸四钙(TTCP)、无水磷酸氢钙(DCPA)和羧甲基壳聚糖(CMC)。结合XRD、FTIR及分子量、脱乙酰度和取代度测定,结果表明得到了纯度较高TTCP和DCPA,其中TTCP不含有CaO及HAP杂质;CMC为N,O-型,黏均分子量M_η为4.61×10~5,脱乙酰度DD为94%,总取代度DS为0.94。
     通过对羧甲基壳聚糖(CMC)/磷酸钙复合骨水泥的理化性能研究表明:加入一定质量分数(<4%)的羧甲基壳聚糖时,促凝增塑效果明显好于单纯的磷酸盐缓冲溶液。同时体系的抗压强度也有明显的提高,并改善了材料的抗稀散性。而分别以蒸馏水和0%-7%的CMC磷酸盐缓冲溶液作为液相,进行的磷酸钙骨水泥水化过程pH值变化研究结果表明:采用0%-7%的CMC磷酸盐缓冲溶液能明显控制浆体pH值变化。其中控制浆体pH值的主要因素是磷酸盐缓冲溶液,CMC几乎不影响浆体pH值变化。
     SBF模拟矿化实验中,结合ICP、FTIR、SEM及XRD分析表明:复合型磷酸钙骨水泥能够诱导溶液中Ca、P离子在材料表面的沉积,具有良好的生物活性;生成的HAP中含有与天然骨类似的B型碳酸磷灰石;CMC的加入对固化后材料的相组成不产生影响。
     通过初步的生物相容性评价试验得知,羧甲基壳聚糖复合磷酸钙骨水泥无细胞毒性,且符合溶血实验标准要求,是生物相容性良好的骨组织修复材料。
Many reports on calcium phosphate cement showed that chitosan as an additive could improve the clinical applicability. However, chitosan can just be dissolved in acidic solution, which affected the property of the cements to composite with cells. In order to solve this proplem, we used in this paper a kind of water-soluble chitosan derivatives—carboxymethyl chitosan as an additive, and the phosphate buffered solution as the liquid solvent. On the basis of controlling the early pH value when setting, we made up a new type of calcium phosphate cement with non-acidic liquid.
     First, tetra-calcium phosphate (TTCP), anhydrous calcium hydrogen phosphate(DCPA), and carboxymethyl chitosan(CMC) needed in this research were prepared according to mature technologies. By XRD, FTIR and the determination of molecular weight, the degree of deacetylation(DD) and the degree of substitution(DS), the results showed that TTCP and DCPA had high purity, and TTCP did not contain CaO and HAP; N,O-carboxymethyl chitosan was prepared with the molecular weight of 4.61×10~5, and the degree of deacetylation and that of substitution was 94% and 0.94 respectively.
     By the research of chemical and physical properties of calcium phosphate cement with CMC as additive, we knew that addition of CMC in a limitied concentration scope(<4%) could decrease the setting time effectively and raise the compressive strength; The pH value studies showed that the major factor which controlled the change of pH value was the phosphate buffered solution, and CMC gave little impact to slurry pH changes.
     The cement was immersed in the simulated body fluid(SBF) to test bioactivity. By the means of ICP, FTIR, SEM and XRD, the results showed that calcium phosphate cement contained CMC could induce deposition of Ca, P ions in the solution on the surface of materials, which demonstrated excellent bioactivity. HAP which was generated on the surface of materials contained a part of bone-like carbonated hydroxyapatite. We also knew from this study that the phase composition after CPC setting was not affected whether CMC was added or not. By the preliminary evaluation of biocompatibility, we got that calcium phosphate cement with CMC as additive had no cytotoxicity and meet the requirements of hemolytic standards well, which was a kind of bone tissue repairing materials with good biocompatibility.
引文
[1]Lee SC, Shea M. Healing of large segmental defects in rat femurs is aided by RhBMP-2 in PLGA matrix [J]. Biomed Mater Res, 1994, 28(10): 1149-1156.
