酵母双杂交筛选IRE1结合蛋白及其在肝细胞凋亡中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内质网跨膜蛋白需肌醇酶1(IRE1)是内质网应激(ER stress)的核心感受器,可感受内质网管腔内未折叠蛋白的聚集并将这种刺激传递至细胞其他区域。近年研究发现内质网应激与多种肝脏疾病有关,如病毒感染(乙肝、丙肝),糖尿病-肥胖症相关的肝脏疾病,酒精性肝病,α1-抗胰蛋白酶缺乏症及缺血再灌注损伤等。内质网应激引起的未折叠蛋白反应(Unfolded Protein Response,UPR)可通过诱导分子伴侣表达上调,关闭蛋白翻译等降低内质网蛋白负荷,但持续过强的内质网应激反应则导致细胞凋亡。为阐明内质网应激与肝细胞凋亡的关系,本研究通过酵母双杂交系统筛选与IRE1相互作用的蛋白质,为进一步探索内质网应激在肝脏疾病中的作用奠定基础。
     1.酵母双杂交系统筛选IRE1相互作用蛋白质:采用酵母双杂交的方法,分别以hIRE1α(人IRE1α)N端段1~465位氨基酸及C端段468~977位氨基酸为诱饵,与人睾丸cDNA文库质粒顺序转化AH109酵母菌株,经三重/四重营养缺陷培养基及X-α-GAL半乳糖苷酶试验筛选,将PCR鉴定为阳性的酵母质粒转入大肠杆菌,提取质粒并测序,进行生物信息学分析。最后通过酵母回转杂交实验对获得的相互作用加以验证。结果:成功构建诱饵质粒pGBKT7-IRE1N及pGBKT7-IRE1C,并在酵母中正确表达融合蛋白,自激活检测及毒性检测均为阴性。分别筛选出8个及15个与IRE1相互作用的蛋白质;通过回转实验验证,确定了能与IRE1 C端段相互作用的蛋白质RACK1。RACK1是由SCOTIN基因编码的支架蛋白,可细胞内多种激酶相互作用,介导激酶与底物的结合。
     2.验证IRE1与RACK1在哺乳动物细胞及体外的相互作用:(1)构建真核表达载体3XFLAG-IRE1C, GFPC3-RACK1,双酶切及测序鉴定正确,以GFPC3空载体作为对照,共同转染293T细胞,利用免疫共沉淀技术验证IRE1与RACK1在哺乳动物细胞中的相互作用。( 2 )构建原核表达载体pGEX-6p2-RACK1,pGEX-6p1-IRE1C,分别转化大肠杆菌BL21,IPTG诱导融合蛋白表达并纯化,其中以precision酶切GST-RACK1融合蛋白,获得不带GST TAG的RACK1蛋白,与空GST蛋白为对照,分别与GST-IRE1C孵育,体外Pull-down实验验证IRE1与RACK1的相互作用。(3)构建真核表达质粒GFPC3-IRE1WT,转染人肝癌细胞系HepG2,同时以RACK1单抗及抗鼠-Rodamine为二抗进行免疫荧光实验,检测IRE1及RACK1在肝细胞中的定位。结果:通过体内及体外实验分别验证IRE1与RACK1相互作用的存在,且证明IRE1 C端为RACK1结合部位,免疫荧光证实IRE1与RACK1在肝细胞内有共定位,为其相互作用提供可靠依据。
     3.RNA干扰实验探讨RACK1对IRE1功能的影响:(1)转染RACK1 SiRNA入HepG2细胞,48小时后收取细胞裂解液,进行Western blot验证基因敲除效果。给予敲除RACK1的细胞以内质网应激诱导药物衣霉素(Thapsigargin,TG)处理,通过western blot检测IRE1的磷酸化及其下游内质网分子伴侣GRP78的表达,同时应用RT-PCR检测XBP-1 mRNA的表达及其剪切,确定RACK1敲除对IRE1功能的影响。(2)相同方法敲除HepG2细胞中RACK1的表达,给予不同剂量的TG处理,TUNEL法检测RACK1敲除对内质网应激时肝细胞凋亡的影响。结果:成功敲除HepG2细胞中RACK1的表达,Western blot及RT-PCR证实RACK1敲除可抑制内质网应激时IRE1的功能活化,同时抑制内质网应激对肝细胞凋亡的诱导。
     结论:本研究通过酵母双杂交系统首次发现IRE1与RACK1的相互作用,并通过体内、体外多种方法证实其相互作用的存在,最后通过RNA干扰及功能试验证实IRE1对ER stress的感受及活化,对分子伴侣的诱导及XBP-1的剪切,以及细胞凋亡的诱导,均依赖于RACK1的存在,提示RACK1是内质网应激反应信号通路中不可或缺的一个环节,与ER stress下肝细胞的凋亡密切相关,进一步的研究对内质网应激相关的肝脏疾病有重要意义。
The Endoplasmic Reticulum(ER) resident protein Inosital Requiring Enzyme 1(IRE1) is the core sensor of ER stress, which senses the accumulation of unfolded protein in the ER lumen and transduces the signal to the rest part of the cell. Recent reports show that ER stress is associated with a lot of hepatic diseases, such as virus infection(HBV,HCV), diabetes-obese-related liver disease, alcoholic liver diseases,α1-antitrypsin deficiency and ischemia/reperfusion injury. The Unfolded Protein Response(UPR) induced by ER stress can reduce ER protein load through the induction of molecular chaperones and shut down of translation. However, persistent or intense ER stress result in apoptotic cell death. In order to elucidate the mechanism of ER stress induced apoptosis in hepatocytes, we screened the interacting proteins of IRE1 in a yeast-two-hybride system so as to give light to the investigation of ER stress in liver diseases.
     1. Screening of the interacting proteins of IRE1 in a yeast-two-hybrid system. Yeast-two-hybrid were employed to screen the interacting proteins for the N-termius(1-465aa) and C-terminus(468-977) of hIRE1αin a human testis cDNA library. The bait plasmids and the library cDNA were sequentially transfected into Saccharomyces cerevisiae AH109. Screening was carried out on a series of nutrition-selective plates, X-α-GAL assays and PCR assays. Yeast two-hybrid retransformation experiment was applied to verify the interactions. Results: Bait plasmids pGBKT7-IRE1N(1-465)and pGBKT7-IRE1C(468-977) were successfully constructed and the expression of fusion-proteins were correct. Tests for autonomous activation and toxicity were negative. The numbers of confirmed interactions were 8 for hIRE1α-N and 15 for hIRE1α-C. Retransformation experiment verified RACK1, transcript of the gene GNB2L1, a cytoplasmic located scaffold protein as a binding partner of the C terminus of IRE1.
     2. Verification of the interaction of IRE1 and RACK1 in mammalian cells and in vitro. (1) Construction of eukaryotic expression plasmids: 3XFLAG-IRE1C, GFPC3-RACK1. The construction was confirmed by restriction enzyme catalyzation and DNA sequencing. The plasmids were co-transfected into 293T cells and co-immunoprecipitation was applied to test the interaction of IRE1 and RACK1 in mammalian cells. (2) Prokaryote expression plasimds pGEX-6p2-RACK1,pGEX-6p1-IRE1C were constructed and transformed into E.coli BL21, the GST-fusion protein were purified by standard protocol. Fusion protein GST-RACK1 were catalyzed by PreCisionTM enzyme to produce the purified RACK1 protein. GST-Pull down assay were carried out to verify the in vitro binding of RACK1 to IRE1. (3) Eukaryotic expression plasmid GFPC3-IRE1WT were constructed for transfection HepG2 cells. The transfected HepG2 cells expressing fusion protein GFP-IRE1 WT were then used to do immunofluorescence experiment with anti-RACK1 mAb and Rodamine-conjugated anti-mouse secondary antibody. Results: In vivo and in vitro tests showed that RACK1 can bind to the C-terminus of IRE1. Immunofluorescence confirmed the co-locolization of IRE1 and RACK1, which give solid evidence for the interaction of the two proteins.
     3. RNAi tests for the function of the interaction between IRE1 and RACK1.(1)Transfect RACK1 SiRNA into HepG2 cells. Collect the cell lysates after 48h to test the interfering efficiency by western blot. The Si RNA treated and untreated cells were administered with thapsigargin to induce ER stress. Western blot were apllied to test the expression level of GRP78 and phosphorylated IRE1 to assess the activation of IRE1. RT-PCR assays were applied to test the expression and splice of XBP-1 mRNA. (2) TUNEL assays were applied to observe the effect on ER stress-mediated apoptosis by RACK1 SiRNA treatment. Results: The inhibition of RACK1 expression in HepG2 cells by SiRNA administration was successful. Our results confirmed that RACK1 depletion could suppress the activation of IRE1 under ER stress conditions, which inhibited ER stress mediated apoptosis of hepatocytes at the same time.
     Conclusion: Screening of interacting proteins of IRE1 by yeast-two-hybrid methods identified RACK1 as a novel binding partner. In vivo and in vitro assays confirmed the interaction. Immunofluorescence provided the direct evidence. Finally, RNAi experiments confirmed the function of RACK1’s binding to IRE1 in that it could mediate the activation of IRE1 and downstream pathways such as the upregulation of GRP78 and the catalyzation of XBP-1 as well as induction of apoptosis under ER stress conditions, indicating RACK1 as a component of IRE1 signalling network and closely related to ER stress mediated apoptosis of hepatocytes. Further studies are needed for the role of ER stress in liver diseases.
引文
1 S.C. Hubbard and R.J. Ivatt, Synthesis and processing of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 50 (1981), pp. 555–583.
    2 R. Kornfeld and S. Kornfeld, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54 (1985), pp. 631–664.
    3 S.W. Fewell, K.J. Travers, J.S. Weissman and J.L. Brodsky, The action of molecular chaperones in the early secretory pathway, Annu. Rev. Genet. 35 (2001), pp. 149–191.
    4 L. Ellgaard, M. Molinari and A. Helenius, Setting the standards: quality control in the secretory pathway, Science 286 (1999), pp. 1882–1888.
    5 F. Paltauf, S.D. Kohlwein and S.A. Henry, Regulation and compartmentalization of lipid synthesis in yeast In: E.W. Jones, J.R. Pringle and J.R. Broach, Editors, The Molecular and Cellular Biology of the Yeast Saccharomyces, Cold Spring Harbor Laboratory Press, Plainview, NY (1992), pp. 415–500.
    6 V.J. Cid, A. Duran, F. del Rey, M.P. Snyder, C. Nombela and M. Sánchez, Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae, Microbiol. Rev. 59 (1995), pp. 345–386.
    7 R.J. Kaufman, L.C. Wasley and A.J. Dorner, Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells, J. Biol. Chem. 263 (1988), pp. 6352–6362.
    8 A.J. Dorner, L.C. Wasley and R.J. Kaufman, Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells, J. Biol. Chem. 264 (1989), pp. 20602–20607.
    9 M. Schr?der and P. Friedl, Overexpression of recombinant human antithrombin III in Chinese hamster ovary cells results in malformation anddecreased secretion of the recombinant protein, Biotechnol. Bioeng. 53 (1997), pp. 547–559.
    10 M. Schr?der and P. Friedl, Induction of protein aggregation in an early secretory compartment by elevation of expression level, Biotechnol. Bioeng. 78 (2002), pp. 131–140.
    11 M. Calfon, H. Zeng, F. Urano, J.H. Till, S.R. Hubbard, H.P. Harding, S.G. Clark and D. Ron, IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA, Nature 415 (2002), pp. 92–96.
    12 A.M. Reimold, N.N. Iwakoshi, J. Manis, P. Vallabhajosyula, E. Szomolanyi-Tsuda, E.M. Gravallese, D. Friend, M.J. Grusby, F. Alt and L.H. Glimcher, Plasma cell differentiation requires the transcription factor XBP-1, Nature 412 (2001), pp. 300–307.
    13 N.N. Iwakoshi, A.H. Lee, P. Vallabhajosyula, K.L. Otipoby, K. Rajewsky and L.H. Glimcher, Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1, Nat. Immunol. 4 (2003), pp. 321–329.
    14 S.S. Watowich, R.I. Morimoto and R.A. Lamb, Flux of the paramyxovirus hemagglutinin-neuraminidase glycoprotein through the endoplasmic reticulum activates transcription of the GRP78-BiP gene, J. Virol. 65 (1991), pp. 3590–3597.
    15 D.E. Dimcheff, S. Askovic, A.H. Baker, C. Johnson-Fowler and J.L. Portis, Endoplasmic reticulum stress is a determinant of retrovirus-induced spongiform neurodegeneration, J. Virol. 77 (2003), pp. 12617–12629.
    16 H. Walther-Larsen, J. Brandt, D.B. Collinge and H. Thordal-Christensen, A pathogen-induced gene of barley encodes a HSP90 homologue showing striking similarity to vertebrate forms resident in the endoplasmic reticulum,Plant. Mol. Biol. 21 (1993), pp. 1097–1108.
    17 E.P. Jelitto-Van Dooren, S. Vidal and J. Denecke, Anticipating endoplasmic reticulum stress. A novel early response before pathogenesis-related gene induction, Plant Cell 11 (1999), pp. 1935–1944.
    18 I.M. Martinez and M.J. Chrispeels, Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes, Plant Cell 15 (2003), pp. 561–576.
    19 T.M. Pakula, M. Laxell, A. Huuskonen, J. Uusitalo, M. Saloheimo and M. Penttil?, The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells, J. Biol. Chem. 278 (2003), pp. 45011–45020.
    20 H.P. Harding, Y. Zhang and D. Ron, Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase, Nature 397 (1999), pp. 271–274.
    21 R. Casagrande, P. Stern, M. Diehn, C. Shamu, M. Osario, M. Zú?iga, P.O. Brown and H. Ploegh, Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway, Mol. Cell 5 (2000), pp. 729–735.
    22 R. Friedlander, E. Jarosch, J. Urban, C. Volkwein and T. Sommer, A regulatory link between ER-associated protein degradation and the unfolded-protein response, Nat. Cell Biol. 2 (2000), pp. 379–384.
    23 K.J. Travers, C.K. Patil, L. Wodicka, D.J. Lockhart, J.S. Weissman and P. Walter, Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation, Cell 101 (2000), pp. 249–258.
    24 Y. Ma and L.M. Hendershot, The mammalian endoplasmic reticulum as a sensor for cellular stress, Cell Stress Chaperones 7 (2002), pp. 222–229.
    25 D.T. Rutkowski and R.J. Kaufman, A trip to the ER: coping with stress, Trends Cell Biol. 14 (2004), pp. 20–28.
    26 C.E. Shamu and P. Walter, Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus, EMBO J. 15 (1996), pp. 3028–3039.
    27 A.A. Welihinda and R.J. Kaufman, The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation, J. Biol. Chem. 271 (1996), pp. 18181–18187.
    28 C.Y. Liu, H.N. Wong, J.A. Schauerte and R.J. Kaufman, The protein kinase/endoribonuclease IRE1αthat signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain, J. Biol. Chem. 277 (2002), pp. 18346–18356.
    29 C.Y. Liu, M. Schr?der and R.J. Kaufman, Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum, J. Biol. Chem. 275 (2000), pp. 24881–24885.
    30 A. Bertolotti, Y. Zhang, L.M. Hendershot, H.P. Harding and D. Ron, Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response, Nat. Cell Biol. 2 (2000), pp. 326–332.
    31 K. Okamura, Y. Kimata, H. Higashio, A. Tsuru and K. Kohno, Dissociation of Kar2p/BiP from an ER sensory molecule, Ire1p, triggers the unfolded protein response in yeast, Biochem. Biophys. Res. Commun. 279 (2000), pp. 445–450.
    32 C.Y. Liu, Z. Xu and R.J. Kaufman, Structure and intermolecular interactionsof the luminal dimerization domain of human IRE1α, J. Biol. Chem. 278 (2003), pp. 17680–17687.
