非织造基纳米银薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米银粒子由于具有量子尺寸效应、表面效应和宏观量子隧道效应等许多特有的性质,具有银质材料所不具备的光电特性、光催化能力、抗菌、电磁屏蔽及吸收和发射光谱等性能。将纳米银粒子构建成薄膜是由试验向应用转变的重要环节。
     本文运用低温磁控溅射沉积技术在非织造材料表面沉积功能性纳米银薄膜,实现纺织材料的表面功能化。一方面克服采用纳米颗粒材料作为填料的纳米微粒团聚问题,减少加工工艺流程和污染;另一方面可以降低加工成本并实施在线加工。重点探讨非织造材料表面银功能纳米结构的形成原理、制备技术及其性能,满足市场上对功能非织造材料的需求。因此,本课题既具有前瞻性又具有可行性,并具有重要的学术价值和商业应用前景;同时本课题的研究将为功能非织造材料的广泛应用提供理论依据和实验基础。
     论文以丙纶(PP)和聚乳酸(PLA)非织造布为基材,制备纳米银抗菌薄膜;以涤纶(PET)非织造布为基材,制备具有良好导电、电磁屏蔽及防紫外透射功能的纳米银功能薄膜。主要探讨溅射工艺参数以及氩气等离子预处理对各性能的影响。利用扫描电镜(SEM)、原子力显微镜(AFM)和X射线能谱分析仪(EDX)研究了纳米银薄膜的表面微观形貌及组成成分;利用X射线衍射分析(XRD)研究纳米银薄膜的微结构;以四探针测试仪测定银薄膜方块电阻值;根据ASTM D4935—99标准测试镀银非织造布的电磁屏蔽效能;采用振荡烧瓶法测试非织造基纳米银薄膜的抗菌性能。结果表明,溅射时间和氩等离子预处理是影响抗菌性能的两大关键因素,而溅射功率、溅射压强,气体流量对抗菌性能影响较小。对于PP及PLA非织造布,对大肠杆菌和金黄色葡萄球菌的抑菌率均达100%时的纳米银薄膜厚度分别为3nm和2nm;在相同工艺条件下,经氩等离子预处理的纳米银薄膜抗菌性能有明显的提高,对大肠杆菌和金黄色葡萄球菌的抑菌率均达100%时的纳米银薄膜厚度仅分别是2nm和0.5nm。溅射工艺参数影响薄膜的导电、电磁屏蔽和透射率。导电性能随着膜厚的增加而增强;对相同厚度的薄膜,随着溅射功率的增加,导电性能下降;随着氩气压强的增大,导电性能先下降后提高;电磁屏蔽效能(SE)随着薄膜厚度的增加而增大,膜厚为100nm时屏蔽效能(SE值)达到了26dB以上(屏蔽率大于99.7%);在250~600nm波长范围内,非织造基纳米银薄膜表现为极强的紫外和可见光屏蔽功能,薄膜厚度达到50nm以上,其透光率均在6%以下。
     论文首次提出非织造基纳米银薄膜的复合抗菌机理,即银离子的溶出抗菌和纳米银薄膜的表面抑制抗菌。一方面由于银离子的溶出及其活性作用,另一方面,基材通过氩等离子预处理及溅射银膜后,细菌对PP(或PLA)基溅射银膜表面的粘附自由能由负转为正,表明粘附过程难于发生,即使粘附也是可逆的,可从能量的角度较好的解释了溅射纳米银薄膜的表面抑制细菌性。
     论文探讨了金属与高分子基材之间的界面结合机理,分析基材预处理方式对界面结合牢度的影响,用耐磨法及剥离法较好的表征了薄膜与基材之间的结合牢度。首次提出在非织造基表面溅射纳米银薄膜具有分形特征的观点,分形维能较好的描述薄膜表面形貌;分形维越大,薄膜表面质量越高,分形维越小,表面质量越差。分形维与薄膜表面的导电性、颗粒直径、屏蔽性能均具有对应关系。论文研究了非织造基纳米银薄膜的生长机理及其微结构,对银薄膜厚度小于5nm的纳米银抗菌膜,可以认为是层生长型,因为溅射后薄膜的粗糙度未有明显的变化;对厚度在30-40nm以上的纳米银薄膜,主要是核生长模式或层加岛模式,这与基材表面状态、基材温度、溅射工艺条件有关。微结构分析表明:采用磁控溅射法在非织造布基材上沉积了不同厚度的Ag膜,Ag膜的晶体结构仍为面心立方,呈多晶状态,随着银膜厚度的增加,薄膜的平均晶粒尺寸逐渐变大。
Silver nanoparticles possess the opto-electrical,photocatalitic,anti-bacterial and electromagnetic shielding properties,which common silver materials don't have,due to quantum effect,surface effect and quantum tunneling effect.The construction of nanostructure silver films from silver nanoparticles is the key step in the applications of this material.
     In this research,low temperature magnetron sputter coating was employed to deposit nanostructured silver films on the surface of nonwovens to functionalize the textile materials.The use of magnetron sputter coating not only overcomed the problems of aggregation of nanoparticles as filling particles,but also shortened the production processes and eliminated the water pollution.The use of magnetron sputter coating,on the other hand,could reduce the processing cost.This research focused on the formation principle of the nanostructured silver,preparation techniques and properties of the nanostructured silver deposited on the surface of nonwovens to meet the demands of the markets for functional textiles.This work will provide the theoretical and practical guidance for the development of functional textiles based on its advanced and practical findings.
     The antibacterial silver films were deposited on polypropylene(PP) and PLA nonwovens and the silver films with the properties of conductive,electro-magnetic shielding and anti-ultraviolet radiation were deposited on polyester(PET) in this project.The effects of sputtering parameters and argon plasma pretreatment for nonwovens on the properties of the samples were investigated.The surface morphology was observed with scanning electron microscopy(SEM) and atomic force microscopy(AFM).Surface chemical compositions were examined employing X-ray energy dispensive spectrometer(EDX).The crystal structures of silver films were observed using X-ray diffraction(XRD).Electrical resistances of silver films were measured by four-probe tester.Electro-magnetic shielding properties of nonwovens coated with silver films were assessed according to ASTM D4935-99 test standard.The antibacterial performance was tested using shake flask test.The test results indicated that deposition time and argon plasma pretreatment were the two key factors affecting antibacterial properties of the coated materials, while sputtering power,gas pressure and gas flow had a slight influence on antibacterial properties.Both the reduction percentage of Staphylococcus aureus and Escherichia coli bacteria reached 100%for PP nonwovens,when the silver film thickness was above 3nm.Both the reduction percentage got to 100%for PLA nonwovens,as the coating thickness exceeded 2nm.Under the same processing conditions,the coated samples with argon plasma pretreatment showed the better antibacterial performance.The reduction percentage of both the bacteria tested reached 100%for the pretreated PP and PLA nonwovens,when the film thickness got to 2nm and 0.5nm respectively.Sputtering parameters also affected the electrical, electromagnetic and ultra-violet transmission properties of the coated materials.Electrical conductivity was improved as the film thickness increased.With the same film thickness,the electrical conductivity was decreased as the sputtering power increased,while the electrical conductivity was first decreased and then improved as the pressure of argon increased.Electromagnetic shielding effect(SE) was increased as the film thickness increased.As the film thickness got to 100nm,the value of SE was above 26dB(shielding effect was over 99.7%).The nanostructured silver films also exhibited great ultraviolet and visible light shielding effect.The transmittance is below 6%in the wavelength range between 250 and 600nm when the film thickness was above 50nm,
     Multiple antibacterial mechanism of nanostructured silver films deposited on nonwovens were first provided in this paper.The silver ions released from the nanostructured silver films and the active action of the released silver ions,on one hand,led to the antibacterial effect and the adhension free energy between bacteria and the coated silver films,on the other hand,converted from negative to positive after argon plasma pretreatment and silver sputter coating,indicating that act of adhension could hardly take place. The adhension was reversible even if it happened.Thus,the antibacterial mechanism was well explained from the viewpoint of energy.
