用户名: 密码: 验证码:
积雪草苷的提取、分离纯化与水解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
积雪草(Centella asiatica (L.) Urban)作为一种传统药材,应用历史悠久,现代医学研究表明积雪草可用于烧伤、抑郁症、胃溃疡等相关疾病的治疗。积雪草中起作用的药理成分主要是皂苷及其皂苷元类,包括积雪草苷、积雪草酸、羟基积雪草苷和羟基积雪草酸等,因此这些物质提取和纯化一直是积雪草研究的重点。近几年来的研究表明,以积雪草酸和羟基积雪草酸等苷元出发,合成的一系列苷元衍生物的药理作用明显优于其原始皂苷,可大大提高积雪草酸、羟基积雪草酸等苷元的利用率。但是由于种种原因,这些活性成分的提取率始终不高,从而造成相关产品价格不菲,限制了积雪草产品的开发和应用。因此,研究积雪草苷的提取、分离纯化及水解,有利于高值化利用积雪草资源。
     针对以上情况,本文系统地介绍了积雪草中的活性成分利用现状,并综述了积雪草中活性物质的提取、纯化及分析方法的研究进展。本课题以积雪草为研究对象,对其活性成分积雪草苷和羟基积雪草苷的提取纯化方法进行了研究,并对从积雪草苷类活性物质出发制备积雪草酸以及羟基积雪草酸的工艺进行了探索,建立了一条关于积雪苷的提取、分离和水解制备积雪草酸和羟基积雪草酸的新工艺。主要内容如下。
     1.积雪草中积雪草总苷提取工艺研究
     探明了比色法测定积雪草总苷含量的显色反应条件,该条件下反应体系稳定,2 h内吸光度基本不变,以羟基积雪草苷为对照品、利用该显色条件测定积雪草总苷含量的方法线性关系良好,检测范围较广。最佳显色反应条件为:香草醛浓度为5%、高氯酸用量0.8 mL、反应温度为60℃、反应时间为15 min。
     利用单因素及正交实验优化了浸渍法提取积雪草总苷的提取工艺,确定了最佳提取工艺条件:以70%乙醇水溶液为溶剂,料液比为1:10,室温下提取3次,每次提取时间为4h。
     研究了积雪草中积雪草苷的富集部位,结果发现积雪草苷主要富集于积雪草的叶片中,积雪草总苷的含量高达6.12%,而茎部为2.43%,根部含量较低,仅含1.11%。
     2.大孔吸附树脂纯化积雪草苷和羟基积雪草苷的工艺研究
     通过大孔吸附树脂对积雪草苷和羟基积雪草苷两种皂苷的吸附和解吸性能以及吸附动力学数据,对HPD100、HPD300、X-5、D101和AB-8等5种大孔吸附树脂进行了筛选,并对最优树脂进行了吸附等温线进行了考察,用Langmuir和Freundlich方程对结果进行了拟合,最后通过动态吸附实验,建立了大孔吸附树脂纯化积雪草苷和羟基积雪草苷的工艺。工艺条件为:树脂HPD100为吸附剂,50%的乙醇水溶液为解吸剂,吸附上样流速为2 BV/h,动态解吸流速为2 BV/h,积雪草苷通过梯度洗脱后(洗脱液浓度10-50%的范围内),回收率可达72.0%,含量从上样前的2.0%提高到21.5%;羟基积雪草苷回收率可达70.4%,含量由上样前的3.9%提高到39.7%(洗脱液浓度10-50%的范围内),可以有效达到富集和纯化积雪草苷和羟基积雪草苷的目的。
     3.积雪草苷的水解工艺研究
     建立了一种同时分析测定积雪草苷、羟基积雪草苷、积雪草酸和羟基积雪草酸的HPLC法,该方法线性关系良好,稳定性强,精密度较高,适用检测范围较广。色谱条件为:Eclipse XDB-C18色谱柱(4.6 mm×250mm,5μm, Agilent);采用动态洗脱,流速为0.6 mL/min;柱温为35℃;检测波长为210 nm。此条件下积雪草苷、积雪草酸、羟基积雪草苷、羟基积雪草酸精密度的RSD分别为0.35%、0.24%、0.17%、0.18%,稳定性的RSD分别为0.54%、0.46%、0.44%、0.35%,平均加样回收率分别为101.09%、99.57%、100.86%、99.99%,均符合我国药典对药物分析的要求。可以应用于积雪草苷、羟基积雪草苷、积雪草酸、羟基积雪草酸的含量测定。
     研究了积雪草苷和羟基积雪草苷的水解工艺。通过对催化剂、反应溶剂、皂苷初始浓度、反应时间、反应温度对水解的影响研究发现:最适于积雪草苷的水解的为强碱NaOH;反应溶剂为50%的乙醇水溶液;在本实验所选择的皂苷浓度范围内(积雪草苷0.22~1.10mg/mL;羟基积雪草苷0.40~1.20 mg/mL)水解反应的变化不明显;随着反应温度的升高,皂苷水解的反应速率明显增加,并且在实验温度范围内羟基积雪草苷的水解快于同等条件下积雪草苷的水解。用Arrhenius方程对两种皂苷的水解过程进行拟合,表明积雪草苷和羟基积雪草苷的水解过程符合一级反应,其反应活化能分别为70.1 kJ/mol和83.3 kJ/mol.
