淡色库蚊miRNA表达谱及其与抗药性关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚊媒病是全世界重要的传染病之一,包括疟疾,西尼罗河热等严重危害人类健康的疾病。蚊媒病控制的主要措施是治理蚊媒。化学防治因其速杀、长效、方便等特点,一直是蚊媒综合治理策略中的主要方法。然而随着杀虫剂连续、大量的使用,蚊媒抗药性开始产生和发展。蚊媒抗药性产生和发展加剧了蚊媒病传播的恶化趋势。化学防治因其能够快速,有效控制蚊媒种群,在以后很长的时间内仍是蚊媒治理的主要方法。因此蚊媒抗药性研究仍是控制蚊媒病传播的重点。
     蚊媒抗药性机制包括3个主要方面。一方面是靶标抗性,即蚊媒杀虫剂靶位点的改变;另一方面代谢抗性,其涉及代谢相关酶类转录水平的变化;此外为生理抗性,如表皮改变影响杀虫剂的穿透性。其中,以代谢抗性研究最多。前期代谢抗性研究关注杀虫剂代谢相关酶活性的改变,未见抗性相关基因转录后调控的研究。本实验初步探索了抗药性基因转录调控机制。
     miRNA是一类转录后调控的重要因子,广泛存在于动物和植物中。其通过降低mRNA表达或者抑制蛋白质合成参与调控体内近30%的基因。miRNA功能包括调节生物体的生长、发育、凋亡等。目前在蚊中已经开始研究miRNA与抗感染方面的研究,至今未见miRNA和杀虫剂关系的报道。
     本研究选取在我国分布广泛的重要家栖性病媒蚊种淡色库蚊为研究对象,以近年我国使用最多的卫生杀虫剂溴氰菊酯为材料,采用solexa测序法,比较了溴氰菊酯敏感和抗性淡色库蚊miRNA表达谱;通过PCR、T-A克隆及测序验证了pre-miRNA;采用定量PCR进一步验证了敏感和抗性品系中miRNA表达差异;采用双荧光报告验证了miR-71可以调控杀虫剂代谢酶类CYP325BG3表达。
     本研究主要结果如下:
     1通过WHO幼虫浸渍法建立了淡色库蚊溴氰菊酯抗性品系,其LC50为0.85mg/L,敏感品系LC50为0.03mg/L,抗性系数为28.3。
     2使用solexa法对淡色库蚊溴氰菊酯敏感和抗性品系进行了成功的测序。送测序mRNA,敏感蚊混合样本浓度为670ug/ml, OD260/0D280为1.80;抗性蚊混合样本浓度为600ug/ml,OD260/0D280为1.83。经过琼脂糖凝胶电泳和安捷伦Bianalyzer检测,RNA完整性良好,测序结果中rRNA的比例小于40%。表明solexa测序结果良好,可以用于继续分析。
     3对测序得到的原始数据进行去除接头、污染序列及低质量reads的处理,并统计sRNA序列长度分布,可以观测到20-23nt长度的序列所占比例高。将测序结果与最近缘致倦库蚊的基因组进行比对。将上述测序得到的序列(clean序列)按照rRNAetc> known miRNA> repeat> exon> intron的优先级顺序注释。在鉴定淡色库蚊miRNA的时候,根据致倦库蚊基因组序列,提取miRNA前体序列,进行二级结构分析。进一步用miRAlign软件将上述序列与miRBase比对,筛选出淡色库蚊成熟miRNA和预测新的miRNA。在淡色库蚊中共鉴定保守miRNA85个,前体结构91个;新miRNA143个,前体结构209个。同时比较了淡色库蚊敏感和抗性品系中miRNA表达量的差异。
     4在淡色库蚊miRNA检测中,检测到miR-932、miR-980、miR-998、miR-999等昆虫特有miRNA;miR-1891、miR-1889和miR-2941等蚊特有miRNA。根据miRNA基因簇分析方法,设10K bp为miRNA基因之间排列的最大距离,共发现7个淡色库蚊miRNA簇,其中包括在昆虫中最常见的let-7、miR-125构成的miRNA簇。PCR鉴定了淡色库蚊pre-miRNA,T-A克隆测序了部分淡色库蚊pre-miRNA序列。测序结果显示,与致倦库蚊miRNA前体结构相比,淡色库蚊miRNA的茎部结构保守,而环部碱基突变比较常见。其为淡色库蚊和致倦库蚊的系统分类提供了一种新的可行性。
     5选取solexa测序后比较有统计学差异的miRNA和昆虫学研究中已有功能报道miRNA进行定量验证。在敏感品系大部分发育阶段,miR-279-3p、miR-13、miR-989、miR-4448和miR-285的表达水平比抗性品系高;miR-317、miR-2b、miR-92a在抗性品系各发育阶段表达水平比敏感品系高。
     6靶标预测提示,CYP325BG3的3’UTR序列和miR-71可能存在相互作用。采用双荧光报告实验证实,miR-71和CYP325BG3之间确实存在相互作用。结果表明,miR-71可能通过调节CYP325BG3的表达水平参与淡色库蚊溴氰菊酯抗性。
     本研究首次报告了淡色库蚊抗药性miRNA表达谱,PCR和T-A克隆测序验证了miRNA前体结构,定量PCR鉴定了抗药性相关miRNA。双荧光报告方法验证miR-71可以调控代谢酶类CYP325BG3的表达,进而参与杀虫剂抗性。研究结果丰富了昆虫miRNA数据库,初步探索了miRNA在蚊抗药性中的作用,具有重要的理论意义和潜在的实际应用价值。
The mosquito-borne diseases including malaria, West Nile fever are importantinfectious diseases in the world and caused serious threat to human health. Mosquitocontrol is the main measure to combat mosquito-borne diseases. Chemical control,because of its killing speed, long-lasting and convenient features, has been the mainmethod in the comprehensive management strategy. Unfortunately, excessive andcontinuous usage of insecticides induced the development and spread of resistance.Then insecticide resistance exacerbated the spread of mosquito-borne diseases.However, after a very long time, chemical control for its rapid and efficientadvantage will still be the main method in control of mosquito-borne diseases.
     Insecticide resistance mechanisms include three main areas: target resistance,that is, the change of the insecticide target sites. Metabolic resistance, that is, thechange of metabolic enzymes transcription level involved in metabolic resistance,and physiological resistance, such as cuticle protein and chitin enzyme also involvedin insecticide resistance. Preliminary studies concerned more about the change ofmetabolic enzyme activity, and there is no report on gene transcription regulation. Inthis study, we wanted to explore the resistance mechanism on regulate transcriptionlevel.
     As an important factor on post-transcriptional regulation, miRNA was widelyfound in animals and plants. miRNA can regulate nearly30%genes throughdegradating mRNA expression or inhibiting protein synthesis. Organism's growth,development, and apoptosis can be regulated by miRNA. Recently, there were moreattentions on miRNA against infection in mosquito. So far there is no report on therelationship between miRNA and insecticide resistance.
     This study selected Culex pipiens pallens (Cx. pipiens pallens) as the researchobject which is widely distributed in the northern China. We compared miRNA expression differences of deltamethrin-susceptible and–resistant strains by solexasequence. PCR and T-A cloning were used to verify pre-miRNA. Quantitative PCRfurther validated miRNA expression differences between resistant and susceptiblestrains. The dual fluorescence report test was used to verify miR-71can regulateCYP325BG3expression.
     In this study, the main results are as follows:
     1Two experimental strains were established in laboratory with WHO larvaebioassay method. LC50of the resistant strains is0.85mg/L and LC50of sensitivestrains is0.03mg/L. There is28.3times difference between the two strains.
     2Solexa was used to sequence the miRNA of deltamethrin resistant andsusceptible strains. mRNA of the sensitive strain sample has the concentration670ug/ml and OD260/0D280is1.80. The resistant strain sample has the concentration670ug/ml and OD260/0D280is1.83. After detected with agarose gel electrophoresis andAgilent Bianalyzer, RNA integrity is good for solexa sequencing, and the ratio ofrRNA is less than40%, suggesting that solexa sequencing results can be used tocontinue analysis.
