不锈钢表面氮掺杂二氧化钛薄膜的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于有害细菌的传播和感染,抗菌材料的研究和应用日趋广泛。不锈钢广泛应用于食品工业、厨具、医疗卫生以及日常生活中,对不锈钢进行抗菌处理有重要的意义。本论文以提高不锈钢的抗菌性为锲入点,采用等离子表面合金化和热氧化复合处理技术在316L不锈钢表面形成N掺杂TiO2薄膜。为了对比的需要,本文也在不锈钢表面制备了TiO2薄膜。分别对薄膜的组织结构、基本力学性能、光催化性能、抗菌性能、亲水性能、摩擦性能、腐蚀磨损性能及腐蚀性能进行了较为全面系统的研究。研究结果如下:
     1、对改性层的组织、成分及结构进行了分析。经TiO2及N掺杂TiO2表面改性后,不锈钢基体表面均形成了均匀致密的改性层,改性层由预渗元素的扩散层或扩散层+镀层组成。扩散层中欲渗元素分布呈梯度变化,增强了改性层结合强度。
     2、非金属N的掺杂导致TiO2的能隙变窄和吸收边红移,扩大了光响应范围,提高了TiO2的光催化性能。在可见光照射6小时后,N掺杂TiO2对亚甲基蓝溶液的降解率是纯TiO2的1.7倍。
     3、抗菌试验结果表明,未改性的不锈钢不具有任何抗菌效果。TiO:和N掺杂Ti02改性的不锈钢均显示出明显的抗菌作用;改性后的不锈钢对金黄色葡萄球菌的抗菌效果明显优于大肠杆菌。N掺杂TiO2改性的不锈钢对金黄色葡萄球菌和大肠杆菌的抗菌效果最好,灭菌率分别达到100%和86%。
     4、通过球-盘磨损试验对改性层的摩擦磨损性能及机理进行了研究。结果表明,干摩擦条件下,与GCr15对摩,Ti2和N掺杂TiO2改性层均表现出优异的减摩和抗磨损性能;与Si3N4对摩,TiO2和N掺杂TiO2改性层虽无减摩效果,但其耐磨性较基材明显改善。改性层相对较高的硬度及与基体间良好的结合强度是TiO2和N掺杂TiO2改性层耐磨性提高的主要原因。
     5、电化学腐蚀测试结果表明,TiO2及N掺杂TiO2两种表面改性处理均未降低不锈钢在模拟人工体液介质中的耐蚀性,并且N掺杂TiO2改性层比Ti02改性层更具良好的耐腐蚀性能。腐蚀形貌显示:不锈钢基材表面发生点蚀,而经表面改性后的不锈钢均木发生点蚀,表现为均匀腐蚀。
     6、对316L不锈钢基材、TiO2和N掺杂ZiO2改性层在模拟人工体液介质中的腐蚀磨损性能进行了对比研究。结果表明,TiO2及N掺杂TiO2两种表面改性处理均有不同程度的减摩效果,抗腐蚀磨损性能明显提高,其中N掺杂Ti02改性层在模拟人工体液介质中表现出更好的抗腐蚀磨损性能。
The investigation and applications of antibacterial materials have been widely conducted in recent years due to the damaging effect of harmful bacteria. Stainless steel is widely used in food processing equipment, kitchenware, medical apparatus and daily appliances. Thus the development of stainless steel with excellent antibacterial properties is of great significance. With the aim of improving the antibacterial property of stainless steel, N-doped TiO2 films were prepared on stainless steel by plasma surface alloying and thermal oxidation duplex technique. For comparison, TiO2 films were prepared on stainless steel. Meanwhile, surface properties, mechanical performances, photocatalytic activities, antibacterial properties, tribological properties, corrosion-wear behaviors and corrosion properties of films have been studied. The main results have been obtained as follows:
     (1) The modification layers are composed of a pure diffusion layer or a duplex layer of diffusion layer and surface coating. A gradient distribution of elements existed in modification layer results in improving strength-toughness and enhances bonding strength for modification layers on stainless steel.
     (2) N-doped TiO2 may result in the real band gap narrowing and consequently a redshif of the optical absorption edge. The visible light photoactivities of N-doped TiO2 were greatly improved as compared with the undoped TiO2. Methylene blue aqueous solution degradation rate of N-doped TiO2 is 1.7 times compared with the undoped TiO2 under visible light for 6 hour.
     (3) The result of antibacterial test showed that un-modified stainless steel had no antibacterial activity. TiO2 and N-doped TiO2 modification layers increased the rate of cell reduction against Escherichia coli and Staphylococcus aureus. The antibacterial property against Staphylococcus aureus excelled to Escherichia coli obviously in the same condition. N-doped TiO2 modification layer performed excellent antibacterial property against Escherichia coli and Staphylococcus aureus, the rate of cell reduction was 100% and 86% respectively.
     (4) The tribological properties and mechanism of the modification layers have been studied by ball-on-disc test. TiO2 and N-doped TiO2 modification layer all increase the wear resistance of stainless steel substrate remarkably. Under unlubricated condition, N-doped TiO2 modification layer all have low coefficients of friction and high wear resistance when the coutpart is GCrl5 ball. When the courpart is Si3N4 ball, TiO2 and N-doped TiO2 modification layer have no antifriction effect on stainless steel, but TiO2 and N-doped TiO2 modification layers improve the wear resistance of stainless steel. The excellent wear resistance of TiO2 and N-doped TiO2 modification layer comes from their strong enough load-bearing capacity and bonding strength.
     (5) Eelectrochemistry tests show that TiO2 and N-doped TiO2 modification layers don't reduce stainless steel's corrosion resistance in Hanks'solution. Corrosion resistace of N-doped TiO2 modification layer is better than of TiO2 modification layer. According to the surface topography of corrosion, stainless steel has the phenomenon of pitting corrosion and suface modified stainless steel show uniform corrosion.
     (6) The corrosion-wear behaviors of stainless steel, TiO2 and N-doped TiO2 modification layers have been studied. In Hanks'solution, TiO2 and N-doped TiO2 modification layers all have smaller coefficients of friction and higher wear resistance than that of stainless steel substrate. Among them, N-doped TiO2 modification layer has better corrosion-wear resistance. The good corrosion-wear performances of TiO2 and N-doped TiO2 modification layers are due to their strong corrosion resistance and wear resistance.
引文
[1]山本正人著(张唯敏译).抗菌不锈钢[J].国外金属加工,1998,(4):34-36.
    [2]墙蔷.银离子注入不锈钢制备抗菌功能材料的研究[D].武汉:武汉科技大学,2007.
    [3]张志霞.含铜(氮)抗菌不锈钢的组织与性能研究[D].上海:上海交通大学,2007.
    [4]童忠良.抗菌材料[M].北京:化学工业出版社,2006:293-298.
    [5]时均增,冯旺军,耿丹,等.含铜奥氏体抗菌不锈钢组织与性能研究[J].新技术新工艺,2010,(8):74-76.
    [6]张安峰,乔继英,张斯玮.两种含铜抗菌不锈钢的显微组织及抗菌性能[J].机械工程材料,2010,34(2):39-42.
    [7]刘永前,南黎,陈德敏,等.含铜马氏体抗菌不锈钢的研究[J].稀有金属材料与工程,2008,37(8):1380-1383.
    [8]国文.川崎钢铁公司将银系抗菌不锈钢投放市场[J].金属功能材料,2001,8(2):38.
    [9]覃志伟,王蕾,许伯藩,等.沉积扩散法制备含银抗菌不锈钢工艺研究[J].材料保护,2006,39(8):32-34.
    [10]李宁,张伟,胥永刚,等.银对18-8铬镍奥氏体不锈钢抗菌性能的影响[J].特殊钢,2004,25(2):42-43.
    [11]冯晓钰.同时添加铜和银的奥氏体抗菌不锈钢的微观组织和性能研究[D].上海:上海大学,2007.
    [12]敬和民,陈四红,董加胜,等.抗菌不锈钢材料及其发展现状[J].材料保护,2003,36(10):9-12.
    [13]爱知制钢.特殊钢.1999,48(6):20.
    [14]倪红卫,许伯藩,熊平源,等.铜离子注入不锈钢中的显微组织与抗菌性能[J].武汉科技大学学报(自然科学版),2005,28(2):112-114.
    [15]贺耀华,刘俊,贺志勇.304不锈钢表面Ag-Cu渗镀层的耐蚀及抗菌性能研究[J].热加工工艺,2010,39(24):179-181.
    [16]季军晖,史维明.抗菌材料[M].北京:化学工业出版社,2003:195-215.
    [17]余宗森,袁泽喜,李士琦,等.钢的成分、残余元素及其性能的定量关系[M].北京:冶金工业出版社,2001:251-254.
    [18]佚名.铁素体系抗菌不锈钢"NSSAM1"的抗菌性能与材料特性[J].日新制钢技报,1997:77.
    [19]Nakamura I, Negishi N, Kutsuns S, et al. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal [J]. J Mol Catal A-Chem,2000,161(1-2):205-212.
    [20]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chem Rev,1995,95(3):735-758.
    [21]Hoffmann M R, Martin S T, Choi W, et al. Environment applications of semiconductor photocatalysis [J]. Chem Rev,1995,95(1):69-96.
    [22]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [23]Fox M A, Dulay M T, Heterogeneous photocatalysis [J]. Chem Rev,1993,93(1): 341-357.
    [24]Hoffmann M R, Martin S T, Choi W, et al. Environment applications of semiconductor photocatalysis [J]. Chem Rev,1995,95(1):69-96.
    [25]Tada H, Yamamoto M, Ito S. Promoting effect of MgOx submonolayer coverage of TiO2 on the photoinduced oxidation of anionic surfactants [J]. Langmuir,1999, 15(11):3699-3702.
    [26]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis [J]. J Photochem Photobiol C,2000,1(1):1-21.
    [27]Nagaveni K, Sivalingam G, Hegde M S, et al. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2 [J]. Environ Sci Technol,2004, 38(5):1600-1604.
    [28]Einaga H, Ibusuki T, Futamura S. Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds [J]. Environ Sci Technol, 2004,38(1):285-289.
    [29]Kamat P V, Huehn R, Nicolaescu R. A "Sense and Shoot" approach for photocatalytic degradation of organic contaminants in water [J]. J Phys Chem B, 2002,106(4):788-794.
    [30]Li F B, Li X Z, Hou M F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-Ti02 suspension for odor control [J]. Appl Catal B,2004,48(3): 185-194.
    [31]Li F B, Li X Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment [J]. Appl Catal A,2002,228(1-2):15-27.
    [32]Takeda S, Suzuki S, Odaka H, et al. Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering [J]. Thin Solid Films,2001,392(2):338-344.
    [33]Chen X B, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanparticles [J]. J Phys Chem B,2004,108(40):15446-15449.
    [34]Yu J G., Yu J C. Low Temperature solvent evaporation-induced crystallization synthesis of nanocrystalline TiO2 photocatalyst [J]. Chin J Chem,2003,21(8): 994-997.
    [35]Yu J G., Yu J C, Ho W K, et al. Effects of alcohol content and calcination temperature on the textural properties of bimodally mesoporous titania [J]. Appl Catal A,2003,225(2):309-320.
    [36]Yu J C, Yu J G, Zhao J C. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Appl Catal B,2002,36(1): 31-43.
    [37]Yu J G., Yu J C. Low Temperature solvent evaporation-induced crystallization synthesis of nanocrystalline TiO2 photocatalyst [J]. Chin J Chem,2003,21(8): 994-997.
    [38]周明华.介孔二氧化钛光催化剂的制备、表征及性能研究[D].武汉:武汉理工大学,2006.
    [39]Soria J, Conesa J C, Augugliaro V, et al. Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions [J]. Phys. Chem.1991,95(1): 274-282.
    [40]Brillas E, Mur E, Sauleda R, et al. Aniline mineralization by AOP's:anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes [J]. Appl Catal B:Environ,1998,16(1):31-42.
    [41]Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide [J]. Appl Catal B:Environ,1997,14(1-2):55-68.
    [42]Boer K W. Survey of semiconductor physics, van nostrand reinhold [M]. New York, 1990,249.
    [43]关凯书,尹衍升,姜秋鹏.TiO2-SiO2复合薄膜光催化活性与亲水性关系的研究[J].硅酸盐学报,2003,31(3):219-223.
    [44]袁麟.不锈钢表面Ti02涂层的制备及其性能研究[D].武汉:武汉科技大学,2009.
    [45]Ohko Y, Saitoh S, Tatsuma T, et al. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel [J]. J Electrochem Soc,2001,148(1):B24-B28.
    [46]肖正伟,曾振欧,赵国鹏,等.纳米TiO2涂层的制备及其在金属腐蚀防护中的应用[J].腐蚀与防护,2007,28(1):33-36.
    [47]汪铭,丁新更,曹旭丹,等.不锈钢基片上制备Ag+/TiO2抗菌薄膜的研究[J].材料科学与工程学报,2003,21(3):379-382.
    [48]王云霞,阎逢元.多层纳米TiO2薄膜的摩擦学性能研究[J].材料科学与工程学报,2005,23(6):879-882.
    [49]陈云霞,周金芳,刘维民.TiO2-ZrO2复合薄膜的制备和摩擦学性能[J].材料研究学报,2002,16(3):279-284.
    [50]贾庆远,张玉娟,吴志申,等.表面溶胶-凝胶法制备TiO2薄膜的微观结构及其摩擦磨损性能研究[J].摩擦学学报,2007,27(5):432-438.
    [51]Gopidas K R, Bohorguze M, Kamat P V. Photophysical and photochemical aspects of coupled semiconductors:charge transfer processes in colloidal CdS-TiO2-AgI system [J]. J Phys Chem,1990,94(16):6435-6440.
    [52]Ohno T, Tanigawa F, Fujihara K, et al. Photocatalytic oxidation of water on TiO2-coated WO3 particies by visible light using iron (Ⅲ) ions as electron acceptor [J]. J Photochem photobiol A-Chem,1998,118(1):41-44.
    [53]Hara K, Sayama K, Arakawa H. Photocatalytic hydrogen and oxygen formation over SiO2-supported RuS2 in the presence of sacrificial donor and acceptor [J]. Appl Cata A-Gen,1999,189(1):127-137.
    [54]Hirai T, Watanabe T, Komasawa H. Preparation of semiconductor nanoparticle polyurea composites using reverse micellar system via an in situ diisocyanate polymerization [J]. J Phys Chem B,1999,103(46):10120-10126.
    [55]Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution [J]. Catal Lett,1999,58(4):241-243.
    [56]Maeda K, Takata T, Hara M, et al. GaN:ZnO solid solution a photocatalyst for visible light driven overall water splitting [J]. J Am Chem Soc,2005,127(23): 8286-8287.
    [57]Bessekhouad Y, Robert D, Weber J V. Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J]. J Photochem Photobiol A:Chem,2004,163(3):569-580.
    [58]Ho W, Yu J C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles [J]. J Mol Catal A:Chem,2006,247(1-2): 268-274.
    [59]Chatterjee D, Mahata A. Photosensitized detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system [J]. Catal Commun,2001, 2(1):1-3.
    [60]于志辉,谢佳,夏定国.SnO2-TiO2薄膜载体对Au-Pt纳米颗粒电化学性能的影响[J].高等学校化学学报,2008,29(6):1190-1194.
    [61]刘守新,王岩,李海潮,等.载银光催化剂Ag-TiO2合成及光催化性能[J].东北林业大学学报,2001,29(6):56-59.
    [62]杨民,孙颖,王全义,等. Ru/TiO2催化剂上的催化湿式氧化处理H-酸废水反应性能研究[J].复旦学报(自然科学版),2003,42(3):339-342.
    [63]Yoichi I, Junya S, Takashi N, et al. Synthesis of visible-light active TiO2 photocatalyst with Pt-modification:Role of TiO2 substrate for high photocatalytic activity [J]. Applied Catalysis B:Environmental,2008,79(2):117-121.
    [64]Millon C, Riassetto D, Berthom'e G, et al. The photocatalytic activity of sol-gel derived photo-platinized TiO2 films [J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,189(2-3):334-348.
    [65]栾勇,傅平丰,戴学刚,等.金属离子掺杂对TiO2光催化性能的影响[J].化学进展,2004,16(5):738-746.
    [66]徐伟,李新军,郑少健,等.锰离子控制掺杂二氧化钛薄膜光催化活性增强的机理探讨[J].高等学校化学学报,2005,26(12):2297-2301.
    [67]彭绍琴,李凤丽,李越湘,等.Gd3+掺杂纳米TiO2的制备及光解水制氢性能研究[J].功能材料,2006,37(10):1663-1666.
    [68]陈其凤,姜东,徐耀,等.溶胶-凝胶-水热法制备Ce-Si/TiO2及其可见光催化性能[J].物理化学学报,2009,25(4):617-623.
    [69]Choi W Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. J Phys Chem,1994,98(51):13669-13679.
    [70]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293(5528):269-271.
    [71]Burda C, Lou Y B, Chen X B, et al. Enhanced nitrogen doping in TiO2 nanoparticles [J]. Nano Letters,2003,3(8):1049-1051.
    [72]Gole J L, Stout J D, Burda C, et al. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale [J]. J Phys Chem B,2004,108(4):1230-1240.
    [73]Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified N-TiO2 [J]. Science,2002,297(5590):2243-2245.
    [74]Sato S. Photocatalytic activity of NOx-doped TiO2 in the visible light region [J]. Chem Phys Lett,1986,123(1-2):126-128.
    [75]Sato S. Photocatalysts Sensitive to visible light [J]. Science,2002,29(5555): 626-627.
    [76]Yu J C, Ho W K, Jiang Z T, et al. Effects of F-doping on the photocatalytic activity and microstructure of nanocrystalline TiO2 powders [J]. Chem Mater,2002,14(9): 3808-3816.
    [77]Wawrzyniak B, Morawski A W. Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen [J]. Appl Catal B,2006, 62(1-2):150-158.
    [78]Irie H, Watanake Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powers [J]. J Phys Chem B,2003,107(23): 5483-5486.
    [79]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Appl Catal B,2003,42(4):403-409.
    [80]Morikawa T, Asahi R, Ohwaki T, et al, Band-gap narrowing of titanium dioxide by nitrogen doping [J]. Jpn J Appl Phys,2001,40(6):561-563.
    [81]Oh S M, Ishigaki T. Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma [J]. Thin Solid Films,2004,457(1):186-191.
    [82]Irie H, Watanake Y. Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst [J]. Chem Lett,2003,32(8):772-773.
    [83]Kim D, Fujimoto S, Schmuki P, et al. Nitriogen doped anodic TiO2 nanotubes growm from nitrogen-containing Ti alloys [J]. Electrochem Commun,2008,10(6): 910-913.
    [84]Cui X L, Ma M, Zhang W, et al. Nitrogen-doped TiO2 from TiN and its visible light photoelectrochemical properties [J]. Electrochem Commun,2008,10(3):367-371.
    [85]Zhu L, Xie J S, Cui X L, et al. Photoelectrochemical and optical properties of N-doped TiO2 thin films prepared by oxidation of sputtered TiNx films [J]. Vacuum, 2010,84(6):797-802.
    [86]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293(5528):269-271.
    [87]张宗权,袁胜利,杨宗立,等.磁控反应溅射不锈钢表面制备纳米TiO2薄膜及光催化活性研究[J].功能材料,2004,35(2):166-168.
    [88]朱永法,李巍,何俣,等.不锈钢金属丝网上Ti02纳米薄膜光催化剂的研究[J].高等学校化学学报,2003,24(3):1465-468.
    [89]李海玲,王文静,亢国虎,等.磁控溅射法制备TiO2薄膜的光催化特性[J].太阳能学报,2006,27(11):1103-1107.
    [90]蒋晓凤,赵一先,盛兆琪.掺银负载型TiO2光催化剂降解水中氯苯的动力学研究[J].华东理工大学学报(自然科学版),2005,31(1):122-125.
    [91]Zhang H J, Wen D Z. Antibacterial properties of Sb-TiO2 thin films by RF magnetron co-sputtering [J]. Surf Coat Technol,2007,201(9-11):5720-5723.
    [92]迟广俊,姚素薇,范君,等. Ni/TiO2复合镀层光催化抗菌性能的研究[J].材料科学与工艺,2004,12(1):52-56.
    [93]税毅,张鹏程,白彬,等.1Cr17Ni4不锈钢金属和陶瓷等离子体喷涂工艺研究[J].表面技术,2005,34(5):53-55.
    [94]吴艳萍,冷永祥,黄楠,等.17-4PH不锈钢表面TiO2膜及其多层膜的结构与性能[J].机械工程材料,2010,34(7):53-56.
    [95]Yuan J N, Tsujikawa S. Characterization of sol-gel-derived TiO2 coatings and their photoeffects on copper substrates [J]. J Electrochem Soc,1995,142(10): 3444.3450.
    [96]Konishi T, Tsujikawa S. Photo-effect of sol-gel derived TiO2 coating on type 304 stainless steel [J]. Zairyo-to-Kankyo,1997,46(11):709-716.
    [97]迁川茂男,小西知羲,须田新,等.耐食性に優れた之表面处理金属材料及び金属材料の表面妞理方法:JP,特阴平11-71684[P].1999-03-16.
    [98]Ohko Y, Saitoh S, Tatsuma T, et al. Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel [J]. J Electrochem Soc,2001,148 (1):B24-B28.
    [99]藤嶋昭,立间徹.金属材料の防食構造:JP,特開 2001-262379[P].2001-09-26.
    [100]Park H W, Kim K Y, Choi W Y. Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode [J]. J Phys Chem B,2002,106 (18): 4775-4781.
    [101]Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a T1O2 nanoparticle coating prepared by sol-gel method [J]. Thin Solid Films,2005, 489(1-2):130-136.
    [102]武朋飞,李谋成,沈嘉年,等.阳极氧化二氧化钛薄膜的光电化学防腐蚀特性[J].中国腐蚀与防护学报,2005,25(1):53-56.
    [103]Shan C X, Hou X H, Choy K L. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition [J]. Surf Coat Technol,2008,202(11): 2399-2402.
    [104]Shi P, Ng W F, Wong M H, et al. Improvement of corrosion resistance of pure magnesium in Hanks'solution by microarc oxidation with sol-gel TiO2 sealing [J]. J Alloy Compd,2009,469(1-2):286-292.
    [105]周幸福,褚道葆,林昌健.不锈钢表面纳米TiO2膜的制备及其耐蚀性能[J].2002,35(7):4-5.
    [106]刘成龙,杨大智,赵红.316L不锈钢表面液相沉积TiO2薄膜的耐蚀性研究[J].2003,23(5):600-602.
    [107]Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method [J]. Thin Solid Films,2005, 489(1-2):130-136.
    [108]刘敬肖.316L不锈钢和NiTi合金表面薄膜的制备、结构及其生物相容性研究[D].大连:大连理工大学,2001.
    [109]Siva Rama Krishna D, Sun Y. Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement [J]. Appl Surf Sci,2005,252(4):1107-1116.
    [110]徐重,王振民,左凤英,等.双层辉光离子渗金属[J].材料热处理学报,1982,3(1):71-83.
    [111]Xu Z, Liu X, Zhang P, et al. Double glow plasma surface alloying and plasma nitriding [J]. Surf Coat Technol,2007,201(9-11):4822-4825.
    [112]Xu Z. Method and apparatus for introducing normally solid materials into substrate surface [P]. US Patent:45422685,1985-05-28.
    [113]Xu Z. Method and apparatus for introducing normally solid materials into substrate surface [P]. US Patent:47332539,1988-05-15.
    [114]徐重.等离子表面冶金学[M].北京:科学出版社,2008.
    [115]范爱兰.医用钛合金等离子合金化组织及其相关性能研究[D].太原:太原理工大学,2008.
    [116]Xu Z, Xie X S, Yang Z M, et al. A study of nickel-based corrosion resisting alloy layer obtained by double glow plasma surface alloying technique [J]. Surf Coat Technol,2000,131(1-3):378-382.
    [117]王鹤峰.不锈钢表面TiO2薄膜的制备及其性能研究[D].太原:太原理工大学,2007.
    [118]贺志勇,古凤英,徐重,等.双层辉光离子镍铬共渗最佳工艺参数的研究[J].金属热处理学报,1990,(3):64-73.
    [119]刘小平,李忠厚,苏永安,等.表面冶金高速钢及其应用[J].材料科学与工艺,1997,5(1):16-18.
    [120]Fan A L, Qin L, Tian L H, et al. Study on bacteria adherence properties of Mo surface-modified layer in Ti6A14V alloy prepared by plasma surface alloying technique [J]. Appl Surf Sci,2008,255(2):419-421.
    [121]唐宾,范爱兰,秦林,等.钛合金表面合金化组织及其微动摩擦学性能研究[J].核技术,2007,30(12):979-982.
    [122]秦林,范爱兰,吴培强,等.Ti6A14V合金渗镀Mo-N陶瓷层的微动摩擦学性能[J].稀有金属材料与工程,2006,5(7):1053-1056.
    [123]Liu X P, Gao Y, Li Z H, et al. Cr-Ni-Mo-Co surface alloying layer formed by plasma surface alloying in pure iron [J]. Appl Surf Sci,2006,252(10):3894-3902.
    [124]Guo C L, Liu X P, Ben H F, et al. Oxidation resistance of TiAl alloy treated by plasma Nb-C alloying [J]. Surf Coat Technol,2008,202(9):1797-1801.
    [125]贺志勇,刘小萍,王振霞.γ-TiAl金属间化合物表面改性技术研究现状[J].材料导报,2007,21(2):83-86.
    [126]刘小萍,田文怀,杨峰,等.经时效处理SUS316L不锈钢中析出相的晶体结构和化学成分[J].材料热处理学报,2006,27(3):81-86.
    [127]刘小萍,高原,徐晋勇,等.等离子表面高铬高碳耐磨层的研究[J].材料科学与工艺,2006,14(3):251-255.
    [128]Li X Y, Tang B, Pan J D, et al. Tribological properties of Mo-N hard coatings on Ti6Al4V by double glow discharge technique [J]. J Mater Sci Technol,2003,19(4): 291-293.
    [129]李秀燕,范爱兰,唐宾,等.基体温度对Ti6A14V表面渗Mo合金层组织成分及性能的影响[J].中国有色金属学报,2003,13(2):319-322.
    [130]范爱兰.医用钛合金等离子合金化组织及其相关性能研究[D].太原:太原理工大学,2008.
    [131]梁文萍.AlNbTi2O相合金双辉等离子渗Mo、Cr及其性能研究[D].太原:太原理工大学,2006.
    [132]Broszeit E, Moatthes B, Herr W. Tribological properties of r.f. sputtered Ti-B-C coatings under various pin-on-disc wear test conditions [J]. Surf Coat Technol,1993, 58(1):29-35.
    [133]郭亮,梁成浩,郭海霞,等.纤维原蛋白对模拟人工体液中不锈钢腐蚀行为的影响[J].生物医学工程学杂志,2001,18(4):565-567.
    [134]陈德明,王亭杰,雨山江,等,纳米TiO2的性能、应用及制备方法[J],材料工程,2002,(11):42-47.
    [135]于向阳,程继健,杜永娟,TiO2光催化薄膜的制备法[J],玻璃与搪瓷,2001,19(1):37-41.
    [136]Sumita S, Otsuka H, Kubota H, et al. Ion-beam modification of TiO2 film to multilayered photocatalyst [J]. Nuclear Instruments and Methods in Physics B,1999, 148(1-4):758-761.
    [137]白爱英,梁伟,云沽,等.掺杂铂的二氧化钛薄膜光催化性能[J].材料热处理学报,2010,31(2):6-9.
    [138]Bico J, Thiele U, Quere D. Wetting of textured surfaces [J]. Physicochen Eng Aspects,2002,206(1-3):41-46.
    [139]鲍甫成,王正,郭文静.杨木和杉木木材表面性质的研究[J].林业科学,2004,40(1):131-136.
    [140]顾惕人,朱埗瑶,李外朗,等.表面化学[M].北京:科学出版社,1999.
    [141]Chen X B, Lou Y B, Samia Anna C S, et al. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts:comparison to a commercial nanopower [J]. Adv Funct Mater,2005,15(1):41-49.
    [142]Cong Y, Zhang J L, Chen F, et al. Synthesis and Characterization of nitrogen-doped TiO2 nanophotocatalyst with High Visible light activity [J]. J Phys Chem C,2007,111(19),6976-6982.
    [143]Zhao L, Jiang Q, Lian J S, Visible-light photocatalytic activity of nitriogen-doped TiO2 thin film prepared by pulsed laser deposition [J]. Appl Surf Sci,2008,254(15): 4620-4625.
    [144]Dan Z G, Ni H W, Xu B F, et al. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions [J]. Thin Solid Films,2005,492(1-2): 93-100.
    [145]雷明凯.生物医用奥氏体不锈钢磨损腐蚀问题[J].大连理工大学学报,2000,40(S1):65-69.
    [146]丁晓非,牟晨晓,沈勇.Nb含量对TiAl-Nb合金相组成及氧化动力学的影响[J].大连水产学院学报,2003,18(1):34-37.
    [147]胡勇.复合材料的摩擦学特性及应用[J].上海金属,2002,24(2):10-13.
    [148]刘小萍. TiAl基合金等离子表面合金化的磨损和高温氧化研究[D].北京:北京科技大学,2008.
    [149]Xiong X, Chen J, Yao P P, et al. Friction and wear behaviors of Fe and SiO2 in Cu-based P/M friction materials [J]. Wear,2007,262(9-10):1182-1186.
    [150]王吉会,姜晓霞,李曙,等.腐蚀磨损过程中材料的环境脆性[J].材料研究学报,2003,17(5):449-458.
    [151]Zhang T C, Jiang X X, Lu X C, et al. Corrosion wear of duplex stainless steels in sulfuric acid solution containing chloride [J]. Corrosion,1994,50(5):339-344.
    [152]Jiang X X, Sun Q X, Li S Z, et al. Effect of additives on corrosive wear of carbon steel [J]. Wear,1991,142(1):31-41.
    [153]徐江,董建新,谢锡善.磨损腐蚀的研究进展[J].材料导报,2001,15(9):20-23.
    [154]刘成龙,杨大智,赵红.316L不锈钢表面液相沉积Ti02薄膜的耐蚀性研究[J].功能材料,2003,34(5):600-602.
    [155]肖正伟,曾振欧,赵国鹏,等.304不锈钢上纳米TiO2涂层的制备与防腐蚀性能研究[J].电镀与涂饰,2007,26(7):35-38.
    [156]周幸福,褚道葆,林昌健,等.不锈钢表面纳米Ti02膜的制备及其耐蚀性能[J].材料保护,2002,35(7):4-5.
    [157]李敏娇,李志源,张述林,等.不锈钢表面涂覆TiO2薄膜的耐蚀性研究[J].电镀与精饰,2010,32(9):8-10.
    [158]Norlin A, Pan J, Leygraf C. Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy [J]. Biomol Eng, 2002,19(2-6):67-71.
    [159]张鉴清,曹楚南.电化学阻抗谱方法研究评价有机涂层[J].腐蚀与防护,1998,19(3):99-104.
    [160]Shan C X, Hou X H, Choy K L. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition [J]. Surf Coat Technol,2008,202(11): 2399-2402.
    [161]胡宗纯,谢发勤,吴向清,等.钛合金表面等离子体电解氮碳共渗层的特征与耐蚀性[J].中国表面工程,2009,22(2):56-60.
    [162]秦永妮,陈尧.CO2腐蚀产物膜的电化学性能分析[J].石油化工腐蚀与防护,2008,25(3):13-15.
    [163]Morrison F D, Jung D J, Scott J F. Constant-phase-element (CPE) modeling of ferroelectric random-access memory lead zirconate-titanate (PZT) capacitors [J]. J Appl Phys,2007,101(9):094112-094116.
    [164]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,86-90.
    [165]姜兴军.N80钢局部腐蚀的电化学噪声研究[D].湖北:华中科技大学,2006.
    [166]张骏凯.电极面积对电化学噪声的影响[D].湖北:华中科技大学,2007.
    [167]Hashimoto M, Miyajima S, Murata T. A stochastic analysis of potential fluctuation during passive film breakdown and repair on iron [J]. Corros Sci,1992,33(6): 885-904.
    [168]Pistorius P C, Burstein G T. Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros Sci,1992,33(12):1885-1897.
    [169]Cao C N, Lin H C, Chang X Y. Features of Electrochemical Noises during Pitting Corrosion [J]. Key Eng Mater,1991,20-28:257-262.
    [170]Cheng Y F, Wilmott M, Luo J L. Analysis of the role of electrode capacitance on the initiation of pits for A516 carbon steel by electrochemical noise measurements [J]. Corros Sci,1999,41(7):1245-1256.
    [171]Liu C L, Yang D Z, Zhao H. Corrosion resistance behavior of TiO2 thin films prepared by LPD on SS316L [J]. J Funct Mater,2003,34(5):600-602.
    [172]Ryan M P, Williams D E, Chater R J, et al. Why stainless steel corrodes [J]. Nature, 2002,415:770-774.
    [173]Saritas S, Procter R P M, Grant W A. The use of ion implantation to modify the tribological properties of Ti6Al4V alloy [J]. Mater Sci Eng,1987,90,291-306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700