     The mechanism of the interfacial adhension between silver and polymer substrate was examined and discussed.The effec of argon plasma pretreatment on interfacial adhension strength was analyzed,and the adhension strength between silver films and substrate was characterized by abrasion test and peel-off test. The fractal characteristic of the silver films sputtered on nonwovens was analyzed for the first time.Fractal dimensions could well describe the surface topography of the sputtered films on the nonwoven substrates. The larger fractal dimension indicated the better surface topography.Fractal dimension was closely related to the electrical conductivity,the grain size and the electromagnetic shielding properties of the sputtered films.The growth mechanism of nanostructured silver films and the microstructure of films were investigated and explained.The growth model could be considered as layer growth when the silver film was less than 5nm.This was because the roughness of the sputtered film did not show any significant change. The growth model was regarded as nucleus growth or island growth as the film thickness was between 30nm and 40nm.It was related to the surface state of the substrate,the temperature of the substrate and the sputtering conditions.The study revealed that the crystal structure of silver films with different thicknesses on nonwovens substrate was face centered cubic.The increased film thickness led to larger average grain size of the silver crystals.
引文
[1]高绪珊,吴大诚.纳米纺织品及其应用[M].化学工业出版社,北京:2004.10.
    [2]Banchi L.New trends in technical textiles[J].Rivista Della Technologie,2001,3:62-69.
    [3]Kirstein T,Bonan J,Cotter D,et al.Electronic textiles for wearable computing systems[C].Proc.Hightex Conference,2002.
    [4]Hertleer C,Grabowska M,Van Langenhove L,et al.The use of electroconductive textiles materials for the development of a smart suit[C].4th AUTEX Conference,2OO4,0-1W4,1-8.
    [5]Hum A P J.Fabric area network-a new wireless communications infrastructure to enable ubiquitous networking and sensing on intelligent clothing[J].Comput.Networks.2001.35,391-399.
    [6]Gould P.Textiles gain intelligence[J].Materials Today,2003,6(10):38-43.
    [7]Castner,David G,Ratner,Buddy D.Biomedical surface science:Foundations to frontiers [J].Surface Science,2002,500(1-3):28-60.
    [8]Lee H J,Teong S H.Bacteriostasis of nanosized colloidal silver on polyester nonwoven [J].Textile Research Journal,2004,74(5):442-447.
    [9]Laperre J.Dematerialisation of technology:Nanotechnology for textile[J].Unitex,2002(3):30-36.
    [10]Yeo S Y,Jeong S H.Preparation and characterization of polypropylene/silver nanocomposite fibers[J].Polymer International,2003,52(7):1053-1057.
    [11]Jiang S Q,Newton E,YuenC.W M,et al.Chemical Silver Plating and Its Application to Textile[J].Journal of Applied Polymer Science,2005,96:919-926.
    [12]潘道皑等.物质结构[M].北京:高等教育出版社,1982,615-618.
    [13]迟广俊等.银纳米线的TEM表征[J].物理化学学报,2002,18(6):532-535.
    [14]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [15][美]R E.纽纳姆著.卢绍芳,吴新涛译.结构与性能的关系[M].北京:科学出版社,1983.
    [16]熊金钰,徐国财.纳米银的制备及表征[J].金属功能材料,2004,1l(2):38-42.
    [17]Altman M S,Chung W F,He Z Q,et al.Quantum size effect in low energy electron diffraction of thin films[J].Applied Surface Science,2001,15(169/170):82-87.
    [18]吴锦雷,林琳,钱卫,等.在复合介质薄膜中纳米金属微粒的光致荧光增强[J].量子学报,1999(6):547-548.
    [19]Young T F,Liu J F,Wu C C,et al.Study of Ag thin films deposited on porous silicon [J].Applied Surface Science,1996(92):57-60.
    [20]林琳,吴锦雷.Ag-BaO纳米薄膜红、蓝紫光波段光致荧光现象研究(1)[J].物理学报,1999,48(3):491-496.
    [21]汤斌,张庆庆.光析出二氧化态负载银膜的制备及其光催化持性[J].感光科学与光化学,2003,21(5):328-333.
    [22]Akamatsu kensuke,Takei Shodo,Mizuhaza Minoru,et al.Preparation and characterization of polymer thin films containing silver and silver sulfide nanopa rticles[J].Thin Solid Films,2000,359(1):55-60.
    [23]Del Re M,Gouttebaron R,Dauchot J P,et al.Growth and morphology of magnetron sputter deposited silver films[J].Surface and Coating Technology,2002,1(51/52):86-90.
    [24]Rizzo A,Sagace M,Galietti U,et al.Measurements of srain during vapour deposition of thin films and multilayers[J].Thin Solid Films,2003,433(1/2):144-148.
    [25]Angelakeris M,Crisan O,Papaioannou E,et al.Fabrication of novel magnetic nanostructures by colloidal bimetallic nanocrystals and multilayers[J].Materials Science and Engineering,2003,23(6/8):873-878.
    [26]Li D G,Chert S H,Zhao S Y,et al.Simple method for preparation of cubic Ag nanoparticles and their Self-assembled film[J].Thin Solid Films,2004,460(1/2):78-82.
    [27]Sathaye S D,Patil K R,Paranjape D V,et al.Nanocrystalline silver particulate films by liquid-liquid interface reaction technique[J].Materials Research Bulletin,2001,36:1149-1155.
    [28]顾大明.次磷酸盐液相还原法快速制备纳米银粉[J].精细化工,2002,19(11):634-635,674.
    [29]李德刚,陈慎豪.相转移方法制备银纳米粒子单层膜[J].化学学报,2002,60(3):408-412.
    [30]司民真,武荣国.负电性纳米银的制备及性质研究[J].化学物理学报,2001,14(4):465-468.