    [2]Kenley R, Marden L. Osseous regeneration in the rat calvarium using noveling delivery systems for recombinant human bone morphogenetic protein-2(rh-BMP-2)[J]. Biomed Mater Res, 1994, 12(10): 1139-1147.
    [3]马东洋,薛振恂,毛天球.骨组织修复材料和技术[J].国外医学生物医学工程分册,2004,27(1):44-48.
    [4]Block JE, Poser J. Does xenogeneic demineralized bone matrix have clinical utility as a bone graft substitute[J]. Med Hypotheses, 1995, 45(1): 27-32.
    [5]Sasso RC, Williams JI, Dimasi N, et al. Postoperative, drains at the donor site of iliac-crest bone grafts[J]. Bone Joint Surg Am, 1998, 80(5): 631-635.
    [6]阮孜炜.羧甲基壳聚糖-聚乙烯醇复合磷酸钙骨水泥的性能研究[D].南京:南京工业大学,2005.
    [7]戴兆琛.人工骨移植材料的发展及研究现状[J].材料工程,1994(2):37-39.
    [8]江捍平,王大平,张洪.骨缺损研究进展[J].中国现代医学杂志,2004,14(24):41-43.
    [9]李玉宝.生物医学材料.化学工业出版社,2003.
    [10]M.Bosetti AM, E.Tobin, M.Cannas. In vivo Evaluation of Bone Tissue Behavior on Ion Implanted Surfaces. Journal of Materials Science: Materials in Medicine, 2001, 12(1): 431-435.
    [11]宁聪琴,周玉.医用钛合金的发展及研究现状[J].材料科学与工艺,2002,10(1):100-106.
    [12]田丰,成国祥,刘长军等.骨组织损伤修复生物医用材料的研究进展[J].医疗卫生装备,2005,26(2):22-25.
    [13]周长忍.生物材料学.中国医药科技出版社,2004.
    [14]张宗勇,闫玉华.聚乳酸在生物医学领域中的应用[J].精细与专用化学品,2005,13(14):7-10.
    [15]黄福龙,戴红莲,方园等.HA/PDLLA复合材料的制备及其降解性能研究[J].无机材料学报,2007,22(2):333-338.
    [16]王朝元,段友容,BobanMarkovic等.羟基磷灰石陶瓷诱导成骨细胞的研究[J].四川大学学报,2003,40(6):1110-1113.
    [17]Christoffersen J, Christoffersen MR, Kolthoff N, et al. Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection[J]. Bone, 1997, 20(1): 47.
    [18]Daculsi G, Legeros RZ, Nery E. Specially prepared biphasic calcium phosphate macroporo-us ceramics. Journal of Biomedical Materials Research, 1989,23: 883-894.
    [19]Charley J. Anchorage of femoral head prothesis to the shaft of the felur[J]. Bone Joint Surg Br, 1960, 42(1): 28-30.
    [20]Coventry MB, et al. 2012 total hip arthroplastics: a study of postoperative course and early complications[J]. Bone Joint Surg Am, 1994, 56(2): 273-278.
    [21]王继芳,卢世壁.全膝关节置换技术后松动的修正术[J].中华骨杂志,1991,11(5):341-345.
    [22]Freeman MAR, Bradlay GM, Ravell RA. Observation upon the interface between bone and polymethyl methacrylate cement[J]. Bone Joint Surg Br, 1982, 64(3): 489-493.
    [23]王明伟,任国宝等.甲基丙烯酸甲酯单体引起过敏性皮炎病例报道.见:戴勉戎,卢世壁.人工关节的基础与临床研究.人民卫生出版社,1993.
    [24]Brown WE, Chow LC. A new calcium phosphate water setting cement[A]. Brown PW. Cements Research Progress[C]. Westerville, Ohio: American Ceramic Society, 1986: 352-379.
    [25] Ishikawa K, Takagi S, Chow LC, et al. Properties and mechanisms of fast-setting calcium phosphate cement. Journal of Materials Science: Materials in Medicine,1995,6(9):528-533.
    [26] Miyamoto Y, Ishikawa K, Yakechi M, et al. Tissue response to fast-setting calcium phosphate cement in bone. Journal of Biomedical Materials Research, 1997,37(4): 457-464.
    [27] 王新荣,阮立坚.α-Ca(P04)-C6H807-H20体系凝胶材料性质[J].武汉工业大学学报,1993,15(1):46-49.
    [28] Kurashina K, Kurita H, Hirano M, et al. Calcium phosphate cement: in vitro and in vivo stydies of the α-tricalcium phosphate-dicalcium phosphate dibasic-tetracalcium phosphate monoxide system. Journal of Materials Science: Materials in Medicine, 1995,6:340-347.