    33 J. Shen, X. Chen, L. Hendershot and R. Prywes, ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals, Dev. Cell 3 (2002), pp. 99–111.
    34 M. Hong, S. Luo, P. Baumeister, J.M. Huang, R.K. Gogia, M. Li and A.S. Lee, Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response, J. Biol. Chem. 279 (2004), pp. 11354–11363.
    35 K. Haze, T. Okada, H. Yoshida, H. Yanagi, T. Yura, M. Negishi and K. Mori, Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response, Biochem. J. 355 (2001), pp. 19–28.
    36 X. Chen, J. Shen and R. Prywes, The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi, J. Biol. Chem. 277 (2002), pp. 13045–13052.
    37 K. Haze, H. Yoshida, H. Yanagi, T. Yura and K. Mori, Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress, Mol. Biol. Cell 10 (1999), pp. 3787–3799.
    38 J. Ye, R.B. Rawson, R. Komuro, X. Chen, U.P. Dave, R. Prywes, M.S. Brown and J.L. Goldstein, ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs, Mol. Cell 6 (2000), pp. 1355–1364.
    39 H. Yoshida, T. Okada, K. Haze, H. Yanagi, T. Yura, M. Negishi and K. Mori,ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response, Mol. Cell Biol. 20 (2000), pp. 6755–6767.
    40 Y. Wang, J. Shen, N. Arenzana, W. Tirasophon, R.J. Kaufman and R. Prywes, Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response, J. Biol. Chem. 275 (2000), pp. 27013–27020.
    41 H. Yoshida, K. Haze, H. Yanagi, T. Yura and K. Mori, Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors, J. Biol. Chem. 273 (1998), pp. 33741–33749.
    42 K. Kokame, H. Kato and T. Miyata, Identification of ERSE-II, a new cis-acting element responsible for the ATF6-dependent mammalian unfolded protein response, J. Biol. Chem. 276 (2001), pp. 9199–9205.
    43 R. van Huizen, J.L. Martindale, M. Gorospe and N.J. Holbrook, P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2αsignaling, J. Biol. Chem. 278 (2003), pp. 15558–15564.
    44 T. Okada, H. Yoshida, R. Akazawa, M. Negishi and K. Mori, Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response, Biochem. J. 366 (2002), pp. 585–594.
    45 C. Zhu, F.E. Johansen and R. Prywes, Interaction of ATF6 and serum response factor, Mol. Cell Biol. 17 (1997), pp. 4957–4966.
    46 D.J. Thuerauf, N.D. Arnold, D. Zechner, D.S. Hanford, K.M. DeMartin, P.M. McDonough, R. Prywes and C.C. Glembotski, p38 Mitogen-activated proteinkinase mediates the transcriptional induction of the atrial natriuretic factor gene through a serum response element. A potential role for the transcription factor ATF6, J. Biol. Chem. 273 (1998), pp. 20636–20643.
    47 L. Zeng, M. Lu, K. Mori, S. Luo, A.S. Lee, Y. Zhu and J.Y. Shyy, ATF6 modulates SREBP2-mediated lipogenesis, EMBO J. 23 (2004), pp. 950–958.
    48 J. Nikawa and S. Yamashita, IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae, Mol. Microbiol. 6 (1992), pp. 1441–1446.
    49 P. Bork and C. Sander, A hybrid protein kinase-RNase in an interferon-induced pathway?, FEBS Lett. 334 (1993), pp. 149–152.
    50 K. Mori, W. Ma, M.J. Gething and J. Sambrook, A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus, Cell 74 (1993), pp. 743–756.
    51 H. Nojima, S.H. Leem, H. Araki, A. Sakai, N. Nakashima, Y. Kanaoka and Y. Ono, Hac1: a novel yeast bZIP protein binding to the CRE motif is a multicopy suppressor for cdc10 mutant of Schizosaccharomyces pombe, Nucl. Acids Res. 22 (1994), pp. 5279–5288.
    52 K. Mori, T. Kawahara, H. Yoshida, H. Yanagi and T. Yura, Signalling from endoplasmic reticulum to nucleus: transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway, Genes to Cells 1 (1996), pp. 803–817.
    53 J. Nikawa, M. Akiyoshi, S. Hirata and T. Fukuda, Saccharomyces cerevisiae IRE2/HAC1 is involved in IRE1-mediated KAR2 expression, Nucl. Acids Res. 24 (1996), pp. 4222–4226.
    54 J. Abelson, C.R. Trotta and H. Li, tRNA splicing, J. Biol. Chem. 273 (1998),pp. 12685–12688.
    55 K. Mori, A. Sant, K. Kohno, K. Normington, M.J. Gething and J.F. Sambrook, A 22 bp cis-acting element is necessary and sufficient for the induction of the yeast KAR2 (BiP) gene by unfolded proteins, EMBO J. 11 (1992), pp. 2583–2593.
    56 K. Kohno, K. Normington, J. Sambrook, M.J. Gething and K. Mori, The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum, Mol. Cell Biol. 13 (1993), pp. 877–890.
    57 K. Mori, N. Ogawa, T. Kawahara, H. Yanagi and T. Yura, Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae, J. Biol. Chem. 273 (1998), pp. 9912–9920.
    58 A.A. Welihinda, W. Tirasophon and R.J. Kaufman, The transcriptional co-activator ADA5 is required for HAC1 mRNA processing in vivo, J. Biol. Chem. 275 (2000), pp. 3377–3381.
    59 A.A. Welihinda, W. Tirasophon, S.R. Green and R.J. Kaufman, Gene induction in response to unfolded protein in the endoplasmic reticulum is mediated through Ire1p kinase interaction with a transcriptional coactivator complex containing Ada5p, Proc. Natl. Acad. Sci. U.S.A. 94 (1997), pp. 4289–4294.
    60 J.S. Cox, C.E. Shamu and P. Walter, Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase, Cell 73 (1993), pp. 1197–1206.
    61 W. Tirasophon, A.A. Welihinda and R.J. Kaufman, A stress response pathway from the endoplasmic reticulum to the nucleus requires a novelbifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells, Genes Dev. 12 (1998), pp. 1812–1824.
    62 Y. Okushima, N. Koizumi, Y. Yamaguchi, Y. Kimata, K. Kohno and H. Sano, Isolation and characterization of a putative transducer of endoplasmic reticulum stress in Oryza sativa, Plant Cell Physiol. 43 (2002), pp. 532–539.
    63 X.Z. Wang, H.P. Harding, Y. Zhang, E.M. Jolicoeur, M. Kuroda and D. Ron, Cloning of mammalian Ire1 reveals diversity in the ER stress responses, EMBO J. 17 (1998), pp. 5708–5717.
    64 X. Shen, R.E. Ellis, K. Lee, C.Y. Liu, K. Yang, A. Solomon, H. Yoshida, R. Morimoto, D.M. Kurnit, K. Mori and R.J. Kaufman, Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development, Cell 107 (2001), pp. 893–903.
    65 H. Yoshida, T. Matsui, A. Yamamoto, T. Okada and K. Mori, XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor, Cell 107 (2001), pp. 881–891.
    66 K. Lee, W. Tirasophon, X. Shen, M. Michalak, R. Prywes, T. Okada, H. Yoshida, K. Mori and R.J. Kaufman, IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response, Genes Dev. 16 (2002), pp. 452–466.
    67 I.M. Clauss, M. Chu, J.L. Zhao and L.H. Glimcher, The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core, Nucl. Acids Res. 24 (1996), pp. 1855–1864.
    68 M. Calfon, H. Zeng, F. Urano, J.H. Till, S.R. Hubbard, H.P. Harding, S.G. Clark and D. Ron, IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA, Nature 415 (2002), pp. 92–96.
    69 A.M. Reimold, N.N. Iwakoshi, J. Manis, P. Vallabhajosyula, E. Szomolanyi-Tsuda, E.M. Gravallese, D. Friend, M.J. Grusby, F. Alt and L.H. Glimcher, Plasma cell differentiation requires the transcription factor XBP-1, Nature 412 (2001), pp. 300–307.
    70 N.N. Iwakoshi, A.H. Lee, P. Vallabhajosyula, K.L. Otipoby, K. Rajewsky and L.H. Glimcher, Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1, Nat. Immunol. 4 (2003), pp. 321–329.
    71 D.T. Ng, E.D. Spear and P. Walter, The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control, J. Cell Biol. 150 (2000), pp. 77–88.
    72 M. Schr?der, R. Clark and R.J. Kaufman, IRE1- and HAC1-independent transcriptional regulation in the unfolded protein response of yeast, Mol. Microbiol. 49 (2003), pp. 591–606.
    73 Y. Shi, K.M. Vattem, R. Sood, J. An, J. Liang, L. Stramm and R.C. Wek, Identification and characterization of pancreatic eukaryotic initiation factor 2α-subunit kinase, PEK, involved in translational control, Mol. Cell Biol. 18 (1998), pp. 7499–7509.
    74 Y. Shi, J. An, J. Liang, S.E. Hayes, G.E. Sandusky, L.E. Stramm and N.N. Yang, Characterization of a mutant pancreatic eIF-2αkinase, PEK, and co-localization with somatostatin in islet delta cells, J. Biol. Chem. 274 (1999), pp. 5723–5730.
    75 S.B. Cullinan, D. Zhang, M. Hannink, E. Arvisais, R.J. Kaufman and J.A. Diehl, Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival, Mol. Cell Biol. 23 (2003), pp. 7198–7209.
    76 H.P. Harding, I. Novoa, Y. Zhang, H. Zeng, R. Wek, M. Schapira and D. Ron,Regulated translation initiation controls stress-induced gene expression in mammalian cells, Mol. Cell. 6 (2000), pp. 1099–1108.
    77 A. Tomida, H. Suzuki, H.D. Kim and T. Tsuruo, Glucose-regulated stresses cause decreased expression of cyclin D1 and hypophosphorylation of retinoblastoma protein in human cancer cells, Oncogene 13 (1996), pp. 2699–2705.
    78 J.W. Brewer, L.M. Hendershot, C.J. Sherr and J.A. Diehl, Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression, Proc. Natl. Acad. Sci. U.S.A. 96 (1999), pp. 8505–8510.
    79 J.W. Brewer and J.A. Diehl, PERK mediates cell-cycle exit during the mammalian unfolded protein response, Proc. Natl. Acad. Sci. U.S.A. 97 (2000), pp. 12625–12630.
    80 E. Arnold and W. Tanner, An obligatory role of protein glycosylation in the life cycle of yeast cells, FEBS Lett. 148 (1982), pp. 49–53.
    81 M. Bonilla and K.W. Cunningham, Mitogen-activated protein kinase stimulation of Ca2+ signaling is required for survival of endoplasmic reticulum stress in yeast, Mol. Biol. Cell. 14 (2003), pp. 4296–4305.
    82 A.G. Hinnebusch, Translational regulation of yeast GCN4. A window on factors that control initiator-tRNA binding to the ribosome, J. Biol. Chem. 272 (1997), pp. 21661–21664.
    83 Y. Ma, J.W. Brewer, J.A. Diehl and L.M. Hendershot, Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response, J. Mol. Biol. 318 (2002), pp. 1351–1365.
    84 H.Y. Jiang, S.A. Wek, B.C. McGrath, D. Lu, T. Hai, H.P. Harding, X. Wang, D. Ron, D.R. Cavener and R.C. Wek, Activating transcription factor 3 isintegral to the eukaryotic initiation factor 2 kinase stress response, Mol. Cell Biol. 24 (2004), pp. 1365–1377.
    85 W.X. Zong, C. Li, G. Hatzivassiliou, T. Lindsten, Q.C. Yu, J. Yuan and C.B. Thompson, Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis, J. Cell Biol. 162 (2003), pp. 59–69.
    86 N. Morishima, K. Nakanishi, H. Takenouchi, T. Shibata and Y. Yasuhiko, An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12, J. Biol. Chem. 277 (2002), pp. 34287–34294.
    87 R.V. Rao, S. Castro-Obregon, H. Frankowski, M. Schuler, V. Stoka, G. del Rio, D.E. Bredesen and H.M. Ellerby, Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway, J. Biol. Chem. 277 (2002), pp. 21836–21842.
    88 L. Filippin, P.J. Magalh?es, G. Di Benedetto, M. Colella and T. Pozzan, Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria, J. Biol. Chem. 278 (2003), pp. 39224–39234.
    89 K.D. McCullough, J.L. Martindale, L.O. Klotz, T.Y. Aw and N.J. Holbrook, Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state, Mol. Cell Biol. 21 (2001), pp. 1249–1259.
    90 T. Nakagawa, H. Zhu, N. Morishima, E. Li, J. Xu, B.A. Yankner and J. Yuan, Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β, Nature 403 (2000), pp. 98–103.
    91 H. Zinszner, M. Kuroda, X. Wang, N. Batchvarova, R.T. Lightfoot, H. Remotti, J.L. Stevens and D. Ron, CHOP is implicated in programmed celldeath in response to impaired function of the endoplasmic reticulum, Genes Dev. 12 (1998), pp. 982–995.
    92 T. Yoneda, K. Imaizumi, K. Oono, D. Yui, F. Gomi, T. Katayama and M. Tohyama, Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress, J. Biol. Chem. 276 (2001), pp. 13935–13940.
    93 R.V. Rao, E. Hermel, S. Castro-Obregon, G. del Rio, L.M. Ellerby, H.M. Ellerby and D.E. Bredesen, Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation, J. Biol. Chem. 276 (2001), pp. 33869–33874.
    94 Y. Ito, P. Pandey, N. Mishra, S. Kumar, N. Narula, S. Kharbanda, S. Saxena and D. Kufe, Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis, Mol. Cell Biol. 21 (2001), pp. 6233–6242.
    95 H. Nishitoh, A. Matsuzawa, K. Tobiume, K. Saegusa, K. Takeda, K. Inoue, S. Hori, A. Kakizuka and H. Ichijo, ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats, Genes Dev. 16 (2002), pp. 1345–1355.
    96 L. Scorrano, S.A. Oakes, J.T. Opferman, E.H. Cheng, M.D. Sorcinelli, T. Pozzan and S.J. Korsmeyer, BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis, Science 300 (2003), pp. 135–139.
    97 D.J. Thuerauf, N.D. Arnold, D. Zechner, D.S. Hanford, K.M. DeMartin, P.M. McDonough, R. Prywes and C.C. Glembotski, p38 Mitogen-activated protein kinase mediates the transcriptional induction of the atrial natriuretic factorgene through a serum response element. A potential role for the transcription factor ATF6, J. Biol. Chem. 273 (1998), pp. 20636–20643.
    98 L. Zeng, M. Lu, K. Mori, S. Luo, A.S. Lee, Y. Zhu and J.Y. Shyy, ATF6 modulates SREBP2-mediated lipogenesis, EMBO J. 23 (2004), pp. 950–958.
    99 J. Nikawa and S. Yamashita, IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae, Mol. Microbiol. 6 (1992), pp. 1441–1446.
    100 P. Bork and C. Sander, A hybrid protein kinase-RNase in an interferon-induced pathway?, FEBS Lett. 334 (1993), pp. 149–152.
    101 K. Tsukiyama-Kohara, N. Iizuka, M. Kohara and A. Nomoto, Internal ribosome entry site within hepatitis C virus RNA, J Virol (1992), pp. 1476–1483.
    102 C. Wang, P. Sarnow and A. Siddiqui, Translation of human hepatitis C virus RNA is cultured cells is mediated by an internal ribosome-binding mechanism, J Virol (1993), pp. 3338–3344.
    103 A. Grakoui, C. Wychowski, C. Lin, S.M. Feinstone and C.M. Rice, Expression and identification of hepatitis C virus polyprotein cleavage products, J Virol (1993), pp. 1385–1395.
    104 G. Gong, G. Waris, R. Tanveer and A. Siddiqui, Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB, Proc Natl Acad Sci USA (2001), pp. 9599–9604.
    105 Keith D. Tardif, Kazutoshi Mori and Aleem Siddiqui, Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway, J Virol (2002), pp. 7453–7459.
    106 Denise Egger, Benno W?lk, Rainer Gosert, Leonardo Bianchi, Hubert E. Blum and Darius Moradpour et al., Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex, J Virol (2002), pp. 5974–5984.
    107 Y. Zheng, B. Gao, L. Ye, L. Kong, W. Jing and X. Yang et al., Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response, J Microbiol 43 (2005), pp. 529–536.
    108 K.D. Tardif, K. Mori, R.J. Kaufman and A. Siddiqui, Hepatitis C virus suppresses the IRE1–XBP1 pathway of the unfolded protein response, J Biol Chem (2004), pp. 17158–17164.
    109 N. Hosokawa, I. Wada, K. Hasegawa, T. Yorihuzi, L.O. Tremblay and A. Herscovics et al., A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation, EMBO Rep 2 (2001), pp. 415–422.
    110 K.D. Tardif, G. Waris and A. Siddiqui, Hepatitis C virus, ER stress, and oxidative stress, Trends Microbiol 13 (2005), pp. 159–163.
    111 J. Michael Jr., J. Gale Marcus, M. Korth Norina, Tan Tang Seng-Lai, A. Deborah and E. Hopkins Thomas et al., Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural protein 5A, Virology (1997), pp. 217–227.
    112 D.R. Taylor, S.T. Shi, P.R. Romano, G.N. Barber and M.M. Lai, Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein, Science (1999), pp. 107–110.
    113 B. He, Viruses, endoplasmic reticulum stress, and interferon responses, Cell Death Differ 13 (2006), pp. 393–403.
    114 H.P. Harding, Zhang Yuhong and D. Ron, Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase, Nature (1999), pp.271–274.
    115 C.R. Prostko, J.N. Dholakia, M.A. Brostrom and C.O. Brostrom, Activation of the double-stranded RNA-regulated protein kinase by depletion of endoplasmic reticular calcium stores, J Biol Chem (1995), pp. 6211–6215.
    116 N. Pavio, P.R. Romano, T.M. Graczyk, S.M. Feinstone and D.R. Taylor, Protein synthesis and endoplasmic reticulum stress can be modulated by the hepatitis C virus envelope protein E2 through the eukaryotic initiation factor 2alpha kinase PERK, J Virol 77 (2003), pp. 3578–3585.
    117 S.W. Chan and P.A. Egan, Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response, FASEB J 19 (2005), pp. 1510–1512.
    118 E. Liberman, Y.L. Fong, M.J. Selby, Q.L. Choo, L. Cousens and M. Houghton et al., Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein, J Virol 73 (1999), pp. 3718–3722.
    119 N.L. Benali-Furet, M. Chami, L. Houel, F. De Giorgi, F. Vernejoul and D. Lagorce et al., Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion, Oncogene 24 (2005), pp. 4921–4933.
    120 T. Bowman, R. Garcia, J. Turkson and R. Jove, STATs in oncogenesis, Oncogene 19 (2000), pp. 2474–2488.
    121 . Waris, J. Turkson, T. Hassanein and A. Siddiqui, Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress:role of STAT-3 in HCV replication, J Virol 79 (2005), pp. 1569–1580.
    122 K.D. Tardif and A. Siddiqui, Cell surface expression of major histocompatibility complex class I molecules is reduced in hepatitis C virus subgenomic replicon-expressing cells, J Virol 77 (2003), pp. 11644–11650.
    123 S.M. McKiernan, R. Hagan, M. Curry, G.S. McDonald, A. Kelly and N. Nolan et al., Distinct MHC class I and II alleles are associated with hepatitis C viral clearance, originating from a single source, Hepatology 40 (2004), pp. 108–114.
    124 D. Ganem and A.M. Prince, Hepatitis B virus infection– natural history and clinical consequences, N Engl J Med 350 (2004), pp. 1118–1129.
    125 Z. Xu, G. Jensen and T.S. Yen, Activation of hepatitis B virus S promoter by the viral large surface protein via induction of stress in the endoplasmic reticulum, J Virol 71 (1997), pp. 7387–7392.
    126 P.K. Chua, R.Y. Wang, M.H. Lin, T. Masuda, F.M. Suk and C. Shih, Reduced secretion of virions and hepatitis B virus (HBV) surface antigen of a naturally occurring HBV variant correlates with the accumulation of the small S envelope protein in the endoplasmic reticulum and Golgi apparatus, J Virol 79 (2005), pp. 13483–13496.
    127 F.V. Chisari, P. Filippi, A. McLachlan, D.R. Milich, M. Riggs and S. Lee, Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice, J Virol 60 (1986), pp. 880–887.
    128 F.V. Chisari, P. Filippi, J. Buras, A. McLachlan, H. Popper and C.A. Pinkert et al., Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice, Proc Natl Acad Sci USA 84 (1987), pp. 6909–6913.
    129 P.N. Gilles, D.L. Guerrette, R.J. Ulevitch, R.D. Schreiber and F.V. Chisari, HBsAg retention sensitizes the hepatocyte to injury by physiological concentrations of interferon-gamma, Hepatology 16 (1992), pp. 655–663.
    130 H.C. Wang, W.T. Chang, W.W. Chang, H.C. Wu, W. Huang and H.Y. Lei et al., Hepatitis B virus pre-S2 mutant upregulates cyclin A expression andinduces nodular proliferation of hepatocytes, Hepatology 41 (2005), pp. 761–770.
    131 Y.H. Hsieh, I.J. Su, H.C. Wang, W.W. Chang, H.Y. Lei and M.D. Lai et al., Pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage, Carcinogenesis 25 (2004), pp. 2023–2032.
    132 J.H. Hung, I.J. Su, H.Y. Lei, H.C. Wang, W.C. Lin and W.T. Chang et al., Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-kappaB and pp38 mitogen-activated protein kinase, J Biol Chem 279 (2004), pp. 46384–46392.
    133 G.S. Hotamisligil, Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes, Diabetes 54 (2005), pp. S73–S78.
    134 N. Itoh and H. Okamoto, Translational control of proinsulin synthesis by glucose, Nature 283 (1980), pp. 100–102.
    135 K.L. Lipson, S.G. Fonseca and F. Urano, Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes, Curr Mol Med 6 (2006), pp. 71–77.
    136 C.P. Day and O. James, Steatohepatitis: a tale of two“hits”?, Gastroenterology 114 (1998), pp. 842–845.
    137 L.L. Listenberger, D.S. Ory and J.E. Schaffer, Palmitate-induced apoptosis can occur through a ceramide-independent pathway, J Biol Chem 276 (2001), pp. 14890–14895.
    138 D. Wang, Y. Wei and M.J. Pagliassotti, Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis, Endocrinology 147 (2006), pp. 943–951.
    139 J. Pouyssegur, R. Shiu and I. Pastan, Induction of twotransformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation, Cell 11 (1977), pp. 941–947.
    140 D. Wang, Y. Wei, D. Schmoll, K.N. Maclean and M.J. Pagliassotti, Endoplasmic reticulum stress increases glucose-6-phosphatase and glucose cycling in liver cells, Endocrinology 147 (2006), pp. 350–358.
    141 D. Scheuner, B. Song, E. McEwen, C. Liu, R. Laybutt and P. Gillespie et al., Translational control is required for the unfolded protein response and in vivo glucose homeostasis, Mol Cell 7 (2001), pp. 1165–1176.
    142 H.P. Harding, H. Zeng, Y. Zhang, R. Jungries, P. Chung and H. Plesken et al., Diabetes mellitus and exocrine pancreatic dysfunction in perk?/? mice reveals a role for translational control in secretory cell survival, Mol Cell 7 (2001), pp. 1153–1163.
    143 M. Delepine, M. Nicolino, T. Barrett, M. Golamaully, G. MarkLathrop and C. Julier, EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with wolcott-rallison syndrome, Nat Genet 25 (2000), pp. 406–409.
    144 E. Araki, S. Oyadomari and M. Mori, Impact of endoplasmic reticulum stress pathway on pancreatic beta-cells and diabetes mellitus, Exp Biol Med (Maywood) 228 (2003), pp. 1213–1217.
    145 U. Ozcan, Q. Cao, E. Yilmaz, A.H. Lee, N.N. Iwakoshi and E. Ozdelen et al., Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes, Science 306 (2004), pp. 457–461.
    146 F. Urano, X. Wang, A. Bertolotti, Y. Zhang, P. Chung and H.P. Harding et al., Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1, Science (2000), pp. 664–666.
    147 M. Tamatani, T. Matsuyama, A. Yamaguchi, N. Mitsuda, Y. Tsukamoto and M. Taniguchi et al., ORP150 protects against hypoxia/ischemia-induced neuronal death, Nat Med 7 (2001), pp. 317–323.
    148 Y. Nakatani, H. Kaneto, M. Hatazaki, K. Yoshiuchi, D. Kawamori and K. Sakamoto et al., Increased stress protein ORP150 autoantibody production in Type 1 diabetic patients, Diabet Med 23 (2006), pp. 216–219.
    149 C. Li and R.M. Jackson, Reactive species mechanisms of cellular hypoxia-reoxygenation injury, Am J Physiol Cell Physiol 282 (2002), pp. C227–C241.
    150 H. Tilg, M. Ceska, W. Vogel, M. Herold, R. Margreiter and C. Huber, Interleukin-8 serum concentrations after liver transplantation, Transplantation 53 (1992), pp. 800–803.
    151 A. Emadali, D.T. Nguyen, C. Rochon, G.N. Tzimas, P.P. Metrakos and E. Chevet, Distinct endoplasmic reticulum stress responses are triggered during human liver transplantation, J Pathol 207 (2005), pp. 111–118.
    152 M. Vilatoba, C. Eckstein, G. Bilbao, C.A. Smyth, S. Jenkins and J.A. Thompson et al., Sodium 4-phenylbutyrate protects against liver ischemia reperfusion injury by inhibition of endoplasmic reticulum-stress mediated apoptosis, Surgery 138 (2005), pp. 342–351.
    153 B. Bailly-Maitre, C. Fondevila, F. Kaldas, N. Droin, F. Luciano and J.E. Ricci et al., Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia–reperfusion injury, Proc Natl Acad Sci USA (2006).
    154 H.J. Chae, H.R. Kim, C. Xu, B. Bailly-Maitre, M. Krajewska and S. Krajewski et al., BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress, Mol Cell 15 (2004), pp. 355–366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700