     通过以上研究,本文建立了一套完整的包括从积雪草原草出发,提取积雪草总苷,大孔树脂富集和纯化积雪草苷和羟基积雪草苷,最后水解制备积雪草酸和羟基积雪草酸的流程,该工艺有效地避免了常规萃取法生产积雪草活性物质高耗能、重污染的缺点,经过该工艺制备的积雪草酸的纯度达91.3%,收率为54.8%,为高效地生产制备积雪草三萜化合物,合成新的积雪草酸或羟基积雪草酸衍生物提供了基础。
Centella asiatica (L.) Urban, as a traditional herbal medicine, has been used in many countries and areas for hundreds of years. According to the reports, Centella asiatica and its active components can be used in treatment of various diseases such as burning wounds, depression and gastric ulcer, etc. The main active components of Centella asiatica are saponins and aglycons, including asiaticoside, madecassoside, asiatic acid and madecassic acid, and their extraction and purification methods have always been one of the main research directions. Recently, some researches showed that under the order conditions asiatic acid and madecassic acid can be synthesized to a series of aglycon derivatives, and these derivatives had better pharmacological actions than their initial saponins. Such results greatly improved the aglycons'utilization. However, due to various reasons, the lower extraction rate of these active components resulted in related products expensive and limited Centella asiatica products development and applications. Therefore, the process of extraction, separation and purification, and hydrolysis of asiaticoside was important for better utilizing Centella asiatica materials.
     This dissertation presented the current utilizing situation of active components of Centella asiatica, and introduced the research progress of extraction, purification and analyzing method of them. In order to use these active components efficiently, this study selected Centella asiatica for exploring extraction and purification method of the active components of asiaticoside and madecassoside, and the production progress of asiatic acid and madecassic acid. The research contents and achievements are included as following:
     1. Study on extraction of saponins from Centella asiatica
     A colorimetric method with selected madecassoside as the standard was established to examine the content of total saponins in Centella asiatica. The optimal reaction conditions of this colorimetric method were measured and listed as follows:the content of vanillin was 5%, the content of perchloric acid was 0.8 mL, the reaction temperature was at 60℃and the reaction time was 15 min. The investigation of the stability of reaction system indicated that the absorbency had no obvious variation during 2 h after the reaction. The result showed that this method had a good linear relationship and had a wider detection range.
     Successively, a dipping method to extract total saponins from Centella asiatica was optimized by the single factor and the orthogonal test. The optimal extraction conditions were achieved as follows:the solvent was 70% ethanol-water solution; the ratio of material and solvent volumes was 1:10; extraction times were 3 times at room temperature and each extraction process lasted for 4h.
     Finally, the contents of total saponins of different part of Centella asiatica were tested. According to the results, the content of total saponins in the leaf of Centella asiatica was the highest (6.12%), then in the stick (2.43%), and the lowest in the root (1.11%).
     2. Enrichment and purification of madecassoside and asiaticoside with macroporous resins.
     The adsorption and desorption properties of five macroporous resins including HPD100, HPD300, X-5, AB-8 and D110 for the enrichment and purification of asiaticoside and madecassoside from Centella asiatica extracts have been evaluated. Equilibrium adsorption isotherms were constructed at different temperatures and the model of Langmuir and Freundlich was used to describe the adsorption behavior of the selected optimal resin. Column packed with HPD100 resin was used to separate asiaticoside and madecassoside from Centella asiatica extracts, and the optimal conditions were as follows:resin HPD100 showed the best adsorption and desorption capacity among 5 resins; 50% ethanol-water solution was selected as the eluting solvent; the adsorption and desorption flow rate was both 2 BV/h.
     After the treatment with gradient elution on HPD100 resin, the content of madecassoside in the product increased from 3.9 to 39.7%, with the high recovery yield of 70.4%; for asiaticoside the content increased from 2.0 to 21.5%, with the high recovery yield of 72.0%. The results showed that HPD100 resin revealed a good ability to separate madecassoside and asiaticoside.
     3. Hydrolysis of asiaticoside and madecassoside
     A HPLC method was developed to detect asiaticoside, madecassoside, asiatic acid and madecassic acid synchronously at the same time. The examination of precision, stability and average recovery indicated that this method had a good linear relationship, high stability and precision, and had a wide investigation rang. The chromatography conditions were as following:Eclipse XDB-C18 reversed-phase column (4.6 mm×250 mm,5μm, Agilent); the mobile phase was acetonitrile-acetic acid (0.3%)-water, dynamic elution; the flow rate was 0.6 mL/min:the column was 35℃; the detection wavelength was at 210 nm. The RSD values of precision of asiaticoside, madecassoside, asiatic acid and madecassic acid were 0.35%,0.24%,0.17%and 0.18%, respectively; the RSD values of stability were 0.54%,0.46%,0.44%and 0.35%, respectively; the average recovery were 101.09%,99.57%,100.86%and 99.99%, respectively. All the results above accorded with demands of pharmacopoeia, and could be used in the content detection of asiaticoside, madecassoside, asiatic acid and madecassic acid.