    [31张庆敏,李彦.聚氧乙烯类表面活性剂体系中银纳米颗粒的合成[J].物理化学学报,2001,17(6):537-541.
    [32]郭立俊,魏红彬.银纳米粒子的制备及溴离子对其表面性质的影响[J].河南大学学报(自科版),2000,30(3):20-23.
    [33]姚素薇,刘恒权,张卫国,等.在线性壳聚糖膜内原位还原制备银纳米粒子及银单晶体[J].物理化学学报,2003,19(5):464-468.
    [34]Antonino Sclafani,Mozzanega Marie No,lie Pichat Pierre.Effect of silver deposits on the photocatalytic activity of titanium dioxide samplesforthe dehydrogenationor oxidation of 2-propanol[J].Photoehem Photobiol A,1991,59(2):181.
    [35]井立强,侯海鸽.Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性[J].催化学报,2002,23(4):336-340.
    [36]李宏涛,宋晓秋.非水溶剂法碘化物系银纳米徽粉的制备[J].长春工业大学学报(自然科学版),2002,23(308):121-124.
    [37]Han Minghan,Lin Hong,Yuan Yanhui,et al.Pressure drop for two phase counter-current flow in a packed column with a novel internal[J].Chemical Engineering Journal,2003,94(3):171-260.
    [38]王银海,牟季美.交流电在Al2O3模板中沉积金属机理探讨[J].物理化学学报,2001,17(2):116-118.
    [39]廖学红,李鑫.电化学制备纳米银[J].黄冈师范学院学报,2001,21(5):58-59.
    [40]廖学红,赵小宁.类球形和树枝状纳米银的超声电化学制备[J].南京大学学报(自然科学版),2002,38(1):119-123.
    [41]张韫宏.L-B膜内银超微粒子的电化学制备及表征[J].中国科学(B辑),1996,26(6):522-528.
    [42]张兆艳,李钱陶.纳米银粒子的着色与发光[J].玻璃与搪瓷,2002,30(3):25-28.
    [43]张兆艳.影响SiO2薄膜中银粒子发光强度的因素分析[J].无机材料学报,2001,16(4):747-751.
    [44]赵高凌.银钠米粒子/二氧化钛复合薄膜的溶胶-凝胶法制备及其光学性质的研究[J].材料科学与工程,2001,19(1):21-25.
    [45]杜勇,杨小成,方炎.激光烧蚀法制备纳米银胶体及其特征研究[J].光电子激光,2003,14(4):383-386.
    [46]Fojtik Anton,Henglein Amim.Laser Ablation of Films and Suspended Particles in a Solvent:Formation of Cluster and Colloid Solutions[J].Ber Bunsen-Ges Phem Chen,1993,97(2):252-254.
    [47]Henglein Amim.Physicochemical properties of small metal particles in solution: "microelectrode" reactions,chemisorption,composite metal particles,and the atomto-metal transition[J].J Phys Chen,1993,97:5457.
    [48]Chen Yu hung,Yeh Chen sheng.Laser ablation method:use of surfactants to form the dispersed Ag nanoparticles[J].Colloids Surf A,2002,(197):133-139.
    [49]Mafune F,Kohno J Y,Takeda Y,et al.Full Physical Preparation of Size-Selected Gold Nanoparticles in Solution:Laser Ablation and Laser-Induced Size Control[J].J Phys Chen B(Communication),2002,106(31):7575-7577.
    [50]Tsuji Takeshi,Iryo Kenzo,Watanabe Norihisa,et al.Preparation of silver nanoparticles by laser ablation in solution:influence of laser wavelength on particle size[J].Appl Surf Sci,2002,(202):80-85.
    [51]黄磊,凌国平,郦剑.纳米银-Al2O3复合粉末的制备[J].浙江大学学报(工学版),2003,37(1):65-69.
    [52]姚素薇,班春梅.硬脂酸单分子膜诱导电沉积Ag薄膜[J].化学世界,2002,43(11):581-583.
    [53]迟广俊,范君.银纳米线的TEM表征[J].物理化学学报,2002,18(6):532-535.
    [54]安茂忠,栾野梅,乐士儒,等.银纳米膜的电化学制备方法及性能表征[J],应用光学,2006,27(1):35-39.
    [55]许北雪,吴锦雷.稀土镧对真空蒸发沉积银纳米粒子团聚的影响[J].物理化学学报,2002,18(1):91-94.
    [56]叶钢锋,严学俭.纳米晶粒Ag-TCNQ络合物薄膜的制备及电双稳特性[J].真空科学与技术,2001,21(2):91-94.98.
    [5?]Liu Xuan jie,Cai Xun,Qiao Jinshuo,et al.The design of ZnS/Ag/ZnS transparent conductive multilayer r films[J].Thin Solid Films,2003,441(1-2):200-206.
    [58]Wilmert De Boscher,Hugo Lievens.Advances in magnetron sputter sources[J].Thin Solid Films,1999,351:15-20.
    [59]Window B.Recent advances in sputter deposition[J].Surface and Coatings Technology,1995,71:93-97.
    [60]Dowling D P,Donnelly K,McConnell M L,et al.Deposition of anti-bacterial silver coatings on polymeric substrates[J].Thin Solid Films,2001,398-399:602-606.
    [61]Rizzo A,Tagliente M A,Alvisi M,et al.Structural and optical properties of silver thin films deposited by RF magnetron sputtering[J].Thin Solid Films.2001,396:29-35.
    [62]Yuqing Xiong,Hao Wu,Yah Guo,et al.Preparation and characterization of nanostructured silver thin films deposited by radio frequency magnetron sputtering[J].Thin Solid Films,2000,375:300-303.
    [63]Chiu K F,Barber Z H.Texture development in silver films deposited by ionised magnetron sputter deposition[J].Thin Solid Films,2000,358:264-269.
    [64]Scholz J,Nocke G,Hollstein F,et al.Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties [J],Surface & Coatings Technology,2005,192:252-256.
    [65]Del Re M,Gouttebaron R,Dauchota J P,et al.Growth and morphology of magnetron sputter deposited silver films[J].Surface and Coatings Technology,2002,151-152:86-90.
    [66]Subrahmanyam A,Ullash Kumar Batik.Electrical and optical properties of silver doped indium oxide thin films prepared by reactive DC magnetron sputtering[J].Journal of Physics and Chemistry of Solids,2006,67:1518-1523.
    [67]一种塑胶抗菌添加剂的制造方法[P].中国专利,1084530A.1994-03-30.
    [68]中建.俄罗斯研制出纳米银杀菌涂料[J].建材工业信息,2003(2):49-49.
    [69]刘维良,陈汴琨.纳米抗菌粉体材料的制备与应用研究[J].江苏陶瓷,2002,35(1):9-12.
    [70]李喜宏,成国祥等.PE/纳米银防霉保鲜膜研制[J].食品科学,2002,23(2):129-132.
    [71]黄巍,王建清,真空镀银抗菌包装薄膜的研究[J].包装工程,2006,27(2):43-44.
    [72]邓平晔,白新德,叶彬,等.载银抗菌功能膜的制备和研究[J].稀有金属材料与工程,2004,33(12):1278-1282.
    [73]徐瑛卜,程金树,李全华.银锌复合透明抗菌薄膜的制备及其性能研究[J].华中师范大学学报(自然科学版),2005,39(3):355-358.
    [74]张艳芳,吴战鹏,齐胜利,等.聚酰亚胺/银复合膜的制备及其亚微相态与性能研究[J].复合材料学报,2005,22(4):30-34。
    [75]安茂忠,栾野梅,乐士儒.电沉积银纳米膜的光学性质研究[J].电镀与涂饰2005,24(3):1-4.
    [76]朱超,官文超,官文杰,等.激光沉积法制备近红外高屏蔽性能透明薄膜[J].武汉理工大学学报,2005,27(11):11-14.
    [77]杨玉旺,刘敬利.纳米银研究和应用进展[J].工业催化,2003,11(12):7-12。
    [78]谢子斌,王取泉,周正国,等.Au-Ag-SiO2复合纳米金属颗粒薄膜的共振特征[J].武汉大学学报,1999,45(1):84-86.
    [79]李丽君,吴锦雷.金属超微粒子-介质复合薄膜(Ag-BaO)的光吸收特征[J].光学学报,1998,18(11):1551-1555.
    [80]Granqvist C G,Hunderi O.Optical properties of Ag-SiO_2 Cermet films:A comparison of effective-medium theories[J].Phys.Rev.B,1978,18:2897-2902.
    [81]Sun Z Q,Sun D M,Li A X,et al.XPS analysis of the oxidation of Ag-MgF_2 cermet films Vacuum[J].1999,52:243-246.
    [82]周鹏,游海洋,王松有,等.金属插层对—维光子晶体中光传输特性的影响[J].物理学报,2002,51(10):2276-2280.
    [83]孙喜莲,洪瑞金,齐红基,等.磁控溅射不同厚度银膜的微结构及其光学常数[J].物理学报 2006,55(9):4923-4927
    [84]Yong zhi Wang,Qing biao Yang,Gui ye Shan,et al.Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning[J].Materials letters,2005,59:3046-3049.
    [85]居静霞,张幼珠,胡万丽.载银棉纱的结构与抗菌性[J].印染,2006,23:8-10.
    [86]周菊先等,金属化纺织材料的研制与应用[J].上海纺织科技,2001,29(1):47-48.
    [87]杨栋梁,织物的金属化处理及其产品应用前景(一)[J].印染,2001,(9):31-35.
    [88]杨栋梁,织物的金属化处理及其产品应用前景(二)[J].印染,2001,(10):43-47.
    [89]Young Ku,Chi Ming Ma,Yung Shuen Shen.Decomposition of gaseous trichloroethylene in a photoreactor with TiO_2-coated nonwoven fiber textile[J].Applied Catalysis B:Environmental,2001,34(3):181-190.
    [90]谭绍早.聚丙烯非织造布的表面功能化研究[J].湘潭大学自然科学学报,2002,(2):21-23.
    [91]罗以喜.非织造布的金属化整理[J].非织造布,2004,12(3):13-15.
    [93]Subrahmanyam A,Ullash Kumar Barik.Electrical and optical properties of silver doped indium oxide thin films prepared by reactive DC magnetron sputtering[J].Journal of Physics and Chemistry of Solids,2006,67:1518-1523.
    [92]Charton C,Fahland M.Optical and electrical properties of sputtered Ag films on PET webs[J].Surface and Coatings Technology,2001,142-144:175-180.
    [94]王锦嫣,王鸿博,魏取福,高卫东.磁控溅射制备纳米结构银抗菌非织造布[J].纺织学报,2006,27(10):50-53.
    [95]QF Wei,et aI.AFM and ESEM characterisation of functionally nanostructured fibers[J].Applied Surface Science,2004,236:456-460.
    [96]QF Wei,H Ye,DY Hou,HB Wang,WDGao.Surface functionalization of polymer nanofibers by silver sputter coating[J].Journal of Applied Polymer Science,2006,99(5):2384-2388.
    [1]Banchi L.New trends in technical textiles[J].Rivista Della Technologie,2001,3:62-69.
    [2]Locher I,Kirstein T,Tr(o|)ster G.Electronic Textiles[C].Proc.ICEWES Conference,Cottbus,Germany,2002:25-27.
    [3]L Van Langenhove,C Hertleer,M Catrysse,et al.The use of textile electrodes in a hospital environment[C].in AUTEX-World Textile Conference,Gdansk,Poland,2003:286-290.
    [4]A P J Hum.Fabric area network-a new wireless communications infrastructure to enable ubiquitous networking and sensing on intelligent clothing[J].Computers Networks 2001(35):391-399.
    [5]Gould P.Textiles gain intelligence[J].Materials Today,2003,6(10):38-43.
    [6]Dowling D P,Donnelly K.Deposition of anti-bacterial silver coatings on polymeric substrates[J].The solid films,389-399(2001):602-606.
    [7]Yeo S Y,Jeong S H,Preparation and characterization of polypropylene/silver nanocomposite fibers[J].Polymer International,2003,52(7):1053-1057.
    [8]郑伟涛,薄膜材料与薄膜技术[M].北京:化学工业出版社,2004.1
    [9]杨列宇,关文铎,顾卓明.材料表面薄膜技术[M].北京:人民交通出版社,1991.5.
    [10]傅雅琴,陈文兴,袁骏,等.化学镀镍导电涤纶织物的研究[J].浙江丝绸工学院学报,1999,16(1):125
    [11]赖冬志,姚跃飞,陈文兴,等.化学镀铁镍合金织物的隔音性能的研究[J].浙江工程学院学报,2003,20(4):2622265
    [12]李荻,郭宝兰,李宏,具有电磁屏蔽性能的金属织物复合材料[J].航空学报 2000(21):43-47.
    [13]Zhao Q,Liu Y,Wang C.Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties[J],Applied Surface Science.2005,252:1620-1627.
    [14]詹建朝,张辉,沈兰萍.不同增重率化学镀银电磁屏蔽织物的研究[J].表面技术,2006,35(3):25-27。
    [15]赵俊,吕广庶,王迎春,等.涤纶织物化学镀镍前处理粗化工艺的研究[J].电镀与涂饰,2006,25(5):16-19.
    [16]张碧田,李国勋,翟俊瑛,等.镀镍织物的制备及应用[J].稀有金属,1995,19(6):438-442.
    [17]张碧田,李国勋,翟俊瑛,等.镀镍织物性能的研究[J].电镀与环保,1997,17(3):17-18.
    [18]东华大学.一种电磁屏蔽纺织品及其制备方法[P].中国专利:1587494,2005-03-02.
    [19]Yvette Dietzel,Waldemar Przyborowski,Gunter Nocke.lnvestigation of PVD arc coatings on polyamide fabrics[J].Surface and Coatings Technology,2000,135:75-81.
    [20]Hong Y K,Lee C Y,Jeong C K.Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag[J].Current Applied Physics,2001,1:439-442.
    [21]王力衡,黄运添,邦海涛.薄膜技术[M].北京:清华大学出版社,1991.
    [22]金原聚,藤原英夫[日],王力衡,郑海涛译.薄膜[M].北京:电子工业出版社,1988.
    [23]Window B.Recent advances in sputter deposition[J].Surface and Coatings Technology,1995,(71):93-97.
    [24]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社,1994.
    [25]田民波,刘德令.薄膜科学与技术手册(上册)[M].北京:机械工业出版社,1991.
    [26]顾培夫.薄膜技术[M].杭州:浙江大学出版社,1990.
    [27]杨武保.磁控溅射镀膜技术最新进展及发展趋势预测[J].石油机械,2005,33(6):73-76.
    [28]赵嘉学,童洪辉.磁控溅射原理的深入探讨[J].真空.2004,7:74-79.
    [29]Hyunk hoPark.Characterizationand removal of silicon surface residue resulting frow CHF3/C2F6 reactive ion etching[J].Appl.Phys.1994,76(8):45:86.
    [30]孙银洁.PET基碳氟膜形貌结构及性能研究[D]:[硕士学位论文].青岛:青岛大学,2003.
    [31]姜燮昌.大面积反应磁控溅射的最新进展及应用[J].真空.2002,03:1-9.
    [32]陈光华,邓金祥.纳米薄膜技术与应用[M].北京:化学工业出版社.2004:35.
    [33]BETTS A J,DOWLING D P,McConnell M L,et al.The influence of platinum on the performance of silver-platinum anti-bacterial coatings[J].Materials and Design,2005,26:217-222.
    [34]Dowling D P,Betts A J,Pope C,et al.Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum[J].Surface and Coatings Technology,2003,163-164:637-640.
    [35]Dowling D P,Betts A J,Pope C,et al.Deposition of anti-bacterial silver coatings on polymeric substrates[J].Thin Solid Films,2001,398-399:602-606.
    [36]Charton C,Fahland M.Optical and electrical properties of sputtered Ag films on PET webs [J].Surface and Coatings Technology,2001,142-144:175-180.
    [37]Midori Kawamura,Yoshio Abe,Katsutaka Sasaki.Sputter-deposition of Ag films in a nitrogen discharge[J].Thin Solid Films,2006,515:540-542.
    [38]杜元甲,董树荣.基于磁控溅射技术的电磁屏蔽层研究[J].表面技术,2006,35(4):75-77
    [39]Scholza J,Nocke G,Hollstein F.Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties [J].Surface & Coatings Technology,2005,192:252-256.
    [40]陈耀文,林月娟,张海丹.扫描电子显微镜与原子力显微镜技术之比较[J].中国体视学与图像分析,2006,11(1):53-58.
    [41]杜珊.原子力显微镜相位象的理论和应用[J].云南师范大学学报,2005,25(4):47-51.
    [42]蔡颖谦,徐如祥,姜晓丹.原子力显微镜技术在生物医学领域的应用.中华神经医学杂志[J],2005,4(7):735-738.
    [43]汪昆华,罗传秋.聚合物近代仪器分析(第二版)[M].北京:清华大学出版社,2000:240-247。
    [44]王静,冀志江,金宗哲,等.抗菌功能建材抗菌性能评价方法[J].中国建材科技,2004,(2),6-12.
    [45]王俊起,王友斌,薛金荣,等.纺织品抗菌功能测试方法研究[J].中国卫生工程学,2003,2(3):129-132.
    [46]何继辉,马文石,谭绍早,等.抗菌丙纶的制备及其性能研究[J].合成纤维工业,2004,24(6):24-27.
    [47]电子工业安全与电磁兼容检测中心,SJ20524-1995材料的屏蔽效能测试方法[S].
    [48]王素英.平板型复合屏蔽材料屏蔽效能测试技术的研究[J].安全与电磁兼容.1995,(2):18-20,29.
    [49]ASTM-134935-89 Standard test method for measuring the electromagnetic shielding Effectiveness of planar material[S],1999.
    [50]李刚,蒋全兴,孔冰.平板型电磁屏蔽材料同轴测试方法[J].电讯技术,1995,35(3):6-12.
    [51]武学高.塑料电镀技术[M].成都:四川科技出版社,1983.359-370.
    [1]余国文,张高科,胡波.金属系无机抗菌材料研究进展[J].工业安全与环境,2004,30(4):34-36.
    [2]Volker Alt,Thorsten Bechert,Peter Steinrucke,et.al.An in Vitro Assessment of the Antibacterial Properties and Cytotoxicity of Nanoparticulate Silver Bone Cement[J].BiomateriMs,2004,25:4383-4391.
    [3]Hyung Jun Jeon,Sung Chul,SeongGeun oh,etal.Preparation and Antibacterial Effects of Ag-SiO2 Thin Films by Sol-gel Method[J].BiomateriMs,2003,24:4921-4928.
    [4 张文钲,王广文.纳米银抗菌材料研发现状[J].化工新型材料,2003,31(2):42-44.
    [5]吕艳萍.有机硅季铵盐—纳米银复合织物抗菌整理剂的制备及应用研究[D]:[硕士论文].陕西:陕西科技大学,2004。
    [6]严国良,苏英.抗菌卫生纺织品的现状与展望[J].金山油化纤,2001,(3):37-40.
    [7]何敏珠,阎均,龚羽.抗菌织物及其抗菌性能的评价[J].上海纺织科技,2005,33(3):62-64.
    [8]Qun Li,Shuilin Chen.The study on ZnO Nano-particle Coating Agent and Anti-bacterial T/C Fabric Modified[C].Proceeding of 2005 International Conference on Advanced Fibers and Polymer Materials,Oct.19-21,Shanghai,China.
    [9]Cheng Y S,Yeung K L.Effects of electroless plating chemistry on the synthesis of palladium membranes[J].Journal of Membrane Science,2001,182:195-203.
    [10]Razima S Souleimanova,Alexander S Mukasyan,Arvind Varma.Study of structure formation during electroless planting of thin metal-composite membranes.Chemical Engineering Science[J],1999,54:3369-3377.
    [11]HOON JOO LEE,SUNG HOON JEONG.Bacteriostasis of nanosized colloidal silver on Polyester nonwovens[J].Textile Research Journal,2004,74(5):442-447.
    [12]Alan Jankowski,Jeffrey Hayes.The evaporative deposition of aluminum coatings and shapes with grain size control[J].Thin solid Films,2004,447-448:568-574.
    [13]Jiang S Q,Newton E,Yuen C W M,et al.Chemical Silver Plating and Its Application to Textile Fabric Design[J].Journal of Applied Polymer Science,2005,96:919-926.
    [14]Wilmert De Bosscher,Hugo Lievens.Advances in magnetron sputter sources[Y].Thin Solid Films,1999,351:15-20.
    [15]Window B.Recent advances in sputter deposition[J].Surface and Coatings Technology,1995,71:93-97.
    [16]Dowling D P,Donnelly K,McConnell M L,et al.Deposition of anti-bacterial silver coatings on polymeric substrates[J].Thin Solid Films,2001,398-399:602-606.
    [17]Radhesh Kumar,Helmut Munstedt.Silver ion release from antimicrobial polyamide/silver composites[J].Biomaterials,2005,26:2081-2088.
    [18]李秀杰.磁控溅射沉积氧化锌薄膜的原子力显微镜研究[J].机械管理开发,2003,70(1):15-16.
    [19]洪剑寒,王鸿博,魏取福,等.磁控溅射制备Ag薄膜的AFM分析和导电性能[J].纺织学报,2006,27(9):14-17.
    [20]唐启祥.纳米抗菌材料[J].文山师范高等专科学校学报,2004,17(3),262-265.
    [21]赵娣芳,周杰,刘宁.含银无机抗菌材料的开发及应用[J].矿产保护与利用,2005,(3):12-15.
    [22]付伟,吴卫华,王黔平.新型银系抗菌剂的现状和展望[J].江苏陶瓷,2006,39(5):26-28.
    [23]郭登峰,郭腊梅.纺织品抗菌整理现状及发展趋势[J].广西纺织科技,2006,35(3):38-42.
    [24]Feng Q L,Wu J,Chen G Q,etal.A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J].Journal of Biomedical Materials Research,2000,52(4):662-668.
    [25]Feng Q L,Kim T N,Wu J,etal.Ag-Hap thin film on alumina substrate and its antibacterial effects[J].Thin Solid Films,1998(335):214-219.
    [26]康湛莹,李瑞增,车承斌.重金属杀菌作用的机理[J].哈尔滨科学技术大学学报,1995,19(3):103-105.
    [27]Liau S Y,Read D C,Pugh W J,et al.Interaction of silver-nitrate with readily identifiable groups-relationship to the antibacterial action of silver ions[J].Letters in Applied Microbiology,1997,25(4):279-283.
    [28]Charles F,Heinig J.O3 or O2 and Ag-new catalyst technology for aqueous phase sanitation [C].USA:International Ozone Society.Ozone Science and Engineering.1993:533-546.
    [29]余海霞.载银型累托石抗菌剂的研制[D].[硕士论文].武汉:武汉化工学院,2003.
    [30]Inoue Y,Hoshino M,Takahashi H,etal.Bacteri-cidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions[J].Journal of Inorganic Biochemics,2002,92(1):37-42.
    [31]Davies R L,Etris S F.The development and functions of silver in water-purification and disease-control[J].Catalysis Today,1997,36(1):107-114.
    [32]陈四红,吕曼祺,张敬党,等.含Cu抗菌不锈钢的微观组织及其抗菌性能[J].金属学报,2004,40(3):314-318.
    [33]周贯宇.复合银系无机抗菌剂的制备及应用[D].[硕士论文].杭州:浙江大学,2003.
    [34]Davenas J,Thevetnrd P,Philippe F,et al.Surface implantation treatments to prevent infection complications in short term devices[J].Biomol Eng,2002;19(2-6):263-268
    [35]Sodhi Rana NS,Sahi VP,MittelmanMW.Application of Electron Spectroscopy and Surface Modification Techniques in the Development of anti-Microbial Coatings for Medical Devices [J].Journal of Electron Spectr and Related Phenom 2001,121(1-3):249-264。
    [36]James N R,Jayakrishnan A.Surface thiocyanation of plasticized poly(vinyl chloride) and its effect on bacterial adhesion[J].Biomaterials 2003,24(13):2205-2212o
    [37]万昌秀,段友容,张尔永,等.UV改性DACRON材料抗细菌粘附研究[J].生物医学工程学杂志,2000,17(1):10-12。
    [38]李建新,王进,沈丽如,等,银离子注人表面改性涤纶材料的抗菌性能研究[J].真空科学与技术学报,2006,26(5):408-411。
    [11]Banchi L.New trends in technical textiles[J].Rivista Della Technologie,2001,3:62-69.
    [2]Locher I,Kirstein T,Tr(o|¨)ster G.Electronic Textiles[C].Proc.ICEWES Conference,Cottbus,Germany,2002:25-27.
    [3]Langenhove L Van,Hertleer C,Catrysse M,et al.The use of textile electrodes in a hospital environment[C].in AUTEX-World Textile Conference,Gdansk,Poland,2003:286-290.
    [4]Hum A P J.Fabric area network-a new wireless communications infrastructure to enable ubiquitous networking and sensing on intelligent clothing[J].Comput Networks,200135:391-399.
    [5]Gould P.Textiles gain intelligence[J].Materials Today,2003,6(10):38-43.
    [6]Dowling D P,Donnelly K.Deposition of anti-bacterial silver coatings on polymeric substrates[J].Thin solid films,2001,389-399:602-606.
    [7]Sant S B.Morphology of novel anti-microbial silver films deposited by magnetron sputtering[J].Scripta materrialia,1999,4(12):1333-1339.
    [8]Jiang S Q,Newton E,Yuen C W M,et al.Chemical Silver Plating and Its Application to Textile[J].Journal of Applied Polymer Science,2005,96:919-926.
    [9]李学丹等.真空沉积技术[M].杭州:浙江大学出版社,1994
    [10]金原粲,藤原英夫(日).薄膜[M].北京:电子工业出版社,1988.165.
    [11]Minn S S,Rech J.Electrical conduction and current noise mechanism in discontinuous metal films[J].Centr Natl Res Sci Lab(Bell vue Paris),1960,51:131-135.
    [12]Van Steensel K.[J].Phillips Res Rep,1967,22:246
    [13]Neugebauer A,Webb M B.[J].J Appl Phys,1962,33:74.
    [14]Sheng P,Abeles B,Arie Y.[J].Phys Rev Lett,1973,31:44.
    [15]曲喜新,杨邦朝等.电子薄膜材料[M],北京:科学出版社,1996.
    [16]惠迎雪,杭凌侠,徐均琪.磁控溅射薄膜沉积速率的研究[J].西安工业学院学报.2005,4:307-310.
    [17]汪泓宏,田民波.离子束表面强化[M].北京:机械工业出版社,1991.
    [18]王力衡.薄膜技术[M].北京:清华大学出版社,1991:55.
    [19]商思善.屏波织物及其应用[J].安全与电磁兼容.2002,2:43-45.
    [20]顾国锋,胡航.化学镀电磁辐射防护织物的屏蔽效能分析[J].广西物理.2005,1:38-40.
    [21]Cherkaoui M,Srhiri A,Chassaing E.Electroless deposition of Ni-Cu-P alloys[J]。Plating and Surface Finishing,1992,11:68-71.
    [22]Ueng TH,Cheng KB.leakage power density and electromagnetic shielding effectiveness of conductive woven fabrics[J].J.Text.Eng,2001,47(3):71-75.
    [23]陈海相,陈文兴,汪澜,等.镍活化织物表面的化学镀镍研究[J].电镀与精饰,2004,26(5):6-9.
    [24]孙世濂.多离子纤维织物及制备方法[J].专利技术.2003,7:15-17.
    [25]徐建华.给电脑操作者选防电磁波辐射时装[J].家庭电子.2006,3:11-14.
    [26]罗敏.纳米材料在电磁屏蔽中的应用[J].甘肃化工.2002,4:19-21.
    [27]石东亮.电磁屏蔽纺织品的开发与检测[J].检测研究.2005,04:42-43.
    [28]司琼.电磁屏蔽涂料的研究现状及发展趋势[J].上海涂料.2005,04:26-28.
    [29]刘国华,王文祖.电磁辐射防护织物的开发[J].技术创新.2003,8:19-22.
    [30]ASTM D4935-99,Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials[S].
    [31]SJ20524—1995,材料屏蔽效能的测试方法[S].
    [32]Donald R.J.Electromagnetic Shielding[M].1988,6-7.
    [33]David K.Cheng.Field and Wave Electromagnetic[M].1989,198-219.
    [34]赵灵智,胡社军.电磁屏蔽材料的屏蔽原理与研究现状[J].包装工程.2006,04:1-5.
    [35 杨广舟,宣天鹏,冯书争等.Ni-P-La合金镀层电磁屏蔽效能的研究[J].金属功能材料,2006,2:17-20。
    [36]吕仁清,蒋全兴.电磁兼容性结构设计[M].南京:东南大学出版社,1990:34-46.
    [37]王锦成.电磁屏蔽材料的屏蔽原理及研究现状[J].化工新型材料,2002,30(7):16-19.
    [38]凯瑟BE著,肖华亭,许昌清,雷有华等译.电磁兼容原理[M].北京:电子工业出版社,1985:101.
    [39]冯猛,张羊换,王鑫,等.非晶态合金在电磁屏蔽领域中的应用现状[J].金属功能材料.2005,3(12):26-30.
    [40]詹建朝,张辉,沈兰萍.不同增重率化学镀银电磁屏蔽织物的研究[J].表面技术.2006,6:25-27.
    [41]邱成军等.材料物理性能[M].哈尔滨:哈尔滨工业大学出版社,2003.7:67.
    [42]唐伟忠.薄膜材料制备原理技术及应用[M].冶金工业出版社,1998:49-53.
    [1]王劲松,叶高翔,许宇庆,等.无规分形衬底上银薄膜的l-V特性[J].物理学报,1994,43(10):1688-1692.
    [2]McRae G A,Maguire M A,Jeffrey C A,et al.A comparison of fractal dimensions determined from atomic force microscopy and impedance spectroscopy of anodic oxides on Zr-2.5Nb[J]Appl.Surf.Sci.2002,191(1-4):94-105.
    [3]Jong C A,Chin T S.Optical characteristics of sputtered tantalum oxynitride Ta(N,O)films[J].Mater.Chem.Phys.2002,74(2):201-209.
    [4]王吉会,路新春,钱林茂,等.原子力/摩擦力显微图象的分析与测量[J].摩擦学学报,1998,18(1):60-65.
    [5]Russ J.Fractal Surfaces[M].(New York and London:Plenum,1994:77-156.
    [6]Mandelbrot B B The Fractal Geometry of Nature[M].San Fran-cisco:Freemen,1982:1-56
    [7]刘亚俊.基于分形理论的颗粒增强金属基覆合材料切削机理研究[D]:[博士学位论文].广州:华南理工大学,2002.
    [8]Meakin P.Fractal,Scaling and Growth Far from Equilibrium[M].London:Cambridge University Press,1998:404-425.
    [9]李厚强,汪富泉,分形理论及其在分子科学中的应用[M].北京:科学出版社,1993.
    [10]李厚强,程光钺.分形与分维[M].成都:四川教育出版社,1994.
    [11]张济忠.分形[M].北京:清华大学出版社,1995.
    [12]Paul M.Fractal,Scaling and Growth For from Equilibrium[M].London:Cambridge University Press,1998:80.
    [13]褚武扬.材料科学中的分形[M].北京:化学工业出版社,2004.
    [14]汪渊,徐可为.Cu-W薄膜表面形貌的分形表征与电阻率[J].物理学报,2004,53(3):900-905.
    [15]吴瑜光,桑海波,张通和,等.Ag和Ni离子注入聚合物的分形生长[J].北京师范大学学报(自然科学版),2001,37(3):352-355.
    [16]朱世根,范真,丁建宁.GeSb2Te4薄膜表面分形维数计算及表征[J].摩擦学学报,2005,25(2):149-153.
    [17]付永忠,丁建宁,杨继昌,等.解国新GeSb2 Te4相变薄膜表面形貌的分形特征[J].江苏大学学报(自然科学版),2006,27(5):
    [18]孙霞,熊刚,傅竹西,等.ZnO薄膜原子力显微镜图像的多重分形谱[J].物理学报,2000,49(5):854-859.
    [19]孙兆奇,吕建国,高清维.半连续Ag膜的多重分形研究[J].电子显微学报,2006,25(1):30-35.
    [20]谷锦华,周玉琴,朱美芳,等.低温制备微晶硅薄膜生长机制的研究[J].物理学报,2005,54(4):1890-1895.
    [21]钟宏杰,高贵,宋新举,等.非织造布的分形特征分析[J].天津工业大学学报,2005,24(2):86-88.
    [22]杨旭红,李栋高,何蕾.绉织物表面图像的分形特征分析[J].纺织学报,2003,24(4):39-43.
    [23]汪渊,徐可为.反应磁控溅射MgO薄膜溅射模式的分形维表征[J].金属学报,2003,10:1051-1054.
    [24]付永忠,丁建宁,解国新,等.纳米AL薄膜表面形貌与导电性的分形表征[J].传感技术学报,2006,10:2304-2307.
    [25]Yehoda J E,Messier R.Geometry of Thin-Film Morphology[J].J.Appl.Phys,1985(58): 3739-3746.
    [26]Zheng Zhou shun,Qu Xuan hui,Li Yun ping.Fractal Phenomena in Power Injection Molding Process[J].Trans.Nonferrous Met.Soc.China,2003,13(5):1112-1118.
    [27]邵元智,任山,张庆堂,等.纳米镍粉内团聚的小角X射线散射的分形表征[J].中国有色金属学报,2004,14(4):574-579.
    [28]Almqvist N.Fractal Analysis of Scanning Probe Microscopy Images[J].Surf.Sci,1996,355:221-228.
    [29]朱华,葛世荣.结构函数与均方根分形表征效果的比较[J].中国矿业大学学报,2004,33(4):396-399.
    [30]王力衡.薄膜技术[M].北京:清华大学出版社,1991:55.
    [31]李秀杰.磁控溅射沉积氧化锌薄膜的原子力显微镜研究[J].机械管理开发,2003,02:15-16.
    [32]杨广舟,宣天鹏,冯书争,等.Ni-P-La合金镀层电磁屏蔽效能的研究[J].金属功能材料,2006,2:17-20.
    [33]吕仁清,蒋全兴.电磁兼容性结构设计[M].南京:东南大学出版社,1990:34-46.
    [34]王锦成.电磁屏蔽材料的屏蔽原理及研究现状[J].化工新型材料,2002,30(7):16-19.
    [35]詹建朝,张辉,沈兰萍.涤纶织物超声波辅助化学镀银[J].表面技术.2006,6:25-27.
    [1]Charles F,Heinig J.O3 or O2 and Ag-new catalyst technology for aqueous phase sanitation [C].USA:International Ozone Society.Ozone Science and Engineering.1993:533-546.
    [2]褚武扬.材料科学中的分形[M].北京:化学工业出版社,2004.
    [3]顾彪,陈茹.辉光放电等离子体对聚丙烯纤维的表面改性[J].高分子通报,2003,2,51-58.
    [4]陈杰珞.低温等离子体化学及其应用[M].科学出版社,2001.9.
    [5]夏彦水,杨建忠.低温等离子体技术在纺织材料表面改性中的应用进展[J].纺织科技进展,2005,3:5-7.
    [6]金郡潮,戴瑾瑾,陆望,等.丙纶薄膜等离子体表面改性处理研究[J].印染,2000,4:11-13.
    [7]李秀杰.磁控溅射沉积氧化锌薄膜的原子力显微镜研究[J].机械管理开发.2003.2:15-16.
    [8]Hiroaki Shirakawa,Hiroshi Komiyama.Migration-coalescence of Nanoparticles During Deposition of Au,Ag,Cu,and GaAs on Amorphous SiO_2[J].Journal of Nanopaticle Research.1999,1:17-30.
    [9]邹璐,叶志镇.磁控溅射中生长参数对氧化锌薄膜性能的影响[J].半导体情报,2001,12:55-58.
    [10]王力衡.薄膜技术[M].北京:清华大学出版社,1991,54-56.
    [11]Ensinger W.Low energy ion during deposition-an effective tool for controlling thin film microstructure[J].Nuclear Instruments and Methods in Physics Research.1997,127/128:796-808.
    [12]孙喜莲,洪瑞金,齐红基等.磁控溅射不同厚度银膜的微结构及其光学常数[J].物理学报,2006,09:4923-4927.
    [13]何玉平,吴贵芳,李爱侠等.不同厚度溅射Ag膜的微结构及光学常数研究[J].光学学报,2002,06:678-681.
    [1]Ashrafizadeh U F,Adhesion evaluation of PVD coatings to aluminium substrate[J].Surface and Coatings Technology,2000,130:186-194.
    [2]ENOKIDO Y,YAMAGUCHI T,Adhesion strength of silver thick-film conductors by solder-free test[J].JOURNAL OF MATERIALS SCIENCE,1997,32:4967-4971.
    [3]Sun Xilian,Shao Jianda.Influence of Cr interlayer on the structure and optical properties of Ag films on glass substrate by magnetron sputtering[J].Applied Surface Science,2006,253:2093-2095.
    [4]田民波,刘德令.薄膜科学与技术手册[M],北京:机械工业出版社,1991.
    [5]Mattox D M.Surface Effects on the Growth,Adhesion and Properties of Reactively Deposited Hard Coatings[J].Surface and Coatings Technology,1996,81:8-16.
    [6]姜银方.关于基片性质对离子镀膜影响的分析[J].表面技术,1996,25(6):21-24.
    [7]廖钟亮.等离子镀TiN膜前处理工艺[J].表面技术,1994,23(6):281-285.
    [8]袁镇海.真空阴极电弧沉积TiN硬质膜的研究[J].广东有色金属学报,1993,3(1):44-49
    [9]遇衍澄.离子镀技术的发展和现状[J].薄膜科学与技术1995,8(3):240-249
    [10]Sproul W D.Physical Vapor Deposition Tool Coatings[J].Surfac and Coatings Technology,1996,81:1-7
    [11]于力,刘技文,赵杰,等.基材温度对离子镀TiN膜性能的影响[J].金属学报,1996,32(12):1270-1273
    [12]叶志镇,Zhou Z.低温气相硅外延前氩微波等离子原位溅射清洗对薄膜界面的损伤[J].真空科学与技术,1995,15(2):113-117
    [13]梁红军,俊晓淮.用低温等离子体处理方法改性品分子材料表面[J].化学通报,1999,6:1-7.
    [14]秦伟,张志谦,黄玉东,等.冷等离子体处理对涤纶纤维表面性能的影响[J].材料科学与工艺,2001,9(1):23-24.
    [15]高云玲.超声波应用于纺织品前处理[J].染整技术,2000,22(4):27-28.
    [16]万震,刘嵩.超声波在纺织品加工中的应用[J].纺织导报,2001,(2):22-24.
    [17]王秀玲.棉用过氧化氢在超声波能量下的漂白和染色[J].印染译丛,1997,(6):16-21.
    [18]陈国维.染整技术发展中的近现代物理方法[J].丝绸,1995,(5):18-20.
    [19]阮慎学.超声波在纺织物湿加工中的应用[J].印染译丛,1991,(6):93-99.
    [20]Thak.KA,陈水林.超声波在纺织品湿加工过程的应用[J].国外纺织技术:化纤·染整·环境保护分册,1991,(6):28-33.
    [21]Berg S,Nyberg T.Fundamental understanding and modeling of reactive sputtering processes[J].Thin Solid Films,2005,476:215-230.
    [22]En Gang Fu,Da Ming Zhuang,Gong Zhang,et al.Properties of transparent conductive ZnO:Al thin films prepared by magnetron sputtering[J].Microelectronics Journal,2005,35(4):383-387.
    [23]马瑾,马洪磊,田茂华,等.低温磁控溅射有机衬底和玻璃衬底ZnO:Al透明导电膜的结构及特性[J].中国科学(A辑),2001,31(9):835-840.
    [24]Jeong S H,Lee J W,Lee S B,et al.Deposition of aluminum-doped zincoxide films by RF magnetron sputtering and study of their structural,electrical and optical properties [J].Thin Solid Films,2003,435:78-82.
    [25]Kanga D J,Kima J S,Jeonga S W,et al.Structural and electrical characteristics of R.F. magnetron sputtered ZnO films[J].Thin Solid Films,2005,475:160:165.
    [26]Norton D P,Heo Y W,Ivill M P,et al.ZnO:growth,doping & processing[J].Material study,2004,6:34-40.
    [27]郝晓涛.柔性衬底铝掺杂氧化锌透明导电膜的特性研究[J].功能材料与器件学报,2002,8(1):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700