     3After removing joints of the adaptors, pollution sequence and reads with lowquality from the raw data, we statisted sRNA length distribution and the sequence ofthe20-23nt length occupied high proportion through the distribution. The obtainedsequences (clean sequence) were annotated in accordance with rRNAetc> knownmiRNA> repeat> exon> intron. The miRNA precursor (pre-miRNA) of Cx. pipienspallens was extracted according to sequence of the genome of Cx. quinquefasciatusand the secondary structure was analysed. miRAlign software was further applied inthe above sequences and the sequences were aligned in miRBase.85conservedmiRNAs were identified and they have91precursors.143new miRNAs werescreened and they have209precursors in Cx. pipiens pallens. At the same time, we compared the miRNA difference between sensitive and resistant strains of Cx.pipiens pallens.
     4We detected insect specific miRNAs, miR-932, miR-980, miR-998, miR-999and mosquito-specific miRNAs, miR-1891, miR-1889and miR-2941in our data.miRNA cluster was analysed with the10K bp as the maximum distance. Sevenclusters were found in our data, including let-7and miR-125cluster which is mostcommon in insects. PCR and T-A cloning were used to detect the pre-miRNA. Thesequencing results show that the stem of precursor is conserved, while the nucleotidemutation is more common in the loop compared with Cx. quinquefasciatus. Thisphenomenon provides a new feasibility for the systematic classification ofCx.pipiens pallens and Cx.quinquefascias.
     5We selected significant different miRNA detected by solexa sequencing andfunction known miRNA for quantitative verification. The expression levels ofmiR-279-3p, miR-13, miR-989, miR-4448、miR-71and miR-285are higher in thesusceptible strain than in the resistant strain, and those of miR-317, miR-2b andmiR-92a are higher in the resistant strain than in the susceptible strain.
     We find the interations of miR-71and CYP325BG33'UTR sequence throughtarget prediction principle. Dual fluorescence report test confirmed the interactionbetween miR-71and CYP325BG3. We speculate that miR-71may involve indeltamethrin resistance through regulating the expression level of CYP325BG3.
     This study firstly reported the miRNA expression profiling in Cx. pipienspallens, identificated the differentially expressed miRNA in deltamethrin resistantand susceptible strains, and found miR-71can regulate CYP325BG3transcription.Our study has important theoretical significance and potential practical value.
引文
1.Barrett AD, Higgs S. Yellow fever: a disease that has yet to be conquered. Annu Rev Entomol.2007;52:209-29.
    2.Kostiukov MA, Alekseev AN, Bulychev VP, Gordeeva ZE.[Experimental evidence for infection ofCulex pipiens L. mosquitoes by West Nile fever virus from Rana ridibunda Pallas and its transmissionby bites]. Med Parazitol (Mosk).1986;(6):76-8.
    3.Gubler DJ. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economicproblem in the21st century. Trends Microbiol.2002;10(2):100-3.
    4.Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes ofPlasmodium falciparum malaria. Nature.2005;434(7030):214-7.
    5.Hanson J, Lam SW, Mohanty S, Alam S, Hasan MM, Lee SJ, et al. Central venous catheter use insevere malaria: time to reconsider the World Health Organization guidelines? Malar J.2011;10:342.
    6.Kyle JL, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol.2008;62:71-92.
    7.Quelennec G.[The chemical control of disease vectors. Evaluation of new insecticides. Operationalinsecticides. New insecticides (author's transl)]. Med Trop (Mars).1978;38(6):643-50.
    8.Sparagano OA, De Luna CJ. From population structure to genetically-engineered vectors: new waysto control vector-borne diseases? Infect Genet Evol.2008;8(4):520-5.
    9.陆宝麟.蚊虫综合治理:科学出版社;1999.
    10.Gisi U, Sierotzki H, Cook A, McCaffery A. Mechanisms influencing the evolution of resistance toQo inhibitor fungicides. Pest Manag Sci.2002;58(9):859-67.
    11.Weill M, Berthomieu A, Berticat C, Lutfalla G, Negre V, Pasteur N, et al. Insecticide resistance: asilent base prediction. Curr Biol.2004;14(14): R552-3.
    12.Bates SL, Zhao JZ, Roush RT, Shelton AM. Insect resistance management in GM crops: past,present and future. Nat Biotechnol.2005;23(1):57-62.