    [29] Ishikawa K, Miyamoto Y, Takechi M. Non-decay type fast-setting calcium phosphate cement: Hydroxyapatite putty containing an increased amount of sodium alginate. Journal of Biomedical Materials Research, 1997,36(3):393-399.
    [30] Takechi M, Miyamoto Y, Ishikawa K,et al. Non-decay type fast-setting calcium phosphate cementusing chitosan. Journal of Materials Science: Materials in Medicine, 1996,7(6):317-322
    [31] Takechi M, Miyamoto Y, Ishikawa K,et al. Initial histological evaluation of anti-washout type fast-setting calcium phosphate cement following subcutaneous implantation. Biomaterials,1998, 19: 2057.
    [32] Khairoun I, Boltong MG, Driessens, et al. Effect of calcium carbonate on the compliance of an apatitic calcium phosphate bone cement[J]. Biomaterials, 1997,18(23): 1535-1539.
    [33] Miyamoto Y, Ishikawa K, Kon M, et al. Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate[J]. Biomaterials, 1995, 16(7): 527-532.
    [34] 赵辉,倪才方.磷酸钙骨水泥的研究进展[J].中国骨与关节损伤杂志,2005,20(5):358-360.
    [35] Wang XH, Ma JB, Wang YN, et al. Sructural characterization of phosphorylated chitosan and their applications as additives of calcium phosphate cements[J].Biomaterials, 2001,22:2247-2255.
    [36] Wang XH, Ma JB, Feng QL, et al. Skeletal repair in rabbits with calcium phosphate cements incorporated phosphorylated chitin reinforced[J].Biomaterials, 2002,23:4591-4600.
    [37] Xu HHK, EichmillerFC, Giuseppetti AA. Reinforcement of a self-setting calcium phosphate cement with different fibers[J]. Journal of Biomedical Materials Research, 2000,52(1): 107-114.
    [38] Xu HHK,Quinn JB. Calcium phosphate cement containing resorbable fibles for short-rerm reinforcement and macroporosity [J]. Biomaterials, 2002,23 (1) : 193-202.
    [39] Leroux L, Hatim Z, Freche M, et al. Effects of various adjuvants(lactic acid, glycerol, and chitosan) on the injectability of a calcium phosphate cement[J]. Bone, 1999,25(2):31-34.
    [40] 杜俊杰,罗卓荆,胡蕴玉等.骨形态发生蛋白-2、β-转化生长因子、碱性成纤维细胞生长因子在体内诱导成骨中的协同作用[J].中国临床康复,2002,6(14):2062-2063.
    [41] Ohura K, Hamanishi C, Tanaka S, et al. Healing of segmental bone defect in rats induced by a beta-TCP-MCPM cement combinated with rhBMP-2 [J]. Biomed Mater Res, 1999,44(2): 168.
    [42] Blom E J, Klein N. Transforming growth factor-beta 1 incorporated during setting in calcium phosphate cement stimulates bone cell differentiation in vitro. Journal of Biomedical Materials Research, 2000, 50(1):67-74.
    [43] Blom E J, Klein N. Transforming growth factor-betal incorporation in an alpha-tricalcium phosphate/dicalcium phosphate dihydrate/tetracalcium phosphate monoxide cement: release characteristics and Physicochemical properties[J]. Biomaterials, 2002,23(4): 1261-1268.
    [44] 韩冰,尹玉姬,李宗燕等.高性能化磷酸钙骨水泥的研究进展[J].化工进展,2006,25(5):495-501.
    [45] Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug-delivery system using self-setting calcium phosphate cement. 3. Physicochemical properties and drug-release rate of bovine insulin and bovine albumin.J. Pharm. Sci., 1994, 83: 255-258.
    