     The hydrolysis of asiaticoside and madecassoside was studied by the examination of catalyst, reaction solvent, initial concentration of saponins, reaction time and temperature. NaOH was chosen as the catalyst to hydrolyze asiaticoside and madecassoside to produce asiatic acid and madecassic acid. The ethanol concentration of reaction solution fitting for hydrolysis reaction was 50%. There was no obvious influence on hydrolysis reaction when the contents of NaOH were between 0.1-2.0 mol/mL. The influences of different initial contents of saponins in reaction solution were also investigated, and under the conditions of asiticoside (0.22~1.10 mg/mL) and madecassoside (0.40-1.20 mg/mL) the recovery of saponins varied a little. The reaction temperature had a remarkable effect on hydrolysis reaction, the reaction rate enhanced obviously with the reaction temperature increasing. Arrhenius equation was used to describe the process of saponins hydrolysis, and results revealed that the hydrolysis processes of asiaticoside and madecassoside were both first order reaction process and the active energy was 70.1 kJ/mol and 83.3 kJ/mol, respectively.
     In this research, a whole process was established including the production of total saponins of Centella asiatica, enrichment and purification of asiaticoside and madecassoside with macroporous resins, and the production of asiatic acid and madecassic acid. This process effectively avoided the shortcoming of high energy consumption and heavy pollution with using the conventional technique of solvent extraction to produce active components. For asiatic acid, the final purity could reach 91.3% with the recovery of 54.8% through this process. This research offered good methods for the production of new asiatic acid and madecassic acid derivatives.
引文
[1]崔述生,张浩主编.精编本草纲目.北京:中医古籍出版社.2003:510.
    [2]秦路平,庄卫国,郑汉臣等.积雪草研究进展.国外医药·植物药分册.1997,12(4):154.
    [3]周金黄,王筠默.中药药理学.上海:上海科学技术出版社.1985:209.
    [4]秦路平,郑汉臣,丁如贤,辛海量.中药积雪草原植物的本草考证.中国野生植物资源,1997,1:19-22.
    [5]徐皓.积雪草的生物学特性及利用价值.特种经济动植物,2005,8:24-25.
    [6]林锦明,陈瑶,郑汉臣,赵卫权,秦路平.差热分析法鉴别积雪草及其混淆品.中药材,2001,24(7):483-484.
    [7]陈瑶,秦路平,郑汉臣,费燕,张巧燕,叶冬梅.导数紫外吸收光谱法鉴别积雪草及其混淆品.中药材,2002,25(8):550-551.
    [8]P. Suryaprakasa R., Tiruvenkata R. S. Variation in the chemical composition of Indian samples of Centella asiatica. Current Science,1969,38(4):77-79.
    [9]Amorita V. C., Socorro F. C., Teresita G. M. A phytochemical study of Centella asiatica Linn. (Fam. Umbelliferae). NRCP Research Bulletin,1980,35(2): 214-220.
    [10]何明芳,孟正木,沃联群.积雪草化学成分的研究.中国药科大学学报,2000,31(2):91-93.
    [11]Rastogi R. P., Sarkar B., Dhar M. L. Chemical examination of Centella asiatica. Ⅰ. Isolation of the chemical constituents. Journal of Scientific & Industrial Research,1960,19B:252-2577.
    [12]Rastogi R. P., Sarkar B., Dhar M. L. Chemical examination of Centella asiatica. III. Constitution of Brahmic acid. Phytochemistry,1968,7(8):1385-1393.
    [13]Dutta T., Basu U. P. Triterpenoids. Ⅰ. Thankuniside and thankunic acid-A new triterpene glycoside and acid from Centella asiatica. Journal of Scientific and Industrial Research, Section B:Physical Sciences,1962,21B:239-240.
    [14]Dutta T., Basu U. P. Terpenoids. Ⅲ. Isolation of isothankuniside and constitution of isothankunic acid from Centella asiatica. Indian Journal of Chemistry,1968, 6(9):543-545.
    [15]Henri P. Structure of madasiatic acid. New triterpene acid from Centella asiatica. Bulletin de la Societe Chimique de France,1969, (10):3592-3595.
    [16]Shukla Y. N., Srivastava R., Tripathi A. K. Charicterization of an Ursane triterpenoid from Centella asiatica with growth inhibitory activity against Spilarictia oblique. Pharmaceutical Biology,2000,38(4):262-267.
    [17]Sahu Niranjan P., Roy Subodh K., Mahato Shashi B. Spectroscopic determination of structures of triterpenoid trisaccharides from Centella asiatica. Phytochemistry,1989,28(10):2852-2854.
    [18]Jiang Z. Y., Zhang X. M., Zhou J., Chen J. J. New triterpenoid glycosides from Centella asiatica. Chinese Academy of Sciences,2005,88(2):297-303.
    [19]Yu Q. L., Duan H. Q., Takaishi Y, Gao W. Y. A novel triterpene from Centella asiatica. Molecules,2006,11(9):661-665.
    [20]Yu Q. L., Duan H. Q., Gao W. Y, Takaishi Y A new triterpene and a saponin from Centella asiatica. Chinese Chemical Letters,2007,18(1):62-64.