    13.Enayati AA, Vatandoost H, Ladonni H, Townson H, Hemingway J. Molecular evidence for akdr-like pyrethroid resistance mechanism in the malaria vector mosquito Anopheles stephensi. MedVet Entomol.2003;17(2):138-44.
    14.Cassanelli S, Cerchiari B, Giannini S, Bizzaro D, Mazzoni E, Manicardi GC. Use of theRFLP-PCR diagnostic test for characterizing MACE and kdr insecticide resistance in the peach potatoaphid Myzus persicae. Pest Manag Sci.2005;61(1):91-6.
    15.Li X, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to syntheticand natural xenobiotics. Annu Rev Entomol.2007;52:231-53.
    16.Mamidala P, Wijeratne AJ, Wijeratne S, Kornacker K, Sudhamalla B, Rivera-Vega LJ, et al.RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug. BMCGenomics.2012;13:6.
    17.Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E.Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol.2001;31(4-5):313-9.
    18.Bass C, Field LM. Gene amplification and insecticide resistance. Pest Manag Sci.2011;67(8):886-90.
    19.Sabourault C, Guzov VM, Koener JF, Claudianos C, Plapp FW, Jr., Feyereisen R. Overproductionof a P450that metabolizes diazinon is linked to a loss-of-function in the chromosome2ali-esterase(MdalphaE7) gene in resistant house flies. Insect Mol Biol.2001;10(6):609-18.
    20.Dunkov BC, Guzov VM, Mocelin G, Shotkoski F, Brun A, Amichot M, et al. The Drosophilacytochrome P450gene Cyp6a2: structure, localization, heterologous expression, and induction byphenobarbital. DNA Cell Biol.1997;16(11):1345-56.
    21.Kasai S, Weerashinghe IS, Shono T, Yamakawa M. Molecular cloning, nucleotide sequence andgene expression of a cytochrome P450(CYP6F1) from the pyrethroid-resistant mosquito, Culexquinquefasciatus Say. Insect Biochem Mol Biol.2000;30(2):163-71.
    22.Amichot M, Brun A, Cuany A, De Souza G, Le Mouel T, Bride JM, et al. Induction of cytochromeP450activities in Drosophila melanogaster strains susceptible or resistant to insecticides. CompBiochem Physiol C Pharmacol Toxicol Endocrinol.1998;121(1-3):311-9.
    23.Carino FA, Koener JF, Plapp FW, Jr., Feyereisen R. Constitutive overexpression of the cytochromeP450gene CYP6A1in a house fly strain with metabolic resistance to insecticides. Insect BiochemMol Biol.1994;24(4):411-8.
    24.Kasai S, Scott JG. A house fly gene homologous to the zinc finger proto-oncogene Gfi-1. BiochemBiophys Res Commun.2001;283(3):644-7.
    25.Liu N, Scott JG. Genetic analysis of factors controlling high-level expression of cytochrome P450,CYP6D1, cytochrome b5, P450reductase, and monooxygenase activities in LPR house flies, Muscadomestica. Biochem Genet.1996;34(3-4):133-48.
    26.Syvanen M, Zhou ZH, Wang JY. Glutathione transferase gene family from the housefly Muscadomestica. Mol Gen Genet.1994;245(1):25-31.
    27.Huang HS, Hu NT, Yao YE, Wu CY, Chiang SW, Sun CN. Molecular cloning and heterologousexpression of a glutathione S-transferase involved in insecticide resistance from the diamondbackmoth, Plutella xylostella. Insect Biochem Mol Biol.1998;28(9):651-8.
    28.Field LM, Devonshire AL. Evidence that the E4and FE4esterase genes responsible for insecticideresistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem J.1998;330(Pt1):169-73.
    29.Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentallyregulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid inDrosophila. Cell.2003;113(1):25-36.
    30.Weng R, Cohen SM. Drosophila miR-124regulates neuroblast proliferation through its targetanachronism. Development.2012;139(8):1427-34.
    31.Wang X, Zhang J, Li F, Gu J, He T, Zhang X, et al. MicroRNA identification based on sequenceand structure alignment. Bioinformatics.2005;21(18):3610-4.