    [46]Otsuka M, Matsuda Y, Fox JL, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement. 9. Effects of the mixing solution volume on anticancer drug release from homogeneous drug-loaded cement. J. Pharm. Sci., 1995, 84: 733-736.
    
    [47]Otsuka M, Nakahigashi Y, Matsuda Y, et al. Effects of geometrical cement size on in vitro and in vivo indomethacin release from self-setting apatite cement[J]. Journal of Controlled Release, 1998, 52:281-289.
    
    [48]Bohner M, Lemaitre J, Merkle H P, et al. Control of gentamicin release from a calcium phosphate cement by admixed poly(acrylic acid) [J] J. Pharm. Sci., 2000, 89(10):1262-1270.
    
    [49]Stallmann H P, Faber C, Bronckers A L, et al. J Antimicrob. Chemother., 2004, 54(2): 472-476.
    
    [50]Lazarettos J, Efstathopoulos N, Papagelopoulos P J. Clin. Orthop. Relat. Res., 2004, 423: 253-258.
    
    [51]Joosten U, Joist A, Gosheger G, et al. Biomaterials, 2005,26: 5251-5258.
    
    [52]Miyazaki S, Ishii K, Nadai T. The use of chitin and chitosan as drug carriers. Chem Pharm Bull (Tokyo), 1981,29:3067
    
    [53]Hirano S, Itakura C, Seino H, et al. Chitosan as an ingredient for domestic-animal feeds. J Agric Food Chem, 1990, 38:1214
    
    [54]Aiedeh K, Gianasi E, Orienti I, et al. Chitosan microcapsules as controlled release systems for insulin. J Microencapsul, 1997,14: 567
    