    [21]Zhang L. L., Wang H. S., Yao Q. Q., Liu Y. J., Luan Y, Wang X. L. Chemical constituents from whole plant of Centella asiatica. Zhongcaoyao,2005,36(12): 1761-1763.
    [22]Upadhyay S. C., Khosa R. L., Sharma D. N., Kumar M., Chansauria J. P. N. Total glycoside content and antistress activity of Indian and Mauritius Centella asiatica-a comparison. Indian Drugs,1991,28(8):388-389.
    [23]Anathbandhu D., Ranajit M. Correlation between genomic diversity and asiaticoside content in Centella asiatica (L.) Urban. Botanical Bulletin of Academia Sinica,1991,32(1):1-8.
    [24]曾建国,宋云飞,侯团章,徐霞HPLC法测定积雪草中三萜类化合物的含量.基层中药杂志,2000,14(6):7-8.
    [25]陈瑶,蒋毅,秦路平,郑汉臣,翁志龙RE-HPLC测定积雪草中积雪草甙、羟基积雪草甙的含量.中成药,2000,22(3):227-228.
    [26]秦路平,丁如贤,张卫东,郑水庆,管阳太,胡耀铭.积雪草挥发油成分分 析及其抗抑郁作用研究.第二军医大学学报,1998,19(2):186-187.
    [27]Jasim U. C., Chandra N. N., Minhaj U. Aromatic plants of Bangladesh:volatile oil constituents of Centella asiatica. Indian Perfumer,2006,50(2):36-37.
    [28]Rana V. S., Blazquez M. A. Volatile constituents of Centella asiatica aerial parts. Indian Perfumer,2007,51(1):57-58.
    [29]赵新宇,李曼玲,冯伟红,康琛,范莉.积雪草的研究进展.中国中医药信息杂志,2002,9(8):81-84.
    [30]Srivastava R., Shukla Y. N. Some chemical constituents from Centella asiatica. Indian Drugs,1996,33(5):233-234.
    [31]Srivastava R., Shukla Y N. A disubstituted pyrone from Centella asiatica. Indian Journal of Chemistry, Section B:Organic Chemistry Including Medicinal Chemistry,1997,36B (10):963-964.
    [32]Govindan G., Sambandan T. G., Govindan M., Sinskey A., Vanessendelft J., Adenan I., Rha C. K. A bioactive polyacetylene compound isolated from Centella asiatica. Planta Medica,2007,73(6):597-599.
    [33]Wang X. S., Duan J. Y, Fang J. N. Structural features of a polysaccharide from Centella asiatica. Chinese Chemical Letters,2004,15(2):187-190.
    [34]王雪松,郑芸,方积年.积雪草中降血糖多糖的研究.中国药学杂志,2005,40(22):1697-1700.
    [35]Wang X. S., Zheng Y., Zuo J. P., Fang J. N. Structural features of an immunoactive acidic arabinogalactan from Centella asiatica. Carbohydrate Polymers,2005,59(3):281-288.
    [36]Wang X. S., Dong Q., Zuo J. P., Fang J. N.. Structure and potential immunological activity of a pectin from Centella asiatica (L.) Urban. Carbohydrate Research,338(2003):2393-2402.
    [37]Wang X. S., Liu L., Fang J. F. Immunological activities and structure of pectin from Centella asiatica. Carbohydrate Polymers,2005,60:95-101.
    [38]刘瑜,赵余庆.积雪草化学成分的研究.中国现代中药,2008,10(3):7-9.
    [39]Prum N., Illel B., Raynaud J. Flavonoid glycosides from Centella asiatica L. (Umbelliferae). Pharmazie,1983,38(6):423.
    [40]Ravi S., Veerakumal A., Manimaran R., Hashim K. M., Balachandran. Two new flavonoids from Centella asiatica (Linn.)-Journal of Natural Medicines,2008, 62(3):369-373.
    [41]Holeman M., Theron E., Pinel R. Centella asiatica:Analysis by GC-MS and IRMS. Parfums, Cosmetiques, Aromes,1994,120:52-55.
    [42]Kapoor R., Ali M., Mir S. R. Phytochemical investigation of Centella asiatica aerial parts. Oriental Journal of Chemistry,2003,19(2):485-486.
    [43]Srivastava R., Shukla Y. N., Tripahi A. K. Antifeedant Compounds from Centella asiatica. Fitoterapia,1997,120:52.
    [44]汪学昭,于雁灵,陈瑶,王运革,秦路平,郑汉臣,艾国.不同产地积雪草中的微量元素比较研究.广东微量元素科学,2000,7(1):41-43.
    [45]Ahmad S, Rahman A, Fatima K, Bader Y. Amino acid analysis of Intellan, a herbal product used in enhancing brain function. Pakistan Journal of Pharmaceutical Sciences,1994,7(2):17-24.
    [46]Anocha K. T. Thiamin content and activity of antithiamin factor in vegetables of southern Thailand. Food Chemistry,1995,52(3):285.
    [47]Ramaswamy A. S., Periyasamy S. M., Bas, Nitai K. Pharmacological studies on Centella asiatica. Journal of Research in Indian Medicine,1970,4(2):160-175.