    32.Winter F, Edaye S, Huttenhofer A, Brunel C. Anopheles gambiae miRNAs as actors of defencereaction against Plasmodium invasion. Nucleic Acids Res.2007;35(20):6953-62.
    33.Li S, Mead EA, Liang S, Tu Z. Direct sequencing and expression analysis of a large number ofmiRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs. BMC Genomics.2009;10:581.
    34.Bryant B, Macdonald W, Raikhel AS. microRNA miR-275is indispensable for blood digestion andegg development in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A.2010;107(52):22391-8.
    35.Skalsky RL, Vanlandingham DL, Scholle F, Higgs S, Cullen BR. Identification of microRNAsexpressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC Genomics.2010;11:119.
    36.唐振华.昆虫抗药性及其治理:农业出版社;1993.
    37.李玉兰,朱昌亮.淡色库蚊溴氰菊酯抗性治理的初步研究.医学动物防制.1999;15(2):57-9.
    38.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitativePCR and the2(-Delta Delta C(T)) Method. Methods.2001;25(4):402-8.
    39.Wang X. Systematic identification of microRNA functions by combining target prediction andexpression profiling. Nucleic Acids Res.2006;34(5):1646-52.
    40.Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicatesthat thousands of human genes are microRNA targets. Cell.2005;120(1):15-20.
    41.Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistancein mosquitoes. Insect Biochem Mol Biol.2004;34(7):653-65.
    42.Yan L, Yang P, Jiang F, Cui N, Ma E, Qiao C, et al. Transcriptomic and phylogenetic analysis ofCulex pipiens quinquefasciatus for three detoxification gene families. BMC Genomics.2012;13:609.
    43.David JP, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, et al. The Anopheles gambiaedetoxification chip: a highly specific microarray to study metabolic-based insecticide resistance inmalaria vectors. Proc Natl Acad Sci U S A.2005;102(11):4080-4.
    44.Muerdter F, Olovnikov I, Molaro A, Rozhkov NV, Czech B, Gordon A, et al. Production ofartificial piRNAs in flies and mice. RNA.2012;18(1):42-52.
    45.Wang SH, Elgin SC. Drosophila Piwi functions downstream of piRNA production mediating achromatin-based transposon silencing mechanism in female germ line. Proc Natl Acad Sci U S A.2011;108(52):21164-9.
    46.Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. EndogenoussiRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature.2008;453(7194):539-43.
    47.Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, et al. An endogenous smallinterfering RNA pathway in Drosophila. Nature.2008;453(7196):798-802.
    48.Halic M, Moazed D. Transposon silencing by piRNAs. Cell.2009;138(6):1058-60.
    49.Hartig JV, Tomari Y, Forstemann K. piRNAs--the ancient hunters of genome invaders. Genes Dev.2007;21(14):1707-13.
    50.Onstad DW, Crowder DW, Mitchell PD, Guse CA, Spencer JL, Levine E, et al. Economics versusalleles: balancing integrated pest management and insect resistance management for rotation-resistantwestern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol.2003;96(6):1872-85.
    51.Pasteur N, Georghiou GP. Improved filter paper test for detecting and quantifying increasedesterase activity in organophosphate-resistant mosquitoes (Diptera: Culicidae). J Econ Entomol.1989;82(2):347-53.
    52.肖燕,吴能.蚊体羧酯酶定量测定方法的改进.中国媒介生物学及控制杂志.1993;4(4):314-5.
    53.王靖,袁家桂,孙耘芹.小菜蛾抗性个体不敏感乙酰胆碱酯酶的鉴定.昆虫学报.1997;40(2):128-34.
    54.Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, et al. MicroRNAsaccurately identify cancer tissue origin. Nat Biotechnol.2008;26(4):462-9.
    55.Hartl M, Loschek LF, Stephan D, Siju KP, Knappmeyer C, Kadow IC. A new Prospero andmicroRNA-279pathway restricts CO2receptor neuron formation. J Neurosci.2011;31(44):15660-73.
    56.Turner SL, Li N, Guda T, Githure J, Carde RT, Ray A. Ultra-prolonged activation of CO2-sensingneurons disorients mosquitoes. Nature.2011;474(7349):87-91.
    57.Gong M, Shen B, Gu Y, Tian H, Ma L, Li X, et al. Serine proteinase over-expression in relation todeltamethrin resistance in Culex pipiens pallens. Arch Biochem Biophys.2005;438(1):53-62.
    58.Zhou D, Hao S, Sun Y, Chen L, Xiong C, Ma L, et al. Cloning and characterization ofprophenoloxidase A3(proPOA3) from Culex pipiens pallens. Comp Biochem Physiol B BiochemMol Biol.2012;162(4):57-65.
    59.Zou Z, Shin SW, Alvarez KS, Bian G, Kokoza V, Raikhel AS. Mosquito RUNX4in the immuneregulation of PPO gene expression and its effect on avian malaria parasite infection. Proc Natl AcadSci U S A.2008;105(47):18454-9.
    60.Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila MicroRNA targets.PLoS Biol.2003;1(3): E60.
    61.Marco A, Hooks K, Griffiths-Jones S. Evolution and function of the extended miR-2microRNAfamily. RNA Biol.2012;9(3):242-8.
    62.Ge W, Chen YW, Weng R, Lim SF, Buescher M, Zhang R, et al. Overlapping functions ofmicroRNAs in control of apoptosis during Drosophila embryogenesis. Cell Death Differ.2012;19(5):839-46.
    63.Fassina A, Marino F, Siri M, Zambello R, Ventura L, Fassan M, et al. The miR-17-92microRNAcluster: a novel diagnostic tool in large B-cell malignancies. Lab Invest.2012;92(11):1574-82.
    64.Gao X, Zhang R, Qu X, Zhao M, Zhang S, Wu H, et al. MiR-15a, miR-16-1and miR-17-92clusterexpression are linked to poor prognosis in multiple myeloma. Leuk Res.2012;36(12):1505-9.
    65.Zhang G, Wang H, Shi J, Wang X, Zheng H, Wong GK, et al. Identification and characterization ofinsect-specific proteins by genome data analysis. BMC Genomics.2007;8:93.
    66.Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, Hannon GJ, et al. Systematic discoveryand characterization of fly microRNAs using12Drosophila genomes. Genome Res.2007;17(12):1865-79.
    67.Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature.2012;487(7405):94-8.
    68.陈汉彬.试论蚊总科的系统发育.贵阳医学院学报.1987;1:001.
    69.陈汉彬,陆宝麟.中国尖音库蚊复组的研究.贵阳医学院学报.1983;8(1):1-2.
    70.叶炳辉,朱晓龙,赵学忠,张应阔,蒋志宽,朱昌亮.淡色库蚊和致倦库蚊蛋白质斑点比较研究.南京医科大学学报(自然科学版).1988;3:042.
    71.Debrunner-Vossbrinck BA, Vossbrinck CR, Vodkin MH, Novak RJ. Restriction analysis of theribosomal DNA internal transcribed spacer region of Culex restuans and mosquitoes in the Culexpipiens complex. J Am Mosq Control Assoc.1996;12(3Pt1):477-82.
    72.Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.2004;116(2):281-97.
    73.Wei Y, Chen S, Yang P, Ma Z, Kang L. Characterization and comparative profiling of the smallRNA transcriptomes in two phases of locust. Genome Biol.2009;10(1): R6.
    74.Behura SK. Insect microRNAs: Structure, function and evolution. Insect Biochem Mol Biol.2007;37(1):3-9.
    75.Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoSBiol.2005;3(3): e85.
    76.Weaver DB, Anzola JM, Evans JD, Reid JG, Reese JT, Childs KL, et al. Computational andtranscriptional evidence for microRNAs in the honey bee genome. Genome Biol.2007;8(6): R97.
    1.Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAswith antisense complementarity to lin-14. Cell.1993;75(5):843-54.
    2.Wang X, Zhang J, Li F, Gu J, He T, Zhang X, et al. MicroRNA identification based on sequence andstructure alignment. Bioinformatics.2005;21(18):3610-4.
    3.Bryant B, Macdonald W, Raikhel AS. microRNA miR-275is indispensable for blood digestion andegg development in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A.2010;107(52):22391-8.
    4.Lagos-Quintana M. Identification of Novel Genes Coding for Small Expressed RNAs. Science.2001;294(5543):853-8.
    5.Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probableregulatory roles in Caenorhabditis elegans. Science.2001;294(5543):858-62.
    6.Lee RC. An Extensive Class of Small RNAs in Caenorhabditis elegans. Science.2001;294(5543):862-4.
    7.Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse andhuman. RNA.2003;9(2):175-9.
    8.Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, et al. The small RNAprofile during Drosophila melanogaster development. Dev Cell.2003;5(2):337-50.
    9.Bashirullah A. Coordinate regulation of small temporal RNAs at the onset of Drosophilametamorphosis. Developmental Biology.2003;259(1):1-8.
    10.Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V. Temporal regulation of microRNAexpression in Drosophila melanogaster mediated by hormonal signals and broad-Complex geneactivity. Dev Biol.2003;259(1):9-18.
    11.Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. MiR-15a andmiR-16-1cluster functions in human leukemia. Proc Natl Acad Sci U S A.2008;105(13):5166-71.
    12.Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC. miR-15a and miR-16-1down-regulation in pituitary adenomas. J Cell Physiol.2005;204(1):280-5.
    13.Gao SM, Xing CY, Chen CQ, Lin SS, Dong PH, Yu FJ. miR-15a and miR-16-1inhibit theproliferation of leukemic cells by down-regulating WT1protein level. J Exp Clin Cancer Res.2011;30:110.
    14.Kasar S, Salerno E, Yuan Y, Underbayev C, Vollenweider D, Laurindo MF, et al. Systemic in vivolentiviral delivery of miR-15a/16reduces malignancy in the NZB de novo mouse model of chroniclymphocytic leukemia. Genes Immun.2012;13(2):109-19.
    15.Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, et al. miR-122, a mammalianliver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinitycationic amino acid transporter CAT-1. RNA Biol.2004;1(2):106-13.
    16.Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification oftissue-specific microRNAs from mouse. Curr Biol.2002;12(9):735-9.
    17.Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, et al. The microRNAs ofCaenorhabditis elegans. Genes Dev.2003;17(8):991-1008.
    18.Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes. Science.2003;299(5612):1540.
    19.Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of DrosophilamicroRNA genes. Genome Biol.2003;4(7): R42.
    20.Ohler U, Yekta S, Lim LP, Bartel DP, Burge CB. Patterns of flanking sequence conservation and acharacteristic upstream motif for microRNA gene identification. RNA.2004;10(9):1309-22.
    21.Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing andsubcellular localization. EMBO J.2002;21(17):4663-70.
    22.Zeng Y, Cullen BR. Sequence requirements for micro RNA processing and function in human cells.RNA.2003;9(1):112-23.
    23.Basyuk E, Suavet F, Doglio A, Bordonne R, Bertrand E. Human let-7stem-loop precursors harborfeatures of RNase III cleavage products. Nucleic Acids Res.2003;31(22):6593-7.
    24.Glazov EA, Cottee PA, Barris WC, Moore RJ, Dalrymple BP, Tizard ML. A microRNA catalog ofthe developing chicken embryo identified by a deep sequencing approach. Genome Research.2008;18(6):957-64.
    25.Hammond SM. Argonaute2, a Link Between Genetic and Biochemical Analyses of RNAi. Science.2001;293(5532):1146-50.
    26.Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell.2003;115(2):209-16.
    27.Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of theRNAi enzyme complex. Cell.2003;115(2):199-208.
    28.Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science.2002;297(5589):2056-60.
    29.Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expressionof cognate mRNAs when expressed in human cells. Mol Cell.2002;9(6):1327-33.
    30.Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by21-and22-nucleotideRNAs. Genes Dev.2001;15(2):188-200.
    31.Tang G, Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing inplants. Genes Dev.2003;17(1):49-63.
    32.Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila MicroRNA targets.PLoS Biol.2003;1(3): E60.
    33.Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalianmicroRNA targets. Cell.2003;115(7):787-98.
    34.Lewis BP, Burge CB, Bartel DP. Conserved Seed Pairing, Often Flanked by Adenosines, Indicatesthat Thousands of Human Genes are MicroRNA Targets. Cell.2005;120(1):15-20.
    35.Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. GenesDev.2004;18(5):504-11.
    36.Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on proteinoutput. Nature.2008;455(7209):64-71.
    37.Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changesin protein synthesis induced by microRNAs. Nature.2008;455(7209):58-63.
    38.Easow G, Teleman AA, Cohen SM. Isolation of microRNA targets by miRNP immunopurification.RNA.2007;13(8):1198-204.
    39.Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNAinteraction maps. Nature.2009;460(7254):479-86.
    40.Hendrickson DG, Hogan DJ, Herschlag D, Ferrell JE, Brown PO. Systematic identification ofmRNAs recruited to argonaute2by specific microRNAs and corresponding changes in transcriptabundance. PLoS One.2008;3(5): e2126.
    41.Ritchie W, Flamant S, Rasko JE. Predicting microRNA targets and functions: traps for the unwary.Nat Methods.2009;6(6):397-8.
    42. rom UA, Nielsen FC, Lund AH. MicroRNA-10a Binds the5′UTR of Ribosomal ProteinmRNAs and Enhances Their Translation. Molecular Cell.2008;30(4):460-71.
    43.Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res.2004;32(Database issue):D109-11.
    44.Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation.Science.2004;303(5654):83-6.
    45.Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditiselegans. Nature.2003;426(6968):845-9.
    46.Grun D, Wang YL, Langenberger D, Gunsalus KC, Rajewsky N. microRNA target predictionsacross seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol.2005;1(1): e13.
    47.Silver SJ, Hagen JW, Okamura K, Perrimon N, Lai EC. Functional screening identifies miR-315asa potent activator of Wingless signaling. Proc Natl Acad Sci U S A.2007;104(46):18151-6.
    48.Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentallyregulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid inDrosophila. Cell.2003;113(1):25-36.
    49.Kadener S, Menet JS, Sugino K, Horwich MD, Weissbein U, Nawathean P, et al. A role formicroRNAs in the Drosophila circadian clock. Genes Dev.2009;23(18):2179-91.
    50.Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, et al. Conserved MicroRNA miR-8/miR-200and its target USH/FOG2control growth by regulating PI3K. Cell.2009;139(6):1096-108.
    51.Li Y, Wang F, Lee JA, Gao FB. MicroRNA-9a ensures the precise specification of sensory organprecursors in Drosophila. Genes Dev.2006;20(20):2793-805.
    52.Bejarano F, Smibert P, Lai EC. miR-9a prevents apoptosis during wing development by repressingDrosophila LIM-only. Dev Biol.2010;338(1):63-73.
    53.Biryukova I, Asmar J, Abdesselem H, Heitzler P. Drosophila mir-9a regulates wing developmentvia fine-tuning expression of the LIM only factor, dLMO. Dev Biol.2009;327(2):487-96.
    54.Chatterjee R, Chaudhuri K. An approach for the identification of microRNA with an application toAnopheles gambiae. Acta Biochim Pol.2006;53(2):303-9.
    55.Winter F, Edaye S, Huttenhofer A, Brunel C. Anopheles gambiae miRNAs as actors of defencereaction against Plasmodium invasion. Nucleic Acids Research.2007;35(20):6953-62.
    56.Mead E, Tu Z. Cloning, characterization, and expression of microRNAs from the Asian malariamosquito, Anopheles stephensi. BMC Genomics.2008;9(1):244.
    57.Li S, Mead EA, Liang S, Tu Z. Direct sequencing and expression analysis of a large number ofmiRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs. BMC Genomics.2009;10:581.
    58.Skalsky RL, Vanlandingham DL, Scholle F, Higgs S, Cullen BR. Identification of microRNAsexpressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC Genomics.2010;11:119.
    59.Hussain M, Walker T, O'Neill SL, Asgari S. Blood meal induced microRNA regulates developmentand immune associated genes in the Dengue mosquito vector, Aedes aegypti. Insect Biochem MolBiol.2013;43(2):146-52.
    60.Osei-Amo S, Hussain M, O'Neill SL, Asgari S. Wolbachia-induced aae-miR-12miRNA negativelyregulates the expression of MCT1and MCM6genes in Wolbachia-infected mosquito cell line. PLoSOne.2012;7(11): e50049.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700