    [55]Miyazaki S, Yamaguchi H, Takada M, et al. Pharmaceutical application of biomedical polymers. XXIX. Preliminary study on film dosage form prepared from chitosan for oral drug delivery. Acta Pharm Nord, 1990,2: 401
    [56] Muzzarelli R, Biagini G; Pugnaloni A, et al. Reconstruction of parodontal tissue with chitosan. Biomaterials, 1989, 10:598
    [57] Muzzarelli R, Baldassarre V, Conti F, et al. Biological activity of chitosan: ultrastructural study. Biomaterials, 1988,9:247
    [58] 沈卫,顾燕芳,刘昌胜.一种制备高纯磷酸四钙的方法.中国,94114048.2[P].1995-08-16。
    [59] Nishimura NS, Nishi N, Tokure S. Bioactive chitin derivatives[J]. Carbohydr Res, 1986,146: 251.
    [60] 戴红莲,闫玉华,王友法等.磷酸四钙粉末的制备研究[J].硅酸盐通报,2002(4):56-58
    [61] Sargin Y, Kizilyaui M, Telli C, et al. A new method for the solid-state synthesis oftertacalci- um phosphate. Journal of the European Ceramic Society, 1997,17:963-970.
    [62] 沈卫,刘昌胜,顾燕芳.磷酸钙骨水泥的水化反应、凝结时间及抗压强度[J].硅酸盐学报,1998,26(2):129-135.
    [63] 马立新,杨南如,陈建华.磷酸钙骨水泥的制备条件对物性的影响[J].陶瓷学报,2003,24(2):98-102.
    [64] Tokura S, Yoshida J, Nishi N et al. Studies on chitin. Ⅳ. Preparation and properties of alky1-chitin fibers. Polym. J.(Tokyo) 1982, 14(7): 527-536.
    [65] 李巧霞,宋宝珍,仰振球等.微波间歇法快速制备高粘均分子量和高脱乙酰度的壳聚糖[J].过程工程学报,2006,6(5):789-793.
    [66] 李小飞,吴玉英.羧甲基壳聚糖的制备[J].精细与专用化学品,2006,14(24):26-29.
    [67] 张贵芹,赵丽瑞,刘满英.O-羧甲基壳聚糖的制备及波谱分析[J].光谱实验室,2006,23(4):658-661.
    [68] 陈浩凡,潘仕荣,王琴梅.不同取代羧甲基壳聚糖的制备及其结构测定[J].华中科技 大学学报(医学版),2003,32(2):152-156.
    [69] 陈浩凡,潘仕荣,胡瑜等.胶体滴定法测定羧甲基壳聚糖的取代度[J].分析测试学报,2003,22(6):70-73.
    [70] 苗军.可注射性碳酸化羟基磷灰石骨水泥的相关研究[D].北京:中国人民解放军军医进修学院,2004.
    [71] 唐佩福,王继芳,卢世璧等.可注射性多孔碳酸化羟基磷灰石骨水泥的实验研究[J].中国修复重建外科杂志,2005,19(12):952-955.
    [72] Miyamoto Y, Ishikawa K, Takechi M, et al. Non-decay type fast-setting calcium phosphate cement: setting behaviour in calfserum and its tissue response[J]. Biomaterial, 1996, 17(14):1429-1435.
    [73] 马立新,杨南如,王恬.磷酸钙骨水泥水化过程中浆体pH值变化的研究[J].硅酸盐通报,2004(6):3-5.
    [74] 刘昌胜,陈飞跃,黄粤等.原料颗粒对磷酸钙骨水泥水化硬化过程的影响[J].硅酸盐学报,1999,27(2):139-147.
    [75] 刘敬肖,史非,周靖等.模拟体液中仿生羟基磷灰石超细粉的制备及表征[J].硅酸盐学报,2006,34(3):334-339.
    [76] 万祥辉,常程康,毛大立.化学沉淀法制备纳米硅酸钙及其在模拟体液中的活性行为[J].材料科学与工程学报,2005,23(2):230-234.
    [77] 黄晓晖,严晓霞,韩露等.介孔生物活性玻璃材料在模拟体液中的用量对考察其体外生物活性的影响[J].化学学报,2006,64(9):851-857.
    [78] Nakamura T, Neo M, Kokubo T. Bone bonding of biomaterials and apatite formation on biomaterials[A]. Li P, Calvert P, Kokubo T, Levy R, Scheid C, Wrrendale, P A. Mineralization in natural and synthetic biomaterials[C]. MRS Symposium Proceeding, 2000, 599:15-25.
    [79] 马克昌,冯坤,朱太咏等.骨生理学.河南医科大学出版社,2000.
    [80] 徐祖耀.相变原理.科学出版社,1998.
    [81] 段友容,吕万新,王朝元等.在动态模拟体液中致密CaP陶瓷表面形貌对类骨磷灰石层形成的影响[J].生物医学工程学杂志,2002,19(2):186-190.
    [82] Ducheyne P, Kokubo T, et al. Bone-bonding biomaterials, 1992, 201.
    [83] 吴刚,陈龙,谢安健等.N,O-羧甲基壳聚糖体系中纳米碳酸钙的仿生合成[J].应用化学,2006,23(10):1076-1080.
    [84] 苏葆辉,冉均国,苟立等.活化改性促进p.TCP在模拟体液中类骨磷灰石形成的机理[J].四川大学学报(工程科学版),2004,36(4):53-56.
    [85] Pizzoferrato A. Biocompatibility testing of prosthetic implant materials by cell culture[J]. Biomaterials, 1985, 6: 346.
    [86] Petzoldt R. A rapid quantitative method based on motility of bull sperm cell for in vitro toxicity testing of biomaterials[J]. Biomaterials, 1985, 6:105.
    [87] Mosman T. Rapid colorimetric assay for cellur growth and survival application to proliferation and cytotoxicity assay[J]. J Immunol Meth, 1983, 65: 55.
    [88] 杨加峰,陈忠存,邱丽萍等.羟基磷灰石涂层高分子人工骨细胞毒性研究[J].现代康复,2001,5(11):67-78.
    [89] Wataha J C, Graig R G, Hanks C T. Precision of a New Method for Testing Vitro Alloy Cytotoxicity[J]. Dent. Mater, 1992, 8(1): 65-71.
    [90] 吕晓迎,Kapper HF.牙科材料细胞毒性评定的新方法(MTT试验)[J].中华口腔医学杂志,1995,30(6):377-379.
    [91] 田昆仑,李东红,刘良明等.壳聚糖及其水溶性衍生物的细胞毒性研究[J].现代临床医学生物工程学杂志,2002,8(6):422-426.
    [92] 万荣欣.羧甲基壳聚糖的制备及其生物学评价.天津:天津医科大学,2006.
    [93] Graeme I Howling, Peter W Dettmar, et al. The effects of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro[J]. Biomaterials, 2001, 22:2959-2966.
    [94] 孙皎,顾国珍,钱云芳.生物材料不同接触方式和条件对溶血作用影响的研究[J].生物医学工程学杂志,2003,20(1):8-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700