    [48]Diwan P. V., Kanwandel, Singh A. K. Anti-anxiety profile of Mandukparni Centella asiatica Linn in animals. Fitoterapia.1991,62(3):255-257.
    [49]陈瑶,秦路平,郑汉臣,芮耀诚,张巧艳,郑清明.积雪草甙对抑郁症大鼠神经内分泌功能的影响.第二军医大学学报,2002,23(11):1224-1226.
    [50]Wijeweera P., Arnason T., Koszycki D., Merali Z. Evaluation of amxiolytic properties of Gotukola-(Centella asiatica extracts and asiaticoside in rat behaviornal models. Phytomedicine,2006,13(9-10):668-676.
    [51]曹尉尉,陆波.积雪草总三萜酸及其主要成分的抗抑郁活性研究.药学实践杂志.2008,26(3):185-187.
    [52]刘沐荣,韩婷,陈瑶,秦路平,郑汉臣,芮耀诚.羟基积雪草苷对小鼠抑郁行为和大鼠不同脑区单胺氧化酶活性的影响.中西医结合学报,2004,2(6):440-444.
    [53]Ramanathan M., Sivakumar S., Anandvijayakumar P. R., Saravanababu C., Pandian P. Neuroprotective evaluation of standardized extract of Centella asiatica in monosodium glutamate treated rats. Indian Journal of Experimental Biology,2007,45(5):425-431.
    [54]George K. S., Muralidhara. Prophylactic neuroprotective property of Centella asiatica against 3-nitropropionic acid induced oxidative stress and mitochondrial dysfunctions in brain regions of prepubertal mice. Neuro Toxicology,2008, 29(6):948-957.
    [55]Barbosa N. R., Pittella F., Gattaz W. F. Centella asiatica water extract inhibits iPLA2 and cPLA2 activities in rat cerebellum. Phytomedicine,2008,15(10): 896-900.
    [56]白洁如,刘颖菊,宋韵,孙锋,高丽佳.羟基积雪草苷干预神经元退变的机制研究.中国老年学杂志,2008,23:2297-2300.
    [57]Amala S., Zhong Y. P., Sandra A.G., Yu X. L., Dennis R. K., Bourdette D., Bruce G G. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. Journal of Pharmacy and Pharmacology,2005,57(9):1221-1229.
    [58]Gadahad M. R. K., Rao M., Rao G. Enhancement of hippocampal CA3 neuronal dendritic arborization by Centella asiatica (Linn) fresh leaf extract treatment in adult rats. Journal of The Chinese Medical Association,2008,71(1):6-13.
    [59]Gupta Y. K., Veerendra Kumar M. H., Srivastava A. K. Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacology, Biochemistry and Behavior,2003,74(3):579-585.
    [60]Del Vecchio A., Senni I., Cossu G., Molinaro M. Effect of Centella asiatica on the biosynthetic activity of fibroblasts in culture. Edizione Pratica,1984,39(10): 355-364.
    [61]Bonte F., Dumas M., Chaudagne C., Meybeck A. Influence of Asiatic acid, madecassic acid, and asiaticoside on human collagen I synthesis. Journal of Medicine Plant Research,1994,60(2):133-135.
    [62]Skykla A., Rasik A. M., Jain G. K., Shankar R., Kulshrestha D. K., Dhawan B. N. In vitro and in vivo wound healing activity of asiaticoside isolated from Cetella asiatica. Journal of Ethnopharmacology,1999,65(1):1-11.
    [63]Maquart F. X., Chastang F., Simeon A., Birembaut P., Gillery P., Wegrowski Y. Tirterpenes from Centella asiatica stimuylate extracellular matrix accumulation in rats experimental wounds. European Journal of Dermatology,1999,9(4): 289-296.
    [64]王瑞国,王锦菊,余祥彬,王宝奎.积雪草甙对成纤维细胞DNA合成与胶原蛋白合成的影响.福建中医学院学报,2001,11(2):41-42.
    [65]吕洛,魏少敏,林惠芬,马来记,应康,毛裕民.积雪草提取物对成纤维细胞胶原合成的影响.日用化学工业.2002,32(6):23-25.
    [66]吕洛,魏少敏,林惠芬,马来记,应康,毛裕民.积雪草提取物对皮肤细胞生物学特征的影响.日用化学工业,2003,33(1):19-22.
    [67]吕洛,应康,魏少敏,马来记,林惠芬,毛裕民.积雪草苷对成纤维细胞胶原相关基因的作用.日用化学工业,2004,34(6):344-346
    [68]张涛,利天增,祈少海等.积雪草苷对烧伤创面愈合中细胞周期蛋白、增殖细胞核抗原表达的影响.中华实验外科杂志,2005,22(1):43-46.
    [69]Shukla A., Rasik A. M., Dhawan B. N. Asiaticoside induced elevation of antioxidant levels in healing wounds. Phytother Research,1999,13(1):50-54.
    [70]何国,利天增,曾运全等.积雪草甙加中药外洗治疗烧伤性增生性瘢痕.实用医学杂志,2000,16(8):690-691.
    [71]谢举临,利天增,祁少海等.积雪草甙对体外培养成纤维细胞的作用.中山医科大学学报,2001,22(1):41-43,47.
