季铵盐改性硅酸盐在齿科甲基丙烯酸酯基树脂材料中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树脂材料是口腔医学临床实践中应用最广泛的一类医学材料。由于口腔为有菌环境这一特殊性,树脂材料的抗菌性能对于预防因细菌等微生物感染引起的口腔疾病(如龋齿,牙周病,口腔感染性粘膜病等)具有重要实际意义。抗菌性树脂材料可以抑制或者杀灭粘附在材料表面的细菌以消除或者抑制树脂材料表面微生物生物膜的形成。传统抗菌性树脂材料通常依赖抗菌成分释放机制实现。但是,通过释放机制的抗菌策略,在起始的“突释期”(Burst-release Phase)内可释放足量的抗菌成分而获得一定的抗菌效果。但是在随后的尾期释放(Tail-release Phase)中常常因为浓度太低难以达到有效抗菌浓度,同时可能诱导细菌耐受性。另外,材料中抗菌成分的释放,最终可能导致材料机械性能的下降。
     本论文报道利用凝胶-溶胶方法,合成一种可与甲基丙烯酸酯基树脂材料共聚和的抗菌性单体:季铵甲基丙烯酰氧基硅酸盐(QAMS)。在该合成体系前体物质中,正硅酸四乙酯(TEOS)为“锚”分子,连接具有广谱抗菌性能的三烷氧基硅烷SiQAC和具甲基丙烯酸酯基的3-MPTS。通过调整反应体系的pH和水含量,可控制QAMS的水解和缩合反应动力,以满足不同材料应用需求。将部分水解的QAMS-3PH整合入bis-GMA树脂系统后,bis-GMA/QAMS-3PH树脂材料具有对变形链球菌,内氏放线菌和白色念珠菌具有良好的抗菌效果;同时,树脂材料在水老化后,通过QAMS-3PH的继续水解缩合,材料表现出抗断裂性能的提升。全部水解的QAMS可溶解于MMA单体,从而整合于PMMA树脂系统,该树脂材料除表现出典型的长期接触杀菌效果外,其断裂韧度(Fracture Toughness)得到提升。最后,我们利用改良St ber方法,在水-乙醇反应体系中,以氨水为催化剂,在没有外加的表面活性剂的条件下,水解共聚合TEOS以及另外两个三烷氧基硅烷:SiQAC和3-MPTS,合成倍半硅氧烷-二氧化硅杂化物(SqSH)颗粒。通过改变反应前体物中TEOS与SiQAC/3-MPTS的比例,可得到不同弹性模量的SqSH颗粒。该颗粒除抗菌性能外,具有规则的板层状结构。
Resin materials are one of the most common biomedical materials that are used inthe field of dentistry. The oral cavity harbors a variety of microorganisms, most of whichare considered as opportunistic pathogens. Uncontrolled accumulation of bacterial andfungal biofilms on or surrounding dental devices (i.e. resin materials) may contribute todental caries, periodontal disease, and infection-related stomatitis. Developing of resinmaterials with antimicrobial activities that combat bacteria within biofilm will be of greatinterest to both researchers and dental practitioners. Antimicrobial resin materials caninhibit or eliminate the formation of biofilm by inhibiting the adhesion of bacteria or killingbacteria upon contact. Conventional strategies are mainly relied on sustained release ofantimicrobial agents into surrounding environment. Leaching of antimicrobials frommaterials often displays a burst-release phase during the first few weeks after application.This phase is followed by a much lower, tail-release phase that is too low to be effectiveand may raise the problem of drug resistance. In addition, releasing of materials maydeteriorate the mechanical properties of material that leads to the fracture of the bulkmaterials.
     In this thesis, I am reporting the synthesis of a new class of methacrylatemacromonomers-quaternary ammonium methacryloxy silicate (QAMS) By usingtetraethoxysilane (TEOS) as the anchoring unit,3-(trimethoxysilyl)propyldimethy-loctadecyl ammonium chloride (SiQAC) and3-methacryloxypropyltrimethoxysilane (3-MPTS) are attached via a silane-based, sol-gelroute. By controlling the pH and the amount of water added into the system, QAMS withvaried degree of hydrolysis and condensation can be obtained. Partially hydrolyzed QAMS(QAMS-3PH) were covalently incorporated into bis-GMA resin system and shown to conferthe material with antimicrobial effects against Streptococcus mutans (S. mutans),Actinomyces naselundii (A. naeslundii) and Candida albicans (C. albicans). In addition, the bis-GMA/QAMS-3PHresin exhibited the potential of resistance to fracture via continuoushydrolysis and condensation after hydration. Besides improved fracture toughnessproperties, polymethyl methacrylate (PMMA) resin containing fully hydrolyzed QAMSretained the antimicrobial activities after water aging. Lastly, a modified St ber route wasadopted for synthesizing silsesquioxane-silica hybrid (SqSH) particles by hydrolyticco-condensation of TEOS with two trialkoxysilanes: SiQAC and3-MPTS, without the useof an additional surfactant. Their rheological behavior can be modified by varying theprecursor ratios, resulting in materials exhibiting rubbery or brittle characteristics. Besidesantimicrobial activities, lamellar structures were identified inside the particles.
引文
[1] Kenawy E, Worley SD, Broughton R. The chemistry and applications of antimicrobialpolymers: a state-of-the-art review. Biomacromolecules,2007,8(5):1359-1384.
    [2] Markarian J. Materials handling equipment for the compounding plant. Plast AdditCompd,2009,11(5):18-21.
    [3] Global Industry Analysts Inc.,http://www.prweb.com/releases/healthcare_antimicrobial/plastics_biocides/prweb8831439.htm.
    [4] Isquith AJ, Abbott EA, Walters PA. Surface-bonded antimicrobial activity of anorganosilicon quaternary ammonium chloride. Appl Microbiol,1972,24(6):859-863.
    [5] Gottenbos B, van der Mei HC, Klatter F, et al. In vitro and in vivo antimicrobialactivity of covalently coupled quaternary ammonium silane coatings on siliconerubber. Biomaterials,2002,23(6):1417-1423.
    [6] Oosterhof JJ, Buijssen KJ, Busscher HJ, et al. Effects of quaternary ammonium silanecoatings on mixed fungal and bacterial biofilms on tracheoesophageal shunt prostheses.Appl Environ Microbiol,2006,72(5):3673-3677.
    [7] Ahlstrom B, Thompson RA, Edebo L. The effect of hydrocarbon chain length, pH, andtemperature on the binding and bactericidal effect of amphiphilic betaine esters onSalmonella typhimurium. APMIS,1999,107(3):318-324.
    [8] Saif MJ, Anwar J, Munawar MA. A novel application of quaternary ammoniumcompounds as antibacterial hybrid coating on glass surfaces. Langmuir,2009,25(1):377-379.
    [9] Bilzzard JD, Kimmerling KA. US Prov Pat Appl2011;61(527):231.
    [10] Nicole L, Rozes L, Sanchez C. Integrative approaches to hybrid multifunctionalmaterials: from multidisciplinary research to applied technologies. Adv Mater,2010,22(29):3208-3214.
    [11] Matyjaszewski K, Tsarevsky NV. Nanostructured functional materials prepared byatom transfer radical polymerization. Nat Chem,2009,1(4):276-288.
    [12] Owen MJ. The surface activity of silicones: a short review. Ind Eng Chem Prod ResDev1980,19(1):97–103.
    [13] Sideridou I, Achilias DS, Spyroudi C, et al. Water sorption characteristics oflight-cured dental resins and composites based on Bis-EMA/PCDMA. Biomaterials,2004,25(2):367-376.
    [14] Fahmy AA, Hunt JC. Stress dependence of water diffusion in epoxy resin. PolymCompos1980;1:77-80.
    [15] Jin HH, Mangun CL, Stradley DS, et al. Self-healing thermoset using encapsulatedepoxy-amine healing chemistry. Polymer,2012,53(2):581-587.
    [16] Billiet S, Van Camp W, Hillewaere X, et al. Development of optimized autonomousself-healing systems for epoxy materials based on maleimide chemistry. Polymer,2012,53(12):2320-2326.
    [17] Burattini S, Greenland BW, Chappell D, et al. Healable polymeric materials: a tutorialreview. Chem Soc Rev,2010,39(6):1973-1985.
    [18] Rueggeberg FA. State-of-the-art: dental photocuring--a review. Dent Mater,2011,27(1):39-52.
    [19] Calheiros FC, Daronch M, Rueggeberg FA, et al. Degree of conversion andmechanical properties of a BisGMA:TEGDMA composite as a function of theapplied radiant exposure. J Biomed Mater Res B,2008,84(2):503-509.
    [20] Ruyter IE, Svendsen SA. Remaining methacrylate groups in composite restorativematerials. Acta Odontol Scand,1978,36(2):75-82.
    [21] Watt DC. Kinetic measurements of photo-polymerization contraction in resins andcomposites. Meas Sci Technol,1991;2:788-94.
    [22] Sole A, Mas J, Esteve I. A new method based on image analysis for determiningcyanobacterial biomass by CLSM in stratified benthic sediments. Ultramicroscopy,2007,107(8):669-673.
    [23] Mantellini MG, Botero TM, Yaman P, et al. Adhesive resin induces apoptosis andcell-cycle arrest of pulp cells. J Dent Res,2003,82(8):592-596.
    [24] Edmondson JM, Armstrong LS, Martinez AO. A rapid and simple MTT-basedspectrophotometric assay for determining drug sensitivity in monolayer cultures. JTissue Cult Meth1988,11:15-7.
    [25] Ryou H, Niu LN, Dai L, et al. Effect of biomimetic remineralization on the dynamicnanomechanical properties of dentin hybrid layers. J Dent Res,2011,90(9):1122-1128.
    [26] Rigoli IC, Cavalheiro C, Neumann MG, et al. Thermal decomposition of copolymersused in dental resins formulations photocured by ultra blue IS. J Appl Polym Sci,2007,105(6):3295-3300.
    [27] Sarrett DC. Clinical challenges and the relevance of materials testing for posteriorcomposite restorations. Dent Mater,2005,21(1):9-20.
    [28] Namba N, Yoshida Y, Nagaoka N, et al. Antibacterial effect of bactericideimmobilized in resin matrix. Dent Mater,2009,25(4):424-430.
    [29] Yiu CK, Hiraishi N, Tay FR, et al. Effect of chlorhexidine incorporation into dentaladhesive resin on durability of resin-dentin bond. J Adhes Dent,2012,14(4):355-362.
    [30] Imazato S, Tay FR, Kaneshiro AV, et al. An in vivo evaluation of bonding ability ofcomprehensive antibacterial adhesive system incorporating MDPB. Dent Mater,2007,23(2):170-176.
    [31] Imazato S. Bio-active restorative materials with antibacterial effects: new dimension ofinnovation in restorative dentistry. Dent Mater J,2009,28(1):11-19.
    [32] Xiao YH, Chen JH, Fang M, et al. Antibacterial effects of three experimentalquaternary ammonium salt (QAS) monomers on bacteria associated with oralinfections. J Oral Sci,2008,50(3):323-327.
    [33] Li F, Chai ZG, Sun MN, et al. Anti-biofilm effect of dental adhesive with cationicmonomer. J Dent Res,2009,88(4):372-376.
    [34] Regis RR, Zanini AP, Della VM, et al. Physical properties of an acrylic resin afterincorporation of an antimicrobial monomer. J Prosthodont,2011,20(5):372-379.
    [35] Dhir G, Berzins DW, Dhuru VB, et al. Physical properties of denture base resinspotentially resistant to Candida adhesion. J Prosthodont,2007,16(6):465-472.
    [36] Venhoven BA, de Gee AJ, Davidson CL. Polymerization contraction and conversionof light-curing BisGMA-based methacrylate resins. Biomaterials,1993,14(11):871-875.
    [37] Lai JH. Organosilicon dental composite restorative materials. US Patent Office1992;5(081):164.
    [38] Holmes RG, Rueggeberg FA, Callan RS, et al. Effect of solvent type and content onmonomer conversion of a model resin system as a thin film. Dent Mater,2007,23(12):1506-1512.
    [39] Song J, Kong H, Jang J. Bacterial adhesion inhibition of the quaternary ammoniumfunctionalized silica nanoparticles. Colloids Surf B Biointerfaces,2011,82(2):651-656.
    [40] Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother,2001,45(4):999-1007.
    [41] Mo SS, Bao W, Lai GY, et al. The Microfloral Analysis of Secondary Caries Biofilmaround Class I and Class II Composite and Amalgam Fillings. BMC Infect Dis,2010,10:241.
    [42] Kim J, Sudbery P. Candida albicans, a major human fungal pathogen. J Microbiol,2011,49(2):171-177.
    [43] Ferreira L, Zumbuehl A. Non-leaching surfaces capable of killing microorganisms oncontact. J Mater Chem,2009,19(42):7796-7806.
    [44] Rodrigues LR. Inhibition of bacterial adhesion on medical devices. In: Linke D,Goldman A, editors. Bacterial adhesion. New York: Springer Verlag;2011, p:351–67.
    [45] Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion tobiomaterials and of techniques used in estimating bacteria-material interactions. EurCell Mater,2004,8:37-57.
    [46] Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int RevCytol,1980,68:251-306.
    [47] Stanislawski L, Lefeuvre M, Bourd K, et al. TEGDMA-induced toxicity in humanfibroblasts is associated with early and drastic glutathione depletion with subsequentproduction of oxygen reactive species. J Biomed Mater Res A,2003,66(3):476-482.
    [48] Malacarne-Zanon J, Pashley DH, Agee KA, et al. Effects of ethanol addition on thewater sorption/solubility and percent conversion of comonomers in model dentaladhesives. Dent Mater,2009,25(10):1275-1284.
    [49] Ritchie R. Mechanisms of fatigue crack propagation in metals, ceramics andcomposites: role of crack tip shielding. Mater Sci Eng A1988;103:15–28.
    [50] Karger-Kocsis J. How does “phase transformation toughening” work insemicrystalline polymers? Polym Eng Sci1996;36:203–10.
    [51] Galeski A. Strength and toughness of crystalline polymer systems. Prog Polym Sci,2003,28(12):1643-1699.
    [52] Kim JK, RobertsonRE. Toughening of thermoset polymers by rigid crystallineparticles. J Mater Sci1992;27:161-74.
    [53] Kruzic JJ. Predicting fatigue failures. Science,2009,325(5937):156-158.
    [1]王晓荣,叶湘玉.青少年产生正畸治疗需求动机的影响因素.实用口腔医学杂志,1998,3:214-216.
    [2] Bjerklin K, Garskog B, Ronnerman A. Proximal caries increment in connection withorthodontic treatment with removable appliances. Br J Orthod,1983,10(1):21-24.
    [3] Tamura K, Nakano K, Miyake S, et al. Clinical and microbiological evaluations ofacute periodontitis in areas of teeth applied with orthodontic bands. Ped Dent J,2005,15:212–218.
    [4] Hibino K, Wong RW, Hagg U, et al. The effects of orthodontic appliances on Candidain the human mouth. Int J Paediatr Dent,2009,19(5):301-308.
    [5] Batoni G, Pardini M, Giannotti A, et al. Effect of removable orthodontic appliances onoral colonisation by mutans streptococci in children. Eur J Oral Sci,2001,109(6):388-392.
    [6] Arendorf T, Addy M. Candidal carriage and plaque distribution before, during andafter removable orthodontic appliance therapy. J Clin Periodontol,1985,12(5):360-368.
    [7] Morgan TD, Wilson M. Anti-adhesive and antibacterial properties of a proprietarydenture cleanser. J Appl Microbiol,2000,89(4):617-623.
    [8] Lessa FC, Enoki C, Ito IY, et al. In-vivo evaluation of the bacterial contamination anddisinfection of acrylic baseplates of removable orthodontic appliances. Am J OrthodDentofacial Orthop,2007,131(6):705-711.
    [9] Vento-Zahra E, De Wever B, Decelis S, et al. Randomized, double-blind,placebo-controlled trial to test the efficacy of nitradine tablets in maxillary removableorthodontic appliance patients. Quintessence Int,2011,42(1):37-43.
    [10] Sodagar A, Kassaee MZ, Akhavan A, et al. Effect of silver nano particles on flexuralstrength of acrylic resins. J Prosthodont Res,2012,56(2):120-124.
    [11] Kassaee MZ, Akhavan A, Sheikh N, et al. Antibacterial effects of a new dental acrylicresin containing silver nanoparticles. J Appl Polym Sci,2008,110:1699-1703.
    [12] Wady AF, Machado AL, Zucolotto V, et al. Evaluation of Candida albicans adhesionand biofilm formation on a denture base acrylic resin containing silver nanoparticles. JAppl Microbiol,2012,112(6):1163-1172.
    [13] Monteiro DR, Gorup LF, Takamiya AS, et al. Silver distribution and release from anantimicrobial denture base resin containing silver colloidal nanoparticles. JProsthodont,2012,21(1):7-15.
    [14] Oei JD, Zhao WW, Chu L, et al. Antimicrobial acrylic materials with in situ generatedsilver nanoparticles. J Biomed Mater Res B,2012,100B(2):409-415.
    [15] Shinonaga Y, Arita K. Antibacterial effect of acrylic dental devices after surfacemodification by fluorine and silver dual-ion implantation. Acta Biomater,2012,8(3):1388-1393.
    [16] Rantala LI, Lastumaki TM, Peltomaki T, et al. Fatigue resistance of removableorthodontic appliance reinforced with glass fibre weave. J Oral Rehabil,2003,30(5):501-506.
    [17] Gong SQ, Niu LN, Kemp LK, et al. Quaternary ammonium silane-functionalized,methacrylate resin composition with antimicrobial activities and self-repair potential.Acta Biomater,2012,8(9):3270-3282.
    [18] Ahlstrom B, Thompson RA, Edebo L. The effect of hydrocarbon chain length, pH, andtemperature on the binding and bactericidal effect of amphiphilic betaine esters onSalmonella typhimurium. APMIS,1999,107(3):318-324.
    [19] Tiller JC, Liao CJ, Lewis K, et al. Designing surfaces that kill bacteria on contact. ProcNatl Acad Sci U S A,2001,98(11):5981-5985.
    [20] Owen MJ. The surface activity of silicones: A short review. Ind Eng Chem Prod ResDev,1980,19:97–103
    [21] International Organization for Standardization. ISO20795-2: Dentistry–basepolymers. Part2: Orthodontic base polymers.1st ed. Geneva: The Organization;2010.
    [22] Chavez DPL. Image analysis software based on color segmentation forcharacterization of viability and physiological activity of biofilms. Appl EnvironMicrobiol,2009,75(6):1734-1739.
    [23] Ozer RR, Cary Hill W, Rogers ME, et al. Development of colormetric analyticalmethods to monitor quaternary amine grafted surfaces. J Appl Polym Sci,2010,118:2397-2407.
    [24] Antonucci JM, Zeiger DN, Tang K, et al. Synthesis and characterization ofdimethacrylates containing quaternary ammonium functionalities for dentalapplications. Dent Mater,2012,28(2):219-228.
    [25] Yamamoto K. Sensitive determination of quaternary ammonium salts by extractionspectrophotometry of ion associates with bromophenol blue anion and coextraction.Analytica Chimica Acta,1995,302:75-79.
    [26] Torkelson AA, Da SA, Love DC, et al. Investigation of quaternary ammoniumsilane-coated sand filter for the removal of bacteria and viruses from drinking water. JAppl Microbiol,2012,113(5):1196-1207.
    [27] Freund M, Munksgaard EC. Enzymatic degradation of BISGMA/TEGDMA-polymerscausing decreased microhardness and greater wear in vitro. Scand J Dent Res,1990,98(4):351-355.
    [28] Chang MC, Lin LD, Chuang FH, et al. Carboxylesterase expression in human dentalpulp cells: role in regulation of BisGMA-induced prostanoid production andcytotoxicity. Acta Biomater,2012,8(3):1380-1387.
    [29] Jaffer F, Finer Y, Santerre JP. Interactions between resin monomers and commercialcomposite resins with human saliva derived esterases. Biomaterials,2002,23(7):1707-1719.
    [30] Santerre JP, Shajii L, Tsang H. Biodegradation of commercial dental composites bycholesterol esterase. J Dent Res,1999,78(8):1459-1468.
    [31] Yiu CK, King NM, Carrilho MR, et al. Effect of resin hydrophilicity and temperatureon water sorption of dental adhesive resins. Biomaterials,2006,27(9):1695-1703.
    [32]28. Vahdat N, Sullivan VD. Estimation of permeation rate of chemical throughelastometric materials. J Appl Polym Sci,2000,79:1265-1272.
    [33] Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu RevMicrobiol,1995,49:711-745.
    [34] Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother,2001,45(4):999-1007.
    [35] Mahmoud TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents.Trends Microbiol,2001,9(1):34-39.
    [36] Ishida H, Ishida Y, Kurosaka Y, et al. In vitro and in vivo activities of levofloxacinagainst biofilm-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother,1998,42(7):1641-1645.
    [37] Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause ofpersistent infections. Science,1999,284(5418):1318-1322.
    [38] Isquith AJ, Abbott EA, Walters PA. Surface-bonded antimicrobial activity of anorganosilicon quaternary ammonium chloride. Appl Microbiol,1972,24(6):859-863.
    [39] Gottenbos B, van der Mei HC, Klatter F, et al. In vitro and in vivo antimicrobialactivity of covalently coupled quaternary ammonium silane coatings on siliconerubber. Biomaterials,2002,23(6):1417-1423.
    [40] Oosterhof JJ, Buijssen KJ, Busscher HJ, et al. Effects of quaternary ammonium silanecoatings on mixed fungal and bacterial biofilms on tracheoesophageal shunt prostheses.Appl Environ Microbiol,2006,72(5):3673-3677.
    [41] Monticello RA, White WC. Inhibition of foundation colonization of biofilm by surfacemodification with organofunctional silanes. In: Paulson DS ed. Applied BiomedicalMicrobiology: A Biofilms Approach.2009, pp45-58.
    [42] Imazato S, Ebi N, Tarumi H, et al. Bactericidal activity and cytotoxicity ofantibacterial monomer MDPB. Biomaterials,1999,20(9):899-903.
    [43] Imazato S, Kinomoto Y, Tarumi H, et al. Incorporation of antibacterial monomerMDPB into dentin primer. J Dent Res,1997,76(3):768-772.
    [44] Imazato S, Ehara A, Torii M, et al. Antibacterial activity of dentine primer containingMDPB after curing. J Dent,1998,26(3):267-271.
    [45] Imazato S, Kinomoto Y, Tarumi H, et al. Antibacterial activity and bondingcharacteristics of an adhesive resin containing antibacterial monomer MDPB. DentMater,2003,19(4):313-319.
    [46] Imazato S, Torii M, Tsuchitani Y, et al. Incorporation of bacterial inhibitor into resincomposite. J Dent Res,1994,73(8):1437-1443.
    [47] Imazato S, Ebi N, Takahashi Y, et al. Antibacterial activity of bactericide-immobilizedfiller for resin-based restoratives. Biomaterials,2003,24(20):3605-3609.
    [48] Li F, Chen J, Chai Z, et al. Effects of a dental adhesive incorporating antibacterialmonomer on the growth, adherence and membrane integrity of Streptococcus mutans.J Dent,2009,37(4):289-296.
    [49] Cheng L, Weir MD, Xu HH, et al. Antibacterial amorphous calcium phosphatenanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles.Dent Mater,2012,28(5):561-572.
    [50] An YH, Friedman RJ. Laboratory methods for studies of bacterial adhesion. JMicrobiol Meth,1997,30:141-152.
    [51] Katsikogianni M, Missirlis YF. Concise review of mechanisms of bacterial adhesion tobiomaterials and of techniques used in estimating bacteria-material interactions. EurCell Mater,2004,8:37-57.
    [52] Pratt-Terpstra IH, Weerkamp AH, Busscher HJ. The effects of pellicle formation onstreptococcal adhesion to human enamel and artificial substrata with various surfacefree-energies. J Dent Res,1989,68(3):463-467.
    [53] Jin Y, Samaranayake LP, Samaranayake Y, et al. Biofilm formation of Candidaalbicans is variably affected by saliva and dietary sugars. Arch Oral Biol,2004,49(10):789-798.
    [54] Harkes G, Feijen J, Dankert J. Adhesion of Escherichia coli on to a series ofpoly(methacrylates) differing in charge and hydrophobicity. Biomaterials,1991,12(9):853-860.
    [55] Speranza G, Gottardi G, Pederzolli C, et al. Role of chemical interactions in bacterialadhesion to polymer surfaces. Biomaterials,2004,25(11):2029-2037.
    [56] Chandra J, Kuhn DM, Mukherjee PK, et al. Biofilm formation by the fungal pathogenCandida albicans: development, architecture, and drug resistance. J Bacteriol,2001,183(18):5385-5394.
    [57] Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral BiolMed,1999,10(3):359-383.
    [58] Minagi S, Miyake Y, Inagaki K, et al. Hydrophobic interaction in Candida albicansand Candida tropicalis adherence to various denture base resin materials. InfectImmun,1985,47(1):11-14.
    [59] De Prijck K, De Smet N, Coenye T, et al. Prevention of Candida albicans biofilmformation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine.Mycopathologia,2010,170(4):213-221.
    [60] Nikawa H, Ishida K, Hamada T, et al. Immobilization of octadecyl ammoniumchloride on the surface of titanium and its effect on microbial colonization in vitro.Dent Mater J,2005,24(4):570-582.
    [61] Siedenbiedel F, Tiller JC. Antimicrobial Polymers in Solution and on Surfaces:Overview and Functional Principles. POLYMERS,2012,4(1):46-71.
    [62] Song L, Baney RH. Antibacterial evaluation of cotton textile treated by trialkoxysilanecompounds with antimicrobial moiety. TEXTILE RESEARCH JOURNAL,2011,81(5):504-511.
    [63] Kopecky F (1996) Micellization and other associations of amphiphilic antimicrobialquaternary ammonium salts in aqueous solutions. Pharmazie,1996,51:135-144.
    [64] Ruyter IE, Oysaed H. Conversion in denture base polymers. J Biomed Mater Res,1982,16(5):741-754.
    [65] Baker S, Brooks SC, Walker DM. The release of residual monomeric methylmethacrylate from acrylic appliances in the human mouth: an assay for monomer insaliva. J Dent Res,1988,67(10):1295-1299.
    [66] Stafford GD, Brooks SC. The loss of residual monomer from acrylic orthodontic resins.Dent Mater,1985,1(4):135-138.
    [67] Vallittu PK, Miettinen V, Alakuijala P. Residual monomer content and its release intowater from denture base materials. Dent Mater,1995,11(6):338-342.
    [68] Kanie T, Fujii K, Arikawa H, et al. Flexural properties and impact strength of denturebase polymer reinforced with woven glass fibers. Dent Mater,2000,16(2):150-158.
    [69] Grave AM, Chandler HD, Wolfaardt JF. Denture base acrylic reinforced with highmodulus fibre. Dent Mater,1985,1(5):185-187.
    [70] Regis RR, Zanini AP, Della VM, et al. Physical properties of an acrylic resin afterincorporation of an antimicrobial monomer. J Prosthodont,2011,20(5):372-379.
    [71] Regis RR, Della VM, Pizzolitto AC, et al. Antimicrobial properties and cytotoxicity ofan antimicrobial monomer for application in prosthodontics. J Prosthodont,2012,21(4):283-290.
    [72] Zappini G, Kammann A, Wachter W. Comparison of fracture tests of denture basematerials. J Prosthet Dent,2003,90(6):578-585.
    [1] Nicole L, Rozes L, Sanchez C. Integrative approaches to hybrid multifunctionalmaterials: from multidisciplinary research to applied technologies. Adv Mater,2010,22(29):3208-3214.
    [2] Mackenzie JD, Chung YJ, Hu Y. Rubbery ormosils and their application. J Non-CrystSolids,1992,147-148:271-219.
    [3] St ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in themicron size range. J Colloid Interface Sci,1968,26:62-69.
    [4] Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic-inorganichybrid materials. Angew Chem Int Ed Engl,2006,45(20):3216-3251.
    [5] Mori H, Miyamura Y, Endo T. Synthesis and characterization of water-solublesilsesquioxane-based nanoparticles by hydrolytic condensation of triethoxysilanederived from2-hydroxyethyl acrylate. Langmuir,2007,23(17):9014-9023.
    [6] Ruiz-Hitzky E, Aranda P, Darder M, et al. Hybrid and biohybrid silicate basedmaterials: molecular vs. block-assembling bottom-up processes. Chem Soc Rev,2011,40(2):801-828.
    [7] Sanchez C, Lebeau B, Chaput F, et al. Optical properties of functional hybridorganic-inorganic nanocomposites. Adv Mater,2003,15(23):1969-1994.
    [8] Zhang XX, Xia BB, Ye HP, et al. One-step sol-gel preparation of PDMS-silicaORMOSILs as environment-resistant and crack-free thick antireflective coatings. JMater Chem,2012,22(26):13132-13140.
    [9] Novak BM. Hybrid Nanocomposite Materials—between inorganic glasses and organicpolymers. Adv Mater,1993,5:422-433.
    [10] Silva CR, Airoldi C. Acid and base catalysts in the hybrid silica sol-gel process. JColloid Interface Sci,1997,195:381-387.
    [11] Van Blaaderen A, Vrij A. Synthesis and characterization of monodisperse colloidalorgano-silica spheres. J Colloid Interface Sci,1993,156:1-18.
    [12] Chen S, Hayakawa S, Shirosaki Y, et al. Sol-Gel Synthesis and MicrostructureAnalysis of Amino-Modified Hybrid Silica Nanoparticles fromAminopropyltriethoxysilane and Tetraethoxysilane. J Am Chem Soc,2009,92(9):2074-2082.
    [13] Naka Y, Komori Y, Yoshitake H. One-pot synthesis of organo-functionalizedmonodisperse silica particles in W/O microemulsion and the effect of functionalgroups on addition into polystyrene. Colloid Surf A,2010,361(1-3):162-168.
    [14] Buchel G, Unger KK, Matsumoto A, et al. A novel pathway for synthesis ofsubmicrometer-size solid core/mesoporous shell silica spheres. Adv Mater,1998,10(13):1036.
    [15] Ruiz-Hitzky E, Letaief S, Prevot V. Novel organic-inorganic mesophases:Self-templating synthesis and intratubular swelling. Adv Mater,2002,14(6):439.
    [16] Fujimoto Y, Shimojima A, Kuroda K. Surfactant-free synthesis of lamellar andwormhole-like silica mesostructures by using1-alkynyltrimethoxysilanes. J MaterChem,2006,16(10):986-994.
    [17] Choi M, Cho HS, Srivastava R, et al. Amphiphilic organosilane-directed synthesis ofcrystalline zeolite with tunable mesoporosity. Nat Mater,2006,5(9):718-723.
    [18] Ahlstrom B, Thompson RA, Edebo L. The effect of hydrocarbon chain length, pH, andtemperature on the binding and bactericidal effect of amphiphilic betaine esters onSalmonella typhimurium. APMIS,1999,107(3):318-324.
    [19] Huo Q, Margolese DI, Stucky GD. Surfactant control of phases in the synthesis ofmesoporous silica-based materials. Chem Mater1996,8:1147-1160.
    [20] Chen AM, Zhang M, Wei D, et al. Co-delivery of doxorubicin and Bcl-2siRNA bymesoporous silica nanoparticles enhances the efficacy of chemotherapy inmultidrug-resistant cancer cells. Small,2009,5(23):2673-2677.
    [21] Medda SK, Kundu D, De G. Inorganic-organic hybrid coatings on polycarbonate.Spectroscopic studies on the simultaneous polymerizations of methacrylate and silicanetworks. J Non-Cryst Solid,2003,318(1-2):149-156.
    [22] Koytepe S, Seckin T, Kivrilcim N, et al. Synthesis and dielectric properties ofpolyimide-titania hybrid composites. J Inorg Organomet Polym Mater,2008,18(2):222-228.
    [23] Bonhomme C, Coelho C, Baccile N, et al. Advanced solid state NMR techniques forthe characterization of sol-gel-derived materials. Acct Chem Res,2007,40(9):738-746.
    [24] Wu KH, Chang TC, Yang CC, Wang GP. Dynamics and corrosion resistance ofamine-cured organically modified silicate coatings on aluminum alloy. Thin SolidFilms2006,513:84–9.
    [25] Bag DS, Rao K. Synthesis of UV-Curable Difunctional Silane Monomer Based on3-Methacryloxy Propyl Trimethoxysilane (3-MPTS) and its UV-CuringCharacteristics and Thermal Stability. J Appl Polym Sci,2010,115(4):2352-2358.
    [26] Xie W, Gao ZM, Pan WP, et al. Thermal degradation chemistry of alkyl quaternaryammonium montmorillonite. Chem Mater,2001,13(9):2979-2990.
    [27] Fredrick E, Walstra P, Dewettinck K. Factors governing partial coalescence inoil-in-water emulsions. Adv Colloid Interface Sci2010,153:30-42.
    [28] Yoshitake H. Highly-controlled synthesis of organic layers on mesoporous silica: theirstructure and application to toxic ion adsorptions. New J Chem,2005,29:1107–17.
    [29] Shimojima A, Kuroda K. Designed synthesis of nanostructured siloxane-organichybrids from amphiphilic silicon-based precursors. Chem Rec,2006,6:53-63.
    [30] Shimojima A, Sugahara Y, Kuroda K. Inorganic–organic layered materials derivedvia the hydrolysis and polycondensation of trialkoxy(alkyl)silanes. Bull Chem Soc Jpn,1997,70:2847-53.
    [31] Shimojima A, Kuroda K. Structural control of multilayered inorganic-organic hybridsderived from mixtures of alkyltriethoxysilane and tertraethoxysilane. Langmuir2002,18:1144-1149.
    [1] Kenawy E, Worley SD, Broughton R. The chemistry and applications of antimicrobialpolymers: a state-of-the-art review. Biomacromolecules,2007,8(5):1359-1384.
    [2] Fan C, Chu L, Rawls HR, et al. Development of an antimicrobial resin--a pilot study.Dent Mater,2011,27(4):322-328.
    [3] Hiraishi N, Yiu CK, King NM, et al. Chlorhexidine release and water sorptioncharacteristics of chlorhexidine-incorporated hydrophobic/hydrophilic resins. DentMater,2008,24(10):1391-1399.
    [4] Anusavice KJ, Zhang NZ, Shen C. Controlled release of chlorhexidine fromUDMA-TEGDMA resin. J Dent Res,2006,85(10):950-954.
    [5] Sodagar A, Kassaee MZ, Akhavan A, et al. Effect of silver nano particles on flexuralstrength of acrylic resins. J Prosthodont Res,2012,56(2):120-124.
    [6] Kassaee MZ, Akhavan A, Sheikh N, et al. Antibacterial effects of a new dental acrylicresin containing silver nanoparticles. J Appl Polym Sci,2008,110:1699-1703.
    [7] Wady AF, Machado AL, Zucolotto V, et al. Evaluation of Candida albicans adhesionand biofilm formation on a denture base acrylic resin containing silver nanoparticles. JAppl Microbiol,2012,112(6):1163-1172.
    [8] Monteiro DR, Gorup LF, Takamiya AS, et al. Silver distribution and release from anantimicrobial denture base resin containing silver colloidal nanoparticles. JProsthodont,2012,21(1):7-15.
    [9] Oei JD, Zhao WW, Chu L, et al. Antimicrobial acrylic materials with in situ generatedsilver nanoparticles. J Biomed Mater Res B,2012,100B(2):409-415.
    [10] Shinonaga Y, Arita K. Antibacterial effect of acrylic dental devices after surfacemodification by fluorine and silver dual-ion implantation. Acta Biomater,2012,8(3):1388-1393.
    [11] Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother,2001,45(4):999-1007.
    [12] Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. JDent Res,2008,87(8):710-719.
    [13] Ban S, Anusavice KJ. Influence of test method on failure stress of brittle dentalmaterials. J Dent Res,1990,69(12):1791-1799.
    [14] Kleverlaan CJ, Feilzer AJ. Polymerization shrinkage and contraction stress of dentalresin composites. Dent Mater,2005,21(12):1150-1157.
    [15] Lohbauer U, von der Horst T, Frankenberger R, et al. Flexural fatigue behavior ofresin composite dental restoratives. Dent Mater,2003,19(5):435-440.
    [16] Moran J, Addy M, Jackson R, et al. Comparative effects of quaternary ammoniummouthrinses on4-day plaque regrowth. J Clin Periodontol,2000,27(1):37-40.
    [17] Mandel ID. Chemotherapeutic agents for controlling plaque and gingivitis. J ClinPeriodontol,1988,15(8):488-498.
    [18] Haps S, Slot DE, Berchier CE, et al. The effect of cetylpyridinium chloride-containingmouth rinses as adjuncts to toothbrushing on plaque and parameters of gingivalinflammation: a systematic review. Int J Dent Hyg,2008,6(4):290-303.
    [19] Radford JR, Beighton D, Nugent Z, et al. Effect of use of0.05%cetylpyridiniumchloride mouthwash on normal oral flora. J Dent,1997,25(1):35-40.
    [20] Ashley FP, Skinner A, Jackson PY, et al. Effect of a0.1%cetylpyridinium chloridemouthrinse on the accumulation and biochemical composition of dental plaque inyoung adults. Caries Res,1984,18(5):465-471.
    [21] Bonesvoll P, Gjermo P. A comparision between chlorhexidine and some quaternaryammonium compounds with regard to retention, salivary concentration andplaque-inhibiting effect in the human mouth after mouth rinses. Arch Oral Biol,1978,23(4):289-294.
    [22] Kozlovsky A, Sintov A, Moldovan M, et al. Inhibition of plaque formation by localapplication of a degradable controlled release system containing cetylpyridiniumchloride. J Clin Periodontol,1994,21(1):32-37.
    [23] Imzato S, Torii M, Tsuchitani Y. Immobilization of an antibacterial component incomposite resin. Dentistry in Japan1993,30:63-68.
    [24] Imazato S, Torii M, Tsuchitani Y, et al. Incorporation of bacterial inhibitor into resincomposite. J Dent Res,1994,73(8):1437-1443.
    [25] Imazato S, Ebi N, Tarumi H, et al. Bactericidal activity and cytotoxicity ofantibacterial monomer MDPB. Biomaterials,1999,20(9):899-903.
    [26] Imazato S, Ebi N, Takahashi Y, et al. Antibacterial activity of bactericide-immobilizedfiller for resin-based restoratives. Biomaterials,2003,24(20):3605-3609.
    [27] Imazato S, Mccabe JF. Influence of incorporation of antibacterial monomer on curingbehavior of a dental composite. J Dent Res,1994,73(10):1641-1645.
    [28] Imazato S, Kinomoto Y, Tarumi H, et al. Incorporation of antibacterial monomerMDPB into dentin primer. J Dent Res,1997,76(3):768-772.
    [29] Imazato S, Kinomoto Y, Tarumi H, et al. Antibacterial activity and bondingcharacteristics of an adhesive resin containing antibacterial monomer MDPB. DentMater,2003,19(4):313-319.
    [30] Huang L, Xiao YH, Xing XD, et al. Antibacterial activity and cytotoxicity of twonovel cross-linking antibacterial monomers on oral pathogens. Arch Oral Biol,2011,56(4):367-373.
    [31] Li F, Chen J, Chai Z, et al. Effects of a dental adhesive incorporating antibacterialmonomer on the growth, adherence and membrane integrity of Streptococcus mutans.J Dent,2009,37(4):289-296.
    [32] Chai Z, Li F, Fang M, et al. The bonding property and cytotoxicity of a dentaladhesive incorporating a new antibacterial monomer. J Oral Rehabil,2011,38(11):849-856.
    [33] Xiao YH, Ma S, Chen JH, et al. Antibacterial activity and bonding ability of anadhesive incorporating an antibacterial monomer DMAE-CB. J Biomed Mater Res BAppl Biomater,2009,90(2):813-817.
    [34] Antonucci JM, Zeiger DN, Tang K, et al. Synthesis and characterization ofdimethacrylates containing quaternary ammonium functionalities for dentalapplications. Dent Mater,2012,28(2):219-228.
    [35] Cheng L, Weir MD, Xu HH, et al. Antibacterial amorphous calcium phosphatenanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles.Dent Mater,2012,28(5):561-572.
    [36] Melo MA, Cheng L, Weir MD, et al. Novel dental adhesive containing antibacterialagents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater,2013,101(4):620-629.
    [37] Zhang K, Cheng L, Wu EJ, et al. Effect of water-aging on dentin bond strength andanti-biofilm activity of bonding agent containing new monomerdimethylaminododecyl methacrylate. J Dent,2013, doi:10.1016/j.jdent.2013.03.011.
    [38] Zhang K, Cheng L, Imazato S, et al. Effects of dual antibacterial agents MDPB andnano-silver in primer on microcosm biofilm, cytotoxicity and dentin bond properties. JDent,2013, doi:10.1016/j.jdent.2013.02.001.
    [39] Cheng L, Weir MD, Zhang K, et al. Dental plaque microcosm biofilm behavior oncalcium phosphate nanocomposite with quaternary ammonium. Dent Mater,2012,28(8):853-862.
    [40] Cheng L, Zhang K, Weir MD, et al. Effects of antibacterial primers with quaternaryammonium and nano-silver on Streptococcus mutans impregnated in human dentinblocks. Dent Mater,2013,29(4):462-472.
    [41] Cheng L, Weir MD, Zhang K, et al. Dental primer and adhesive containing a newantibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. JDent,2013,41(4):345-355.
    [42] Li F, Weir MD, Chen J, et al. Comparison of quaternary ammonium-containing withnano-silver-containing adhesive in antibacterial properties and cytotoxicity. DentMater,2013,29(4):450-461.
    [43] Cheng L, Weir MD, Xu HH, et al. Effect of amorphous calcium phosphate and silvernanocomposites on dental plaque microcosm biofilms. J Biomed Mater Res B,2012,100(5):1378-1386.
    [44] Cheng L, Weir MD, Limkangwalmongkol P, et al. Tetracalcium phosphate compositecontaining quaternary ammonium dimethacrylate with antibacterial properties. JBiomed Mater Res B,2012,100(3):726-734.
    [45] Gong SQ, Niu LN, Kemp LK, et al. Quaternary ammonium silane-functionalized,methacrylate resin composition with antimicrobial activities and self-repair potential.Acta Biomater,2012,8(9):3270-3282.
    [46] Gong SQ, Epasinghe J, Rueggeberg FA, et al. An ORMOSIL-containing orthodonticacrylic resin with concomitant improvements in antimicrobial and fracture toughnessproperties. PLoS One,2012,7(8): e42355.
    [47] Gong SQ, Epasinghe DJ, Zhou B, et al. Effect of water-aging on the antimicrobialactivities of an ORMOSIL-containing orthodontic acrylic resin. Acta Biomater,2013,doi:10.1016/j.actbio.2013.02.031.
    [48] Beyth N, Houri-Haddad Y, Baraness-Hadar L, et al. Surface antimicrobial activity andbiocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials,2008,29(31):4157-4163.
    [49] Beyth N, Yudovin-Farber I, Bahir R, et al. Antibacterial activity of dental compositescontaining quaternary ammonium polyethylenimine nanoparticles againstStreptococcus mutans. Biomaterials,2006,27(21):3995-4002.
    [50] Beyth N, Yudovin-Fearber I, Domb AJ, et al. Long-term antibacterial surfaceproperties of composite resin incorporating polyethyleneimine nanoparticles.Quintessence Int,2010,41(10):827-835.
    [51] Shvero DK, Davidi MP, Weiss EI, et al. Antibacterial effect of polyethyleneiminenanoparticles incorporated in provisional cements against Streptococcus mutans. JBiomed Mater Res B Appl Biomater,2010,94(2):367-371.
    [52] Yudovin-Farber I, Beyth N, Nyska A, et al. Surface characterization andbiocompatibility of restorative resin containing nanoparticles. Biomacromolecules,2008,9(11):3044-3050.
    [53] Ahlstrom B, Thompson RA, Edebo L. The effect of hydrocarbon chain length, pH, andtemperature on the binding and bactericidal effect of amphiphilic betaine esters onSalmonella typhimurium. APMIS,1999,107(3):318-324.
    [54] Minagi S, Miyake Y, Inagaki K, et al. Hydrophobic interaction in Candida albicansand Candida tropicalis adherence to various denture base resin materials. InfectImmun,1985,47(1):11-14.
    [55] De Prijck K, De Smet N, Coenye T, et al. Prevention of Candida albicans biofilmformation by covalently bound dimethylaminoethylmethacrylate and polyethylenimine.Mycopathologia,2010,170(4):213-221.
    [56] Nikawa H, Ishida K, Hamada T, et al. Immobilization of octadecyl ammoniumchloride on the surface of titanium and its effect on microbial colonization in vitro.Dent Mater J,2005,24(4):570-582.
    [57] Song L, Baney RH. Antibacterial evaluation of cotton textile treated by trialkoxysilanecompounds with antimicrobial moiety. Text Res J,2011,81(5):504-511.
    [58] Kopecky F. