掺杂二氧化钛的电子结构和光学特性的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锐钛矿型二氧化钛(TiO2)是一种非常理想的半导体光催化剂,由于具有催化活性高、稳定性好、对人体无毒、成本低等优点被广泛用于环境保护和能源再生等领域。然而它的禁带宽度较大(3.2eV),只有波长小于387nm的紫外光才能使TiO2产生光催化作用。而占太阳光能约43%的可见光得不到充分利用。为了有效的利用太阳能,本文采用基于密度泛函理论的第一性原理研究了几种离子掺杂在改进TiO2可见光响应方面的作用。首先,研究了N-B共掺杂TiO2的几何结构、电子结构和光学特性。选取了三种不同的掺杂结构,即N s B i (N替位O,B填隙)、N s B s (N、B双替位O)和N i Bi(N、B双填隙)共掺结构。采用GGA方法对几何结构进行优化,然后采用GGA+U的方法对N-B共掺的TiO2的电子结构和光学特性进行了计算,我们发现三种共掺结构都能产生带隙态,但是只有N s Bi共掺结构能产生可见光吸收,而且可见光吸收与掺杂原子之间的距离有关系,当N和B原子之间的距离较近时,可见光吸收强度很弱,随着距离的增大,吸收强度明显增强。结合电子态密度与介电函数虚部的结果,我们可以得出此可见光学跃迁归因于N的2p态到Ti的3d态之间的跃迁。
     其次,采用同样的方法研究了C-N共掺TiO2的电子结构和光学特性。采用GGA和GGA+U方法分别计算了纯TiO2的能带结构,结果表明GGA+U能有效的改进TiO2的带隙。与纯的TiO2相比,C、N单掺杂和C-N共掺后的带隙均减小,而且共掺所导致的带隙减小程度要大于单掺杂的情况。从光学特性看,三种掺杂体系的带边均发生了红移,并且在450-800nm范围内出现了吸收,C-N共掺TiO2的吸收强度要优于C和N单掺杂的情况,也就是说C和N共掺杂的时候出现了协同效应。根据计算结果,我们可以得出C-N共掺TiO2的可见光学跃迁归因于N和C杂化的2p态到Ti的3d态之间的跃迁。
     最后,我们采用GGA的方法计算了Cu、Ag和Au掺杂TiO2的电子结构和光学特性。Cu,Ag和Au掺杂后会在TiO2禁带中不同位置处产生带隙态,三种元素掺杂后都能使带隙缩小,而且都能产生可见光吸收。Cu和Ag掺杂产生的可见光吸收很强,而Au掺杂导致的可见光吸收很弱。根据三种元素掺杂后的能带结构,我们给出了可见光学跃迁机理。Cu掺杂后产生的吸收与Cu3d-Ti3d跃迁是对应的。Ag掺杂产生的可见光吸收与Ag的4d态到导带的跃迁相对应。而Au掺杂后产生的可见光吸收,与价带顶端和Au的5d带隙态之间的跃迁对应。
Anatase TiO2has several excellent properties, such as nontoxic, relativelyinexpensive, physical and chemical stability, and high photocatalytic activity.Therefore, TiO2is considered as a kind of ideal semiconductor photocatalyst, and iswidely applied in environmental protection and renewable energy. Unfortunately,anatase TiO2has a wide band gap (about3.2eV), which only responds to UV lightirradiation accounting for only a small fraction of solar light, while visible lightoccupying most fraction of solar light can’t be utilized. In order to use solar energyeffectively, we studied the visible light response of several kinds of ions doped TiO2based on the density functional theory.
     First, we studied the geometry, electronic structures, and optical properties of N-Bcodoped TiO2. Three codoped structures were chosen, including N s B i, N s Bs, andN i Bi(s means substitution and i means interstitial). Geometry optimization wasperformed by GGA method. Further, we calculated the electronic structures andoptical properties of N-B codoped TiO2using GGA+U method. It was shown that theband gap states were observed in the three codoped structures, however, the visibleoptical absorption only appeared in N s B i structure. In addition, the N s Bistructure wassensitive to the distance of dopants, and a decrease of the distance between N and Batoms induces a decrease of the absorption. The visible optical transition in N s Bistructure was attributed to the N2p-Ti3d transition.
     Second, we investigated the electronic structures and optical properties of C-doped,N-doped, and C-N codoped TiO2. Band structure of pure TiO2was calculated usingGGA and GGA+U methods, and the results showed that the band gap of pure TiO2could be corrected effectively. It was shown that the band gaps of C-doped, N-doped,and C-N codoped TiO2were reduced compared with pure TiO2. Optical propertiesresults showed that the band edges of the three doped systems shifted to the longwaveregion, and the optical absorptions were all observed in450-800nm. Moreover, theabsorption intensity of C-N codoped TiO2was larger than that of C-doped andN-doped TiO2, which mean that C and N have a synergy in the C-N codoped TiO2.According to the calculated results, we concluded that the visible optical transition inthe C-N codoped TiO2was attributed to the transition of N and C2p-Ti3d states.
     Finally, we investigated the electronic structures and optical properties of Cu, Ag,and Au-doped TiO2. Cu doping could produce some electronic states near the top ofvalence band of TiO2, and Ag and Au doping also produced band gap states. Theincorporation of the three dopants could reduce the band gap of TiO2, and also,produced visible optical absorption. The visible absorption intensities of Cu andAg-doped TiO2were larger than that of Au-doped TiO2. We gave the visible opticaltransition mechanisms of three doped systems. For the Cu-doped TiO2, the visibleoptical transition corresponded to the Cu3d-Ti3d states transition. The Ag dopingcaused the visible optical transition between middle Ag4d and Ti3d states, while theAu doping caused the visible optical transition between O2p and middle Au5d states.
引文
[1] Fujishima A., Electrochemical photolysis of water at a semiconductor electrode,Nature,1972,238:37-38.
    [2] Carey J. H., Lawrence J. and Tosine H. M., Photodechlorination of PCB's in thepresence of titanium dioxide in aqueous suspensions, Bulletin of EnvironmentalContamination and Toxicology,1976,16(6):697-701.
    [3] Frank S. N. and Bard A. J., Heterogeneous photocatalytic oxidation of cyanideand sulfite in aqueous solutions at semiconductor powders, The Journal of PhysicalChemistry,1977,81(15):1484-1488.
    [4] Kudo A. and Miseki Y., Heterogeneous photocatalyst materials for water splitting,Chemical Society Reviews,2009,38(1):253-278.
    [5] Percherancier J. P., Chapelon R. and Pouyet B., Semiconductor-sensitizedphotodegradation of pesticides in water: the case of carbetamide, Journal ofPhotochemistry and Photobiology A: Chemistry,1995,87(3):261-266.
    [6] Mak M. K. S. and Hung S. T., Degradation of neat and commercial samples oforganophosphate pesticides in illuminated TiO2suspensions, Toxicological&Envir-onmental Chemistry,1992,36(3-4):155-168.
    [7] Sclafani A., Palmisano L. and Davi E., Photocatalytic degradation of phenol inaqueous polycrystalline TiO2dispersions: the influence of Fe3+, Fe2+and Ag+on thereaction rate, Journal of Photochemistry and Photobiology. A, Chemistry,1991,56(1):113-123.
    [8] Liu Z., Zhang X., Nishimoto S., et al., Highly ordered TiO2nanotube arrays withcontrollable length for photoelectrocatalytic degradation of phenol, The Journal ofPhysical Chemistry C,2008,112(1):253-259.
    [9] Ding Z., Lu G. Q. and Greenfield P. F., Role of the crystallite phase of TiOhterogeneous photocatalysis for phenol oxidation in water, The Journal of Phys2ineicalChemistry B,2000,104(19):4815-4820.
    [10]Chiang K., Amal R. and Tran T., Photocatalytic degradation of cyanide usingtitanium dioxide modified with copper oxide, Advances in Environmental Research,2002,6(4):471-485.
    [11] Hidaka H., Nakamura T., Ishizaka A., et al., Heterogeneous photocatalyticdegradation of cyanide on TiO2surfaces, Journal of Photochemistry and PhotobiologyA: Chemistry,1992,66(3):367-374.
    [12]Marc G., Addamo M., Augugliaro V., et al., Photocatalytic oxidation of tolueneon irradiated TiO2: comparison of degradation performance in humidified air, in waterand in water containing a zwitterionic surfactant, Journal of Photochemistry andPhotobiology A: Chemistry,2003,160(1):105-114.
    [13]Zhao J., Wu T., Wu K., et al., Photoassisted degradation of dye pollutants.3.degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2dispersions under visible light irradiation: evidence for the need of substrateadsorption on TiO2particles, Environmental Science&Technology,1998,32(16):2394-2400.
    [14]Zhang L., Li P., Gong Z., et al., Photocatalytic degradation of polycyclic aromatichydrocarbons on soil surfaces using TiO2under UV light, Journal of HazardousMaterials,2008,158(2):478-484.
    [15]方世杰,徐明霞,黄卫友,纳米TiO2光催化降解甲基橙,硅酸盐学报,2001,29(5):439-442.
    [16]冷文华,张莉,附载二氧化钛光催化降解水中对氯苯胺(PCA),环境科学,2000,21(6):46-50.
    [17]Linsebigler A. L., Lu G. and Yates Jr J. T., Photocatalysis on TiOinciples, mechanisms, and selected results, Chemical Reviews,19952surfaces:pr,95(3):735-758.
    [18]费学宁,科学出版社,《非均相光催化—有机合成、降解、设备及应用》,2011.
    [19]沈伟韧,赵文宽,贺飞, TiO10(4):349-361.2光催化反应及其在废水处理中的应用,化学进展,1998,[20]Carraway E. R., Hoffman A. J. and Hoffmann M. R., Photocatalytic oxidation oforganic acids on quantum-sized semiconductor colloids, Environmental Science&Technology,1994,28(5):786-793.
    [21]Iskandar F., Nandiyanto A. B. D., Yun K. M., et al., Enhanced photocatalyticperformance of brookite TiO2macroporous particles prepared by spray drying withcolloidal templating, Advanced Materials,2007,19(10):1408-1412.
    [22]孙剑辉,祁巧艳,王晓钰,纳米TiO2光催化技术在工业废水处理中的应用,水资源保护,2005,21(3):29-32.
    [23]张万忠,乔学亮,邱小林,纳米二氧化钛的光催化机理及其在有机废水处理中的应用,人工晶体学报,2006,35(5):1026-1031.
    [24]魏刚,黄海燕,熊蓉春,纳米二氧化钛的光催化性能及其在有机污染物降解中的应用,现代化工,2003,23(1):20-23.
    [25]罗洁,陈建山, TiO2光催化氧化降解印染废水的研究,工业催化,2004,12(6):36-38.
    [26]赵进才,张丰雷,二氧化钛微粒存在下表面活性剂光催化分解机理的研究,感光科学与光化学,1996,14(3):269-273.
    [27]崔振峰,王永芝, TiO2光催化降解脂肪烃类反应机制的探析,云南环境科学,2000,19(4):13-14.
    [28]Zubkov T., Stahl D., Thompson T. L., et al., Ultraviolet light-inducedhydrophilicity effect on TiO2(110)(1×1). Dominant role of the photooxidation ofadsorbed hydrocarbons causing wetting by water droplets, The Journal of PhysicalChemistry B,2005,109(32):15454-15462.
    [29]Peral J. and Ollis D. F., Heterogeneous photocatalytic oxidation of gas-phaseorganics for air purification: Acetone,1-butanol, butyraldehyde, formaldehyde, andm-xylene oxidation, Journal of Catalysis,1992,136(2):554-565.
    [30]Ao C. H. and Lee S. C, Indoor air purification by photocatalyst TiO2immobilizedon an activated carbon filter installed in an air cleaner, Chemical Engineering Science,2005,60(1):103-109.
    [31]Zhao J. and Yang X., Photocatalytic oxidation for indoor air purification: aliterature review, Building and Environment,2003,38(5):645-654.
    [32]Takeuchi M., Yamashita H., Matsuoka M., et al., Photocatalytic decomposition ofNO under visible light irradiation on the Cr-ion-implanted TiO2thin filmphotocatalyst, Catalysis letters,2000,67(2):135-137.
    [33]Li J. H., Zhu Y. Q., Ke R., et al., Improvement of catalytic activity andsulfur-resistance of Ag/TiO2-Al2O3for NO reduction with propene under lean burnconditions, Applied Catalysis B: Environmental,2008,80(3-4):202-213.
    [34]Panayotov D. A., Paul D. K. and Yates Jr J. T., Photocatalytic oxidation of2-chloroethyl ethyl sulfide on TiO2-SiO2powders, The Journal of Physical ChemistryB,2003,107(38):10571-10575.
    [35]Noguchi T., Fujishima A., Sawunyama P., et al., Photocatalytic degradation ofgaseous formaldehyde using TiO2film, Environmental Science&Technology,1998,32(23):3831-3833.
    [36]Long R. Q. and Yang R. T., Selective catalytic reduction of nitrogen oxides byammonia over Fe3+-exchanged TiO2-pillared clay catalysts, Journal of Catalysis,1999,186(2):254-268.
    [37]袭著革,李官贤,张华山,复合纳米TiO2净化典型室内空气污染物初步研究,解放军预防医学杂志,2004,21(5):316-318.
    [38]胡将军,李英柳,彭卫华,吸附-光催化氧化净化甲醛废气的试验研究,化学与生物工程,2004,21(1):39-41.
    [39]Jimmy C. Y., Ho W., Lin J., et al., Photocatalytic activity, antibacterial effect, andphotoinduced hydrophilicity of TiO2films coated on a stainless steel substrate,Environmental Science&Technology,2003,37(10):2296-2301.
    [40]Zhang H. and Chen G., Potent antibacterial activities of Ag/TiO2nanocompositepowders synthesized by a one-pot sol-gel method, Environmental Science&Technology,2009,43(8):2905-2910.
    [41]Armelao L., Barreca D., Bottaro G., et al., Photocatalytic and antibacterial activityof TiO2and Au/TiO2nanosystems, Nanotechnology,2007,18(37):375709.
    [42]Irel J. C., Klostermann P., Rice E. W., et al., Inactivation of escherichia coli bytitanium dioxide photocatalytic oxidation, Applied and Environmental Microbiology,1993,59(5):1668-1670.
    [43]徐瑞芬,许秀艳,付国柱,纳米TiO2在涂料中的抗菌性能研究,北京化工大学学报,2002,29(5):45-48.
    [44]汪铭,丁新更,曹旭丹,不锈钢基片上制备Ag+/TiO2抗菌薄膜的研究,材料科学与工程学报,2003,21(3):379-382.
    [45]Paul T., Miller P. L. and Strathmann T. J., Visible-light-mediated TiO2photocata-lysis of fluoroquinolone antibacterial agents, Environmental Science&Technology,2007,41(13):4720-4727.
    [46]Ni M., Leung M. K.H., Leung D. Y. C., et al., A review and recent developmentsin photocatalytic water-splitting using TiO2for hydrogen production, Renewable andSustainable Energy Reviews,2007,11(3):401-425.
    [47]Yu J., Qi L. and Jaroniec M., Hydrogen production by photocatalytic watersplitting over Pt/TiO2nanosheets with exposed (001) facets, The Journal of PhysicalChemistry C,2010,114(30):13118-13125.
    [48]Nada A. A., Barakat M. H., Hamed H. A., et al., Studies on the photocatalytichydrogen production using suspended modified TiO2photocatalysts, InternationalJournal of Hydrogen Energy,2005,30(7):687-691.
    [49]Hara K., Sayama K., Ohga Y., et al., A coumarin-derivative dye sensitizednanocrystalline TiO2solar cell having a high solar-energy conversion efficiency up to5.6%, Chemical Communication,2001,569-570.
    [50]O’Regan B. and Grfitzeli M., A low-cost, high-efficiency solar cell based ondye-sensitized, Nature,1991,353(24):737-739..
    [51]杨术明,李富友,染料敏化纳米晶太阳能电池,化学通报,2002,65(5):292-296.
    [52]Li W., Frenkel A. I., Woicik J. C., et al., Dopant location identification inNd3+-doped TiO2nanoparticles, Physical Review B,2005,72(15):155315.
    [53]Morris D., Dou Y., Rebane J., et al., Photoemission and STM study of theelectronic structure of Nb-doped TiO2, Physical Review B,2000,61(20):13445.
    [54]Kurita D., Ohta S., Ohta H., et al., Carrier generation and transport properties ofheavily Nb-doped anatase TiO2epitaxial films at high temperatures, Journal ofApplied Physics,2006,100(9):096105.
    [55]Lü X., Mou X., Wu J., et al., Improved-performance dye-sensitized solar cellsusing Nb-doped TiO2electrodes: efficient electron injection and transfer, AdvancedFunctional Materials,2010,20(3):509-515.
    [56]Park M. S., Kwon S. K. and Min B. I., Electronic structures of doped anataseTiO2: Ti1-xMxO2(M=Co, Mn, Fe, Ni), Physical Review B,2002,65(16):161201.
    [57]Janisch R., Gopal P. and Spaldin N. A., Transition metal-doped TiO2andZnO-present status of the field, Journal of Physics: Condensed Matter,2005,17(27):R657.
    [58]Gomathi D. L. and Narasimha M. B., Characterization of Mo doped TiO2and itsenhanced photo catalytic activity under visible light, Catalysis Letters,2008,125(3):320-330.
    [59]Bally A. R., Korobeinikova E. N., Schmid P. E., et al., Structural and electricalproperties of Fe-doped thin films, Journal of Physics D: Applied Physics,1999,31(10):1149.
    [60]Wang Y., Cheng H., Hao Y., et al., Preparation, characterization and photoelectr-ochemical behaviors of Fe (III)-doped TiO2nanoparticles, Journal of MaterialsScience,1999,34(15):3721-3729.
    [61]Yu J., Xiang Q. and Zhou M., Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principlesstudy for electronic structures, Applied Catalysis B: Environmental,2009,90(3):595-602.
    [62]Xu A. W., Gao Y. and Liu H.Q., The preparation, characterization, and theirphotocatalytic activities of rare-earth-doped TiO2nanoparticles, Journal of Catalysis,2002,207(2):151-157.
    [63]Choi W., Termin A. and Hoffmann M. R., The role of metal ion dopants inquantum-sized TiO2: correlation between photoreactivity and charge carrierrecombination dynamics, The Journal of Physical Chemistry,1994,98(51):13669-13679.
    [64]贾堤,雅菁,费学宁等, Fe3+对TiO000,21(3):156-158.2的自然光催化降解性能影响,陶瓷学报,2[65]Tian B., Li C., Gu F., et al., Flame sprayed V-doped TiO2nanoparticles withenhanced photocatalytic activity under visible light irradiation, Chemical EngineeringJournal,2009,151(1):220-227.
    [66]Klosek S. and Raftery D., Visible light driven V-doped TiO2photocatalyst and itsphotooxidation of ethanol, The Journal of Physical Chemistry B,2001,105(14):2815-2819.
    [67]Wu J. C. S. and Chen C. H., A visible-light response vanadium-doped titaniananocatalyst by sol–gel method, Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):509-515.
    [68]Yang X., Cao C., Hohn K., et al., Highly visible-light active C-and V-doped TiO2for degradation of acetaldehyde, Journal of Catalysis,2007,252(2):296-302.
    [69]Moon J., Takagi H., Fujishiro Y., et al., Preparation and characterization of theSb-doped TiO2photocatalysts, Journal of Materials Science,2001,36(4):949-955.
    [70]李芳柏,古国榜,纳米复合Sb2O3/TiO2的光催化性能研究,无机化学学报,2001,17(1):37-42.
    [71]黄翠英,由万胜,党利琴,钕掺杂对纳米TiO2光催化分解水制氢活性的影响,催化学报,2006,27(3):203-209.
    [72]Karakitsou K. E. and Verykios X. E., Effects of altervalent cation doping oftitania on its performance as a photocatalyst for water cleavage, The Journal ofPhysical Chemistry,1993,97(6):1184-1189.
    [73]Sato S., Photocatalytic activity of NOx-doped TiO2in the visible light region,Chemical Physics Letters,1986,123(1):126-128.
    [74]Asahi R., Morikawa T., Ohwaki T., et al., Visible-light photocatalysis innitrogen-doped titanium oxides, Science,2001,293(5528):269-271.
    [75]Irie H., Watanabe Y. and Hashimoto K., Nitrogen-concentration dependence onphotocatalytic activity of TiO2-xNxpowders, The Journal of Physical Chemistry B,2003,107(23):5483-5486.
    [76]Ihara T., Miyoshi M., Iriyama Y., et al., Visible-light-active titanium oxidephotocatalyst realized by an oxygen-deficient structure and by nitrogen doping,Applied Catalysis B: Environmental,2003,42(4):403-409.
    [77]Noda H., Oikawa K., Ogata T., et al., Preparation of titanium (IV) oxides and itscharacterization, Bulletin of the Chemical Society of Japan,1986,1084-1090.
    [78]刘守新,陈孝云,陈曦,酸催化水解法制备可见光响应N掺杂纳米TiO2催化剂,催化学报,2006,27(8):697-702.
    [79]Khan S. U. M., Al S. M. and Ingler Jr W. B., Efficient photochemical watersplitting by a chemically modified n-TiO2, Science,2002,297(5590):2243-2245.
    [80]Irie H., Watanabe Y. and Hashimoto K., Carbon-doped anatase TiO2powders as avisible-light sensitive photocatalyst, Chemistry Letters,2003,32(8):772-773.
    [81]Sakthivel S. and Kisch H., Daylight photocatalysis by carbon-modified titaniumdioxide, Angewandte Chemie International Edition,2003,42(40):4908-4911.
    [82]Hattori A. and Tada H., High photocatalytic activity of F-doped TiO2film onglass, Journal of Sol-Gel Science and Technology,2001,22(1):47-52.
    [83]Jimmy C. Y., Yu J., Ho W., et al., Effects of F-doping on the photocatalyticactivity and microstructures of nanocrystalline TiO2powders, Chemistry of Materials,2002,14(9):3808-3816.
    [84]Guo M. L., Zhang X. D., Liang C. T., et al., Mechanism of visible photoactivityof F-Doped TiO2, Chinese Physics Letters,2010,27(5):7103.
    [85]Umebayashi T., Yamaki T., Itoh H., et al., Band gap narrowing of titaniumdioxide by sulfur doping, Applied Physics Letters,2002,81(3):454-456.
    [86]Ohno T., Akiyoshi M., Umebayashi T., et al., Preparation of S-doped TiO2photocatalysts and their photocatalytic activities under visible light, Applied CatalysisA: General,2004,265(1):115-121.
    [87]Umebayashi T., Yamaki T., Yamamoto S., et al., Sulfur-doping of rutile-titaniumdioxide by ion implantation: Photocurrent spectroscopy and first-principles bandcalculation studies, Journal of Applied Physics,2003,93(9):5156-5160.
    [88]Ohno T., Mitsui T. and Matsumura M., Photocatalytic activity of S-doped TiO2photocatalyst under visible light, Chemistry Letters,2003,(4):364-365.
    [89]Zhao W., Ma W., Chen C., et al., Efficient degradation of toxic organic pollutantswith Ni2O3/TiO2-xBxunder visible irradiation, Journal of the American ChemicalSociety,2004,126(15):4782-4783.
    [90]Chen X., Liu L., Peter Y. Y., et al., Increasing solar absorption for photocatalysiswith black hydrogenated titanium dioxide nanocrystals, Science,2011,331(6018):746-750.
    [91]Kato H. and Kudo A., Visible-light-response and photocatalytic activities of TiO2and SrTiO3photocatalysts codoped with antimony and chromium, The Journal ofPhysical Chemistry B,2002,106(19):5029-5034.
    [92]Yang P., Lu C., Hua N., et al., Titanium dioxide nanoparticles co-doped with Fe3+and Eu3+ions for photocatalysis, Materials Letters,2002,57(4):794-801.
    [93]Niishiro R., Kato H. and Kudo A., Nickel and either tantalum orniobium-codoped TiO2and SrTiO3photocatalysts with visible-light response for H2orO2evolution from aqueous solutions, Physical Chemistry Chemical Physics,2005,7(10):2241-2245.
    [94]陆诚,杨平, Fe3+/V5+/TiO2复合纳米微粒光催化性能的研究,化学研究与应用,2002,14(3):265-268.
    [95]Yuan Z., Jia J. and Zhang L., Influence of co-doping of Zn (II)+Fe (III) on thephotocatalytic activity of TiO2for phenol degradation, Materials Chemistry andPhysics,2002,73(2):323-326.
    [96]Long R. and English N. J., Tailoring the electronic structure of TiO2by cationcodoping from hybrid density functional theory calculations, Physical Review B,2011,83(15):155209.
    [97]Long R. and English N. J., First-principles calculation of nitrogen-tungstencodoping effects on the band structure of anatase-titania, Applied Physics Letters,2009,94(13):132102.
    [98]黄东升,陈朝凤,李玉花,铁,氮共掺杂二氧化钛粉末的制备及光催化活性,2007,23(4):738-742.
    [99]Liu C., Tang X., Mo C., et al., Characterization and activity of visible-light-drivenTiO2photocatalyst codoped with nitrogen and cerium, Journal of Solid StateChemistry,2008,181(4):913-919.
    [100]Wei H., Wu Y., Lun N., et al., Preparation and photocatalysis of TiO2nanoparticles co-doped with nitrogen and lanthanum, Journal of Materials Science,2004,39(4):1305-1308.
    [101]Gai Y., Li J., Li S. S., et al., Design of narrow-gap TiO2: A passivated codopingapproach for enhanced photoelectrochemical activity, Physical Review Letters,2009,102(3):36402.
    [102]Long R. and English N. J., Band gap engineering of (N, Ta)-codoped TiO2: Afirst-principles calculation, Chemical Physics Letters,2009,478(4):175-179.
    [103]Yin W. J., Tang H., Wei S. H., et al., Band structure engineering ofsemiconductors for enhanced photoelectrochemical water splitting: The case of TiO2,Physical Review B,2010,82(4):045106.
    [104]Ma X., Wu Y., Lu Y., et al., Effect of compensated codoping on thephotoelectrochemical properties of anatase TiO2photocatalyst, The Journal ofPhysical Chemistry C,2011,115(34):16963-16969.
    [105]Nukumizu K., Nunoshige J., Takata T., et al., TiNxOyFzas a stable photocatalystfor water oxidation in visible light (<570nm), ChemInform,2003,34(21).
    [106]Di L., Haneda H., Hishita S., et al., Visible-light-driven NF-codoped TiO2photocatalysts. Optical characterization, photocatalysis, and potential application toair purification, Chemistry of Materials,2005,17(10):2596-2602.
    [107]Subbarao S. N., Yun Y. H., Kershaw R., et al., Electrical and optical properties ofthe system TiO2-xFx, Inorganic Chemistry,1979,18(2):488-492.
    [108]Liu H. and Gao L.,(Sulfur, nitrogen)-codoped rutile-titanium dioxide as avisible-light-activated photocatalyst, Journal of the American Ceramic Society,2004,87(8):1582-1584.
    [109]Jia L., Wu C., Li Y., et al., Enhanced visible-light photocatalytic activity ofanatas TiO2through N and S codoping, Applied Physics Letters,2011,98(21):211903.
    [110]Rengifo-Herrera J. A., Pierzcha a K., Sienkiewicz A., et al., Synthesis,characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2having different surface-to-volume ratios, The Journal of Physical Chemistry C,2010,114(6):2717-2723.
    [111]Yu C. and Yu J. C., A simple way to prepare C–N-codoped TiO2photocatalystwith visible-light activity, Catalysis Letters,2009,129(3):462-470.
    [112]Cong Y., Chen F., Zhang J. L., et al., Carbon and nitrogen-codoped TiO2withhigh visible light photocatalytic activity, Chemistry Letters,2006,35(7):800-801.
    [113]Wang X. and Lim T. T., Solvothermal synthesis of C–N codoped TiO2andphotocatalytic evaluation for bisphenol A degradation using a visible-light irradiatedLED photoreactor, Applied Catalysis B: Environmental,2010,100(1):355-364.
    [114]In S., Orlov A., Berg R., et al., Effective visible light-activated B-doped and B,N-codoped TiO2photocatalysts, Journal of the American Chemical Society,2007,129(45):13790-13791.
    [115]Feng N., Zheng A., Wang Q., et al., Boron environments in B-doped and (B,N)-codoped TiO2photocatalysts: a combined solid-state NMR and theoreticalcalculation study, The Journal of Physical Chemistry C,2011,115(6):2709-2719.
    [116]Yin W. J., Wei S. H., Al-Jassim M. M., et al., Double-hole-mediated coupling ofdopants and its impact on band gap engineering in TiO2, Physical Review Letters,2011,106(6):66801.
    [117]Driessen M. D. and Grassian V. H., Photooxidation of trichloroethylene onPt/TiO2, The Journal of Physical Chemistry B,1998,102(8):1418-1423.
    [118]Park H., Choi W. and Hoffmann M. R., Effects of the preparation method of theternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogenproduction, Journal of Materials. Chemistry,2008,18(20):2379-2385.
    [119]Mohapatra S. K., Misra M., Mahajan V. K., et al., Design of a highly efficientphotoelectrolytic cell for hydrogen generation by water splitting: application ofTiO2-xCxnanotubes as a photoanode and Pt/TiO2nanotubes as a cathode, The Journalof Physical Chemistry C,2007,111(24):8677-8685.
    [120]Li H., Bian Z., Zhu J., et al., Mesoporous Au/TiO2nanocomposites withenhanced photocatalytic activity, Journal of the American Chemical Society,2007,129(15):4538-4539.
    [121]Date M. and Haruta M., Moisture effect on CO oxidation over Au/TiO2catalyst,Journal of Catalysis,2001,201(2):221-224.
    [122]Tada H., Mitsui T., Kiyonaga T., et al., All-solid-state Z-scheme inCdS–Au–TiO2three-component nanojunction system, Nature Materials,2006,5(10):782-786.
    [123]Tanaka A., Sakaguchi S., Hashimoto K., et al., Preparation of Au/TiO2exhibitingstrong surface plasmon resonance effective for photoinduced hydrogen formationfrom organic and inorganic compounds under irradiation of visible light, CatalysisScience&Technology,2012,2(5):907-909.
    [124]Hirakawa T. and Kamat P. V., Charge separation and catalytic activity of Ag@TiO2core-shell composite clusters under UV-irradiation, Journal of the AmericanChemical Society,2005,127(11):3928-3934.
    [125]Chan S. C. and Barteau M. A., Preparation of highly uniform Ag/TiO2andAu/TiO2supported nanoparticle catalysts by photodeposition, Langmuir,2005,21(12):5588-5595.
    [126]Choi H. J. and Kang M., Hydrogen production from methanol/waterdecomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2,International Journal of Hydrogen Energy,2007,32(16):3841-3848.
    [127]Sangpour P., Hashemi F. and Moshfegh A. Z., Photoenhanced degradation ofmethylene blue on cosputtered M: TiO2(M=Au, Ag, Cu) nanocomposite systems: acomparative study, The Journal of Physical Chemistry C,2010,114(33):13955-13961.
    [128]姜巧娟,于梅艳,付永等, Pt/TiO2的制备及其光催化正丙醇产氢的研究,河南化工,2012,(3):37-39.
    [129]王传义,刘春艳,沈涛,半导体光催化剂的表面修饰,高等学校化学学报,1998,19(12):2013-2019.
    [130]Wang C., Liu C., Zheng X., et al., The surface chemistry of hybridnanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects,1998,131(1):271-280.
    [131]刘守新,孙承林, Ag改性提高TiO2对Cr (VI)的光催化还原活性机理,物理化学学报,2004,20(4):355-359.
    [132]张金龙,贵金属负载光催化剂在丙炔光催化水解反应中的研究(Ⅲ),高等学校化学学报,2004,25(4):733-736.
    [133]Gopidas K. R., Bohorquez M. and Kamat P. V., Photophysical andphotochemical aspects of coupled semiconductors: charge-transfer processes incolloidal cadmium sulfide-titania and cadmium sulfide-silver (I) iodide systems,Journal of Physical Chemistry,1990,94(16):6435-6440.
    [134]Luo J., Ma L., He T., et al., TiO2/(CdS, CdSe, CdSeS) nanorod heterostructuresand photoelectrochemical properties, The Journal of Physical Chemistry C,2012,116(22):11956-11963.
    [135]Entezari M. H., Sono-synthesis of core–shell nanocrystal (CdS/TiO2) withoutsurfactant, Ultrasonics Sonochemistry,2012,19(5):1070–1078.
    [136]Chi C. F., Lee Y. L. and Weng H. S., A CdS-modified TiO2nanocrystallinephotoanode for efficient hydrogen generation by visible light, Nanotechnology,2008,19(12):125704.
    [137]Liu Z., Sun D. D., Guo P., et al., An efficient bicomponent TiO2/SnO2nanofiberphotocatalyst fabricated by electrospinning with a side-by-side dual spinneret method,Nano Letters,2007,7(4):1081-1085.
    [138]Tada H., Hattori A., Tokihisa Y., et al., A patterned-TiO2/SnO2bilayer typephotocatalyst, The Journal of Physical Chemistry B,2000,104(19):4585-4587.
    [139]Xing J., Fang W. Q., Li Z., et al., TiO2-coated ultrathin SnO2nanosheets used asphotoanodes for dye-sensitized solar cells with high efficiency, Industrial&Engineering Chemistry Research,2012,51(11):4247-4253.
    [140]Stojadinovic S., Radin N., Vasilic R., et al., Photocatalytic properties ofTiO2/WO3coatings formed by plasma electrolytic oxidation of titanium in12-tungstosilicic acid, Applied Catalysis. B, Environmental,2012,126:334-341.
    [141]Papp J., Soled S., Dwight K., et al., Surface acidity and photocatalytic activity ofTiO2, WO3/TiO2, and MoO3/TiO2photocatalysts, Chemistry of Materials,1994,6(4):496-500.
    [142]Tatsuma T., Saitoh S., Ohko Y., et al., TiO2-WO3photoelectrochemicalanticorrosion system with an energy storage ability, Chemistry of Materials,2001,13(9):2838-2842.
    [143]Mane R. S., Lee W. J., Pathan H. M., et al., Nanocrystalline TiO2/ZnO thin films:fabrication and application to dye-sensitized solar cells, The Journal of PhysicalChemistry B,2005,109(51):24254-24259.
    [144]施利毅,古宏晨,李春忠等, SnO2-TiO2复合光催化剂的制备和性能,催化学报,1999,20(3).
    [145]费学宁,刘晓平,李莹等,半导体复合CdS/TiO组合方法应用的初步研究,影像科学与光化学,2008,2催化剂改性及冷冻-光催化26(5):417-424.
    [146]徐晓娟,费学宁,李莹, ZnO/TiO,天津城市建设学院学报,2改性催化剂在阳光照射下对溴氨酸水溶液的催化降解2008,14(4):263-266.
    [147] Law M., Greene L. E., Johnson J. C., et al., Nanowire dye-sensitized solar cells,Nature Materials,2005,4(6):455-459.
    [148] Leijtens T., Ding I. K., Giovenzana T., et al., Hole transport materials with lowglass transition temperatures and high solubility for application in solid-statedye-sensitized solar cells, ACS Nano,2012,6(2):1455-1462.
    [149] Feng X., Zhu K., Frank A. J., et al., Rapid charge transport in dye-sensitizedsolar cells made from vertically aligned single-crystal rutile TiO2nanowires,Angewandte Chemie,2012,124(11):2781-2784.
    [150] Mor G. K., Shankar K., Paulose M., et al., Use of highly-ordered TiO2nanotubearrays in dye-sensitized solar cells, Nano Letters,2006,6(2):215-218.
    [151] Chiba Y., Islam A., Watanabe Y., et al., Dye-sensitized solar cells withconversion efficiency of11.1%, Japanese Journal of Applied Physics Letters,2006,45(24/28):638.
    [152]张莉,任焱杰,张正诚等,菁类染料敏化的固态纳米TiO化学学报,2001,22(7):1105-1107.2光电化学电池,高等学校[153]戴松元,孔凡太,胡林华等,染料敏化纳米薄膜太阳电池实验研究,物理学报,2005,54(4):1919-1926.
    [154]曾谨言,科学出版社,《量子力学(卷Ⅱ)》,2000.
    [155]Born M., Born-Oppenheimer Approximation, Annel Physik,1927,84:457.
    [156]Hartree D. R. The wave mechanics of an atom with a non-Coulomb central field.Part I. Theory and methods, Mathematical Proceedings of the Cambridge Philoso-phical Society,1928,24(1):89-110.
    [157]Fock V., N herungsmethode zur L sung des quantenmechanischen Mehrk rper-problems, Zeitschrift für Physik A Hadrons and Nuclei,1930,61(1):126-148.
    [158]Thomas L. H., The calculation of atomic fields, Mathematical Proceedings of theCambridge Philosophical Society,1927,542-548.
    [159]Fermi E., Application of statistical gas methods to electronic systems,Accademia Nazionale dei Lincei,1927,6:602-606.
    [160]Dirac P. A. M., Note on exchange phenomena in the Thomas atom, Proceedingsof the Cambridge Philosophical Society,1930,26:376.
    [161]Hohenberg P. and Kohn W., Inhomogeneous electron gas, Physical Review,1964,136(3B): B864.
    [162]Kohn W. and Sham L. J., Self-consistent equations including exchange andcorrelation effects, Physical Review,1965,140(4A): A1133-A1138.
    [163] Perdew J. P., Chevary J. A., Vosko S. H., et al., Atoms, molecules, solids, andsurfaces: Applications of the generalized gradient approximation for exchange andcorrelation, Physical Review B,1992,46(11):6671.
    [164] Perdew J. P., Burke K. and Ernzerhof M., Generalized gradient approximationmade simple, Physical Review Letters,1996,77(18):3865-3868.
    [165] Anisimov V. I., Zaanen J. and Andersen O. K., Band theory and Mott insulators:Hubbard U instead of Stoner I, Physical Review B,1991,44(3):943.
    [166] Anisimov V. I., Elfimov I. S., Hamada N., et al., Charge-ordered insulating stateof Fe3O4from first-principles electronic structure calculations, Physical Review B,1996,54(7):4387.
    [167] Korotin M. A., Anisimov V. I., Khomskii D. I., et al., CrO2: a self-doped doubleexchange ferromagnet, Physical Review Letters,1998,80(19):4305-4308.
    [168] Becke A. D., Density-functional thermochemistry. I. The effect of theexchange-only gradient correction, The Journal of Chemical Physics,1992,96:2155.
    [169] Becke A. D., Density-functional thermochemistry. III. The role of exactexchange, The Journal of Chemical Physics,1993,98:5648.
    [170]Phillips J. C., Energy-band interpolation scheme based on a pseudopotential,Physical Review,1958,112(3):685.
    [171]Yin M. T. and Cohen M. L., Theory of ab initio pseudopotential calculations,Physical Review B,1982,25(12):7403.
    [172]Vanderbilt D., Soft self-consistent pseudopotentials in a generalized eigenvalueformalism, Physical Review B,1990,41(11):7892.
    [173]Kresse G. and Joubert D., From ultrasoft pseudopotentials to the projectoraugmented-wave method, Physical Review B,1999,59(3):1758.
    [174]Lin Z. S., Orlov A., Lambert R. M., et al., New insights into the origin of visiblelight photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiOistry B,2005,109(44):20948-20952.2, TheJournal of Physical Chem[175] Chen D. M., Yang D., Wang Q., et al., Effects of boron doping on photocatalyticactivity and microstructure of titanium dioxide nanoparticles, Industrial&Engineer-ing Chemistry Research,2006,45(12):4110-4116.
    [176] Lu N., Quan X., Li J. Y., et al., Fabrication of boron-doped TiO2nanotube arrayelectrode and investigation of its photoelectrochemical capability, The Journal ofPhysical Chemistry C,2007,111(32):11836-11842.
    [177] Yang K. S., Dai Y. and Huang B. B., Origin of the photoactivity in boron-dopedanatase and rutile TiO2calculated from first principles, Physical Review B,2007,76(19):195201.
    [178] Reyes-Garcia E. A., Sun Y. P. and Raftery D., Solid-state characterization of thenuclear and electronic environments in a boron-fluoride co-doped TiO2visible-lightphotocatalyst, The Journal of Physical Chemistry C,2007,111(45):17146-17154.
    [179] Gopal N. O., Lo H. H. and Ke S. C., Chemical state and environment of borondopant in B, N-codoped anatase TiO2nanoparticles: An avenue for probingdiamagnetic dopants in TiO2by electron paramagnetic resonance spectroscopy,Journal of the American Chemical Society,2008,130(9):2760-2761.
    [180] Feng N. D., Zheng A. M., Wang Q., et al., Boron environments in B-doped and(B, N)-codoped TiO2photocatalysts: a combined solid-state NMR and theoreticalcalculation study, The Journal of Physical Chemistry C,2011,115(6):2709-2719.
    [181] Czoska A. M., Livraghi S., Paganini M. C., et al., The nitrogen-boronparamagnetic center in visible light sensitized N-B co-doped TiO2. Experimental andtheoretical characterization, Physical Chemistry Chemical Physics,2011,13(1):136-143.
    [182] Finazzi E., Di V. C. and Pacchioni G., Boron-doped anatase TiO2: pure andhybrid DFT calculations, The Journal of Physical Chemistry C,2008,113(1):220-228.
    [183] Di V. C., Pacchioni G., Selloni A., et al., Characterization of paramagneticspecies in N-doped TiO2powders by EPR spectroscopy and DFT calculations, TheJournal of Physical Chemistry B,2005,109(23):11414-11419.
    [184] Ananpattarachai J., Kajitvichyanukul P. and Seraphin S., Visible light absorptionability and photocatalytic oxidation activity of various interstitial N-doped TiOprepared from different nitrogen dopants, Journal of Hazardous Materials,2009,1682(1):253-261.
    [185] Wang J., Tafen D. N., Lewis J. P., et al., Origin of photocatalytic activity ofnitrogen-doped TiO2nanobelts, Journal of the American Chemical Society,2009,131(34):12290-12297.
    [186] Chen X. B and Burda C., The electronic origin of the visible-light absorptionproperties of C-, N-and S-doped TiO8-502nanomaterials, Journal of the AmericanChemical Society,2008,130(15):50119.
    [187] Howard C. J., Sabine T. M. and Dickson F., Structural and thermal parametersfor rutile and anatase, Acta Crystallographica Section B: Structural Science,1991,47(4):462-468.
    [188] Czoska A. M., Livraghi S, Paganini M. C., et al., The nitrogen-boronparamagnetic center in visible light sensitized N-B co-doped TiO2. Experimental andtheoretical characterization, Physical Chemistry Chemical Physics,2010,13(1):136-143.
    [189] Liu G., Sun C. H., Cheng L. N., et al., Efficient Promotion of Anatase TiO2Photocatalysis via Bifunctional Surface-Terminating Ti-O-B-N Structures, TheJournal of Physical Chemistry C,2009,113(28):12317-12324.
    [190] Li D., Haneda H., Hishita S., et al., Visible-light-driven NF-codoped TiO2photocatalysts. Optical characterization, photocatalysis, and potential application toair purification, Chemistry of Materials,2005,17(10):2596-2602.
    [191] Dong F., Zhao W. R. and Wu Z. B., Characterization and photocatalyticactivities of C, N and S co-doped TiO2with1D nanostructure prepared by thenano-confinement effect, Nanotechnology,2008,19(36):365607.
    [192] Liu G., Zhao Y. N., Sun C. H., et al., Synergistic effects of B/N doping on thevisible-light photocatalytic activity of mesoporous TiO2, Angewandte ChemieInternational Edition,2008,47(24):4516-4520.
    [193] Behpour M. and Atouf V., Study of the photocatalytic activity of nanocrystallineS, N-codoped TiO2thin films and powders under visible and sun light irradiation,Applied Surface Science,2012,258(17):6595-6601.
    [194] Janotti A. and Van de Walle C. G., LDA+U and hybrid functional calculationsfor defects in ZnO, SnO2, and TiO2, Physica Status Solidi (b),2011,248(4):799-804.
    [195] Zhang R. H., Wang Q., Li Q., et al., First-principle calculations on opticalproperties of C-N-doped and C-N-codoped anatase TiO2, Physica B: CondensedMatter,2011,406(18):3417-3422.
    [196] Yang K. S., Dai Y. and Huang B. B., Study of the nitrogen concentrationinfluence on N-doped TiO2anatase from first-principles calculations, The Journal ofPhysical Chemistry C,2007,111(32):12086-12090.
    [197] Cho E., Han S., Ahn H. S., et al., First-principles study of point defects in rutileTiO2-x, Physical Review B,2006,73(19):193202.
    [198] Lyons J. L., Janotti A. and Van de Walle C. G., Why nitrogen cannot lead top-type conductivity in ZnO, Applied Physics Letters,2009,95(25):252105.
    [199] Wang X. P. and Lim T. T., Solvothermal synthesis of C-N codoped TiO2andphotocatalytic evaluation for bisphenol A degradation using a visible-light irradiatedLED photoreactor, Applied Catalysis B: Environmental,2010,100(1):355-364.
    [200] Yang K. S., Dai Y., Huang B. B., et al., Theoretical study of N-doped TiOystals, The Journal of Physical Chemistry B,2006,110(47):24011-24014.2rutilecr[201] Lee J. Y., Park J. and Cho J. H., Electronic properties of N-and C-doped TiOpplied Physics Letters,2005,87(1):011904-011904-011903.2,
    A[202] Yu C. and Jimmy C. Y., A simple way to prepare C-N-codoped TiOphotocatalyst with visible-light activity, Catalysis Letters,2009,129(3-4):462-470.2
    [203] Xing G. H., An D. L., Mei D. H., et al., First-principles band calculations onelectronic structures of Ag-doped rutile and anatase TiO2, Chinese Physics Letters,2009,26(7):077106.
    [204] Hou X. G., Huang M. D., Wu X. L., et al., Preparation and studies ofphotocatalytic silver-loaded TiOring Journal,2009,146(1):2films by hybrid sol-gel method, ChemicalEnginee42-48.
    [205] Xin B. F, Jing L. Q., Ren Z. Y., et al., Effects of simultaneously doped anddeposited Ag on the photocatalytic activity and surface states of TiOy B,2005,109(7):2805-2809.2, The Journal ofPhysical Chemistr
    [206] Liu Y., Liu C. Y., Rong Q. H., et al., Characteristics of the silver-doped TiOnanoparticles, Applied Surface Science,2003,220(1):7-11.
    [207] Ilisz I., László Z. and Dombi A., Investigation of the photodecomposition ofphenol in near-UV-irradiated aqueous TiO2suspensions. I: Effect of charge-trappingspecies on the degradation kinetics, Applied Catalysis A: General,1999,180(1):25-33.
    [208] Li X. Z. and Li F. B., Study of Au/Au3+-TiO2photocatalysts toward visiblephotooxidation for water and wastewater treatment, Environmental Science&Technology,2001,35(11):2381-2387.
    [209] Wu N. L. and Lee M. S., Enhanced TiO2photocatalysis by Cu in hydrogenproduction from aqueous methanol solution, International journal of hydrogen energy,2004,29(15):1601-1605.
    [210] Park H. S., Kim D. H., Kim S. J., et al., The photocatalytic activity of2.5wt%Cu-doped TiO2nano powders synthesized by mechanical alloying, Journal of Alloysand Compounds,2006,415(1):51-55.
    [211] Maeda M. and Yamada T., Photocatalytic activity of metal-doped titanium oxidefilms prepared by sol-gel process, Journal of Physics: Conference Series,2007,755.
    [212] Nagaveni K., Hegde M. S. and Madras G., Structure and photocatalytic activityof Ti1-xMxO2±δ(M=W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustionmethod, The Journal of Physical Chemistry B,2004,108(52):20204-20212.
    [213] Duhalde S., Vignolo M. F., Golmar F., et al., Appearance of room-temperatureferromagnetism in Cu-doped TiO2-δfilms, Physical Review B,2005,72(16):161313.
    [214] Yoong L. S., Chong F. K. and Dutta B. K., Development of copper-doped TiO2photocatalyst for hydrogen production under visible light, Energy,2009,34(10):1652-1661.
    [215] Colon G, Maicu M, Hidalgo M. C., et al., Cu-doped TiOphotocatalytic activity, Applied Catalysis B: Environmenta2systems withimproved l,2006,67(1):41-51.
    [216] Di P. A., Garc a L. E, Ikeda S., et al., Photocatalytic degradation of organiccompounds in aqueous systems by transition metal doped polycrystalline TiOClysis Today,2002,75(1):87-93.2,ata[217] Giordano L., Pacchioni G., Bredow T., et al., Cu, Ag, and Au atoms adsorbed onTiO2(110): cluster and periodic calculations, Surface Science,2001,471(1):21-31.
    [218] Cramer C. J. and Truhlar D. G., Density functional theory for transition metalsand transition metal chemistry, Physical Chemistry Chemical Physics,2009,11(46):10757-10816.
    [219] Koelling D. D. and Harmon B. N., A technique for relativistic spin-polarisedcalculations, Journal of Physics C: Solid State Physics,2001,10(16):3107.
    [220] Douglas M. and Kroll N. M., Quantum electrodynamical corrections to the finestructure of helium, Annals of Physics,1974,82(1):89-155.
    [221] Huang L. M., Rosa A. L. and Ahuja R., Ferromagnetism in Cu-doped ZnO fromfirst-principles theory, Physical Review B,2006,74(7):075206.
    [222] Na P. S., Smith M. F., Kim K., et al., First-principles study of native defects inanatase TiO2, Physical Review B,2006,73(12):125205.
    [223] Zhang X. D., Guo M. L., Li W. X., et al., First-principles study of electronic andoptical properties in wurtzite Zn1-xCdxO, Journal of Applied Physics,2008,103(6):063721-063721-063726.
    [224] Tian F. H. and Liu C. B., DFT description on electronic structure and opticalabsorption properties of anionic S-doped anatase TiO,110(36):17866-17871.2, The Journal of PhysicalChemistry B,2006[225] Becke A. D., Density-functional exchange-energy approximation with correctasymptotic behavior, Physical Review A,1988,38(6):3098.
    [226] Anisimov V. I., Aryasetiawan F. and Lichtenstein A. I., First-principlescalculations of the electronic structure and spectra of strongly correlated systems: theLDA+U method, Journal of Physics: Condensed Matter,1997,9(4):767.
    [227] Walsh A., Da S., Juarez L. F. and Wei S. H., Theoretical description of carriermediated magnetism in cobalt doped ZnO, Physical Review Letters,2008,100(25):256401.
    [228] Sanvito S. and Pemmaraju C. D., Comment on “Theoretical Description ofCarrier Mediated Magnetism in Cobalt Doped ZnO”, Physical Review Letters,2009,102(15):159701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700