    [72]祁少海,利天增,黎志明,何洁华,谢举临,贲晓松.积雪草甙对烧伤增生性瘢痕T淋巴细胞、巨噬细胞和转化生长因子p1的影响.中国中西医结合杂志,2000,7:100-101.
    [73]祁少海,谢举临,利天增,黎志明,唐冰,贲晓松.积雪草甙对烧伤增生性瘢痕作用的试验研究.中华烧伤杂志,2000,16(1):53-56.
    [74]潘妹,利天增,李叶扬,陈晓东,谢举临,徐盈斌,祁少海.积雪草甙对增生性瘢痕成纤维细胞增殖与Smad7蛋白的影响.第三军医大学学报,2005,27(1):49-52.
    [75]Babu T. D., Kuttan G., Padikkala J. Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special refernce to Centella asiatica (L.) Urban. Journal of Ethnopharmacology,1995,48(1):53-57.
    [76]Shobi V., Goel H. C. Protection against radiation-induced conditioned taste aversion by Centella asiatica. Physiocology and Behavior,2001,73(1-2):19-23.
    [77]王锦菊,王瑞国,王宝奎,余祥彬.积雪草甙抗肿瘤作用的初步实验研究.福建中医药,2001,32(4):39-40.
    [78]黄云虹,张胜华,甄瑞贤,许先栋,甄永苏.积雪草甙诱导肿瘤细胞凋亡及增强长春新碱的抗肿瘤作用.癌症,2004,23(12):1599-1604.
    [79]Bunpo P., Kataoka K., Arimochi H., Nakayama H., Kuwahara T., Bando Y., Izumi K., Vinitketkumnuen U., Ohnish Y. Inhibitory effects of Centella asiatica on azoxymethane-induced aberrant crypt focus formation and carcinogenesis in the intestines of F344 rats. Food and Chemical Toxicology,2004,42(12): 1987-1997.
    [80]Park B. C., Bosire K. O., Lee E. S., Lee Y. S., Kim J. A. Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Letters,2005,218(1): 81-90.
    [81]Andre R., Marie N. D., Albert R. R. Action of a pentacyclic triterpenoid, asiaticoside, obtained from Hydrocotyle Madagascariensis or Centella Asiatica, against gastric ulcers of the Wistar rat, exposed to cold. Comptes Rendus des Seances de 1'Academie des Sciences, Serie D:Sciences Naturelles,1974, 278(13):1743-1746.
    [82]陈宝雯,纪宝安,张学智等.积雪草提取物对胃粘膜的保护作用及其机制探讨.中华消化杂志.1999,19(4):246-248.
    [83]Cheng C. L., Koo M. W. Effect of centella asiatica on ethanol induced gastric mucosal lesions in rats. Life Schience,2000,67(21):2647-2653.
    [84]Cheng C. L., Guo J. S., Luk J., Koo Marcel W. L. The healing effects of Centella extract and asiaticoside on acetic acid induced gastric ulcers in rats. Life Sciences,2004,74(18):2237-2249.
    [85]Guo J. S., Cheng C. L., Koo Marcel W. L. Inhibitory effects of Centella asiatica water extract and asiaticoside on inducible nitric oxide synthase during gastric ulcer healing in rats. Planta Medica,2004,70(12):1150-1154.
    [86]Sairam K., Rao C. V., Goel R. K. Effect of Centella asiatica Linn on physical and chemical factors induced gastric ulceration and secretion in rats. Indian Journal of Experimetal Biology,2001,39(2):137-142.
    [87]覃志成,陈洪宇.复方积雪草对高IgA血清诱导小鼠肾足细胞表达VEGF的影响.中国中医药科技,2006,13(5):307-308.
    [88]陈洪宇,王永钧,吴文斌,朱晓玲.复方积雪草2号对IgA肾病大鼠肾组织电镜形态及Nephrin表达的影响.中国中西医结合肾病杂志,2008,9(8):664-667.
    [89]程晓霞,朱晓玲,涂小刚,王永钧,陈洪宇.复方积雪草合剂对IgA1诱导的大鼠系膜细胞增殖及IL-6与TGF-β1表达的影响.中国中西医结合肾病杂志,2007,8(12):692-695.
    [90]王军,程晓霞,朱晓玲,陈洪宇,王永钧.复方积雪草合剂对IgA肾病大鼠肾组织炎症因子和ECM表达的影响.中国中西医结合肾病杂志,2007,9(11):949-952.
    [91]童孟立,王宇晖,鲁盈等.复方积雪草对人肾系膜细胞清道夫受体表达的影响.中国中医药科技,2005,12(3):89-91.
    [92]Abdul Hamid A., Shah Z. Md., Muse R., Mohamed S. Characterisation of antioxidative activities of various extracts of Centella asiatica (L) Urban. Food Chemistry,2002,77:465-469.
    [93]Zainol M. K., Abd-Hamid A., Yusof S., Muse R. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chemistry,2003,81:575-581.
    [94]Minija J., Thoppil J. E. Antimicrobial activity of Centella asiatica (L.) Urb. essential oil. Indian Perfumer,2003,47(2):179-181.
    [95]Oyedeji O. A., Afolayan A. J. Chemical composition and antibacterial activity of the essential oil of Centella asiatica growing in South Africa. Pharmaceutical Biology,2005,43(3):249-252.
    [96]张胜华,余兰香.积雪草苷的抗菌作用及对小鼠实验性泌尿系统感染的治疗作用.中国新药杂志,2006,15(20):1746.
    [97]Gnanapragasam A., Yogeeta S., Subhashini R., Ebenezar K. K., Sathish V., Devaki T. Adriamycin induced myocardial failure in rats:Protective role of Centella asiatica. Molecular and Cellular Biochemistry,2007,294(1&2):55-63.
    [98]Cesarone M. R.. Flightmicroangiopathy inmedium to long-distance flights: Prevention of eedema and microcirculation alterations with total triterpenie fraction of Centella asiatica. Angiology,2001,52(S2):33.
    [99]Incandela L. Total triterpenie fraction of Centella asiatica in chronic venous in sufficiency and in high-perfusion microangiopathy. Angiology,2001,52(S2):9.
    [100]白纪红,赵日红,吕秋军,马宪梅.羟基积雪草苷对离体动脉条的舒张作用及其机制.时珍国医国药,2009,20(3):674-676.
    [101]马葵芬,张相宜,齐罗扬,等.三萜类化合物对化学损伤原代培养大鼠肝细胞的保护作用.浙江大学学报(医学版),2007,36(3):247.
    [102]Li H. Z., Gong X., Zhang L., Zhang Z., Luo F. L., Zhou Q. X., Chen J., Wan J. Y. Madecassoside attenuates inflammatory response on collagen-induced arthritis in DBA/1 mice. Phytomedicine,2009,16(6-7):538-546.
    [103]明志君,孙萌.积雪草总甙抗炎作用的实验研究.中国中医药科技,2002,9(1):62.
    [104]Tanveer A., Maqbool A., Ali S., Hayat C. S. Efficacy of some indigenous medicinal plants (Anona squamosa & Centella asciatica) against ascariasis in buffalo calves. Science International,2006,18(1):73-75.
    [105]明志君,朱路佳,薜洁等.积雪草总苷抗实验性大鼠乳腺增生.中药新药与临床杂志,2004,23(8):510-512.
    [106]Yoosook C., Bunyapraphatsara N., Boonyakiat Y. Antiherpes simplex virus activities of crude water extracts of Thai medicinal plants. Phytomedicine,2000, 6(6):411-419.
    [107]Luo S. Q., Chin H. F. Isolation and identification of asiaticoside from Centella asiatica (L.) Urban. Zhongcaoyao,1980,11(6):244-246.
    [108]陈瑶,韩婷,秦路平,郑汉臣.正交设计法优选积雪草总苷的提取工艺.中药材,2003,26(3):204-205.
    [109]陈怡,高文远,于泉林,陈海霞.田口试验设计法优选积雪草提取工艺.中国中药杂志,2007,32(6):1714-1716.
    [110]韩伟,陈惠丹,樊亮,王春丽.酶法提取积雪草苷.南京工业大学学报,2009,31(3):18-22.
    [111]卢茂芳,李若存,彭新君,湛扩.积雪草提取纯化同意的研究.湖南中医药大学学报,2007,27(1):16-19
    [112]Kim W. J., Kim J., Veriansyah B., Kim J. D., Lee Y. W., Oh S. G, Tjandrawinata Raymond R. Extraction of bioactive components from Centella asiatica using subcritical water. Journal of Supercritical Fluids,2009,48(3):211-216.
    [113]王荣,黎云祥,蔡凌云,高侠.积雪草总黄酮提取工艺和含量测定研究.光谱实验室,2009,26(3):544-549.
    [114]王宝奎,翁东明,刘锡均.积雪草甙的提取与分离.海峡药学,1996,8(4):3.
    [115]蔡雯.积雪草甙精制品工艺的研究.中成药,1993,15(2):4-5.
    [116]黄宝康,秦路平,郑汉臣,宓鹤鸣.高速逆流色谱技术在天然产物分离及中药质控中的应用.中药材,2001,24(10):757-761.
    [117]高明哲,袁晓艳,肖红斌.制备型高效液相色谱法从积雪草提取物中分离纯化积雪草苷和羟基积雪草苷对照品.色谱,2008,26(3):362-365.
    [118]开桂青.天然产物配位化学应用研究-积雪草苷的配位分离研究[硕士学位论文].安徽合肥,合肥工业大学,2005:41-42.
    [119]陈艳.滴定法测定积雪草中总苷元的含量.广西医学,2009,31(8):1205-1206.
    [120]方晓明,刘信顺.积雪草中积雪草甙的薄层色谱鉴别.基层中药杂志,1994,8(]):25-26.
    [121]国家药典委员会.中国药典2000年版第一部.北京:中国医药科技出版社,2000:353.
    [122]Gupta A. P., Gupta M. M., Kumar S. High performance thin layer chromatography of asiaticoside in Centella asiatica. Journal of the Indian Chemical Society,1999,76(6):321-322.
    [123]张炜.积雪草提取工艺和含量测定研究.泸州医学院学报,2008,31(5):498-500.
    [124]陆兴毅.UV测定积雪草总苷的含量.现代食品与药品杂志,2006,16(2):15-16.
    [125]谷莉,黄晟,娄子洋,赵亮,柴逸峰.毛细管区带电泳法测定积雪草配方颗粒中积雪草苷的含量.第二军医大学学报,2004,25(7):796-797.
    [126]Inamdar P. K., Yeole R. D., Ghogare A. B., de Souza N. J. Determination of biologically active constituents in Centella asiatica. Journal of Chromatography A,1996,742:127-130.
    [127]Guenther B., Wagner H. Quantitative determination of triterpenes in extracts and phytopreparations of Centella asiatica (L.) Urban. Phytomedicine,1996,3(1): 59-65.
    [128]肖隽,车镇涛,毕开顺.柱前衍生化HPLC法测定积雪草及三金片中积雪草苷的含量.药学学报,2000,35(8):605-608.
    [129]潘见,开桂青,袁传勋,周蓓蓓,金日生,袁媛.p-环糊精流动相添加剂法分离测定积雪草总苷元中的羟基积雪草酸.色谱,2007,25(3):316-318.
    [130]张锐,彭杨锐.高效液相色谱-蒸发光散射测定积雪草苷霜软膏中羟基积雪草苷和积雪草苷.中草药,2007,38(3):386-387.
    [131]于泉林,高文远,陈海霞,段宏泉HPLC-ELSD测定积雪草提取物中积雪草苷的含量.中国中药杂志,2007,32(6):503-505.
    [132]张开莲,邵晓露HPLC-ELSD法测定雪抑乐中积雪草苷和羟基积雪草苷含量.北京中医药大学学报,2008,31(12):842-844.
    [1]金权,李承佣,徐城基,黄秉龙,朴真圭.自积雪草的积雪草苷和羟基的积雪草苷和羧基积雪草苷的水溶性提取物及其分离方法.中国专利,发明专利,CN1194154,1998.09.30.
    [2]卢瓦索A,塞内G,特龙E.制备富含羟基积雪草苷和特米诺苷的积雪草酸提取物的方法.中国专利,发明专利,CN1774257,2006.05.17.
    [3]卫强.大孔树脂吸附技术在中药复方制剂中的应用.中兽医医药杂志,2009,4:76-78.
    [4]刘彬果,郭文勇,钟蕾,宓鹤鸣.大孔树脂吸附技术在中药制剂中的应用.解放军药学学报,2003,19(6):452-455.
    [5]Fu Y. J., Zu Y. G, Liu W., Efferth T., Zhang N. J., Liu X. N., Kong Y. Optimization of luteolin separation from pigenonpea [Cajanus cajan (L.) Millsp.] leaves by macroporous resins. Journal of Chromatography A,2006,1137: 145-152.
    [6]Fu Y. J., Zu Y. G, Liu W., Hou C. L., Chen L. Y, Li S. M., Shi X. G., Tong M. H. Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporius resins. Journal of Chromatography A,2007,1139:206-213.
    [7]Fu B. Q., Liu J., Li H., Li L., Lee F. S. C., Wang X. R.. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid. Journal of Chromatography A,2005,1089:18-24.
    [8]Gao M., Huang W., Liu C. Z. Separation of scutellarin from crude extracts of Erigeron Breviscapus (vant.) Hand. Mazz. by macroporous resins. Journal of Chromatography B,2007,858:22-26.
    [9]秦路平,陈瑶,郑汉臣.积雪草总甙的制备新方法及其新用途.中国专利,发明专利,CN1387868,2003.01.01.
    [1]吕秋军.积雪草苷及其类似物的吸收和代谢性质研究[硕士学位论文].北京,军事医学科学院,2006:56-57
    [2]George M., Joseph, Lincy, Ramaswamy. Antidiarrhoeal and antioxidant effects of Centella asiatica extract. Asian Journal of Chemistry,2009,21(4):2957-2962.
    [3]Park B. C., Bosire K. O., Lee E. S., Lee Y. S., Kim J. A. Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Letters.2005,218(1): 81-90.
    [4]Krishnamurthy R. G., Senut M. C., Zemke D., Min J. Y., M. Frenkel B., Greenberg E. J., Yu S. W., Ahn N., Goudreau J., Kassab M., Panickar K. S., Majid A. Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. Journal of Neuroscience Research,2009,87(11):2541-2550.
    [5]Jew S. S., Yoo C. H., Lim D. Y, Kim H., Inhee M. J., Min W. J., Choi H., Jung Y. H., Kim H., Park H. G. Structure-activity relationship study of asiatic acid derivatives against beta amyloid (Aβ)-induced neurotoxicity. Bioorganic and Medicinal Chemistry Letters,2000,10:119-121.
    [6]James J. T., Meyer R., Dubery I. A. Chrarcterisation of two phenotypes of Centella asiatica in Southern Africa through the composition of four triterpenoids in callus, cell suspensions and leaves. Plant Cell, Tissue and Organ Culture,2008, 94(1):91-99.
    [7]王俊,陈均,杨克迪,仰榴青,欧阳臻.水解原位萃取薯蓣皂苷元的工艺条件研究.中国中药杂志,2003,28(10):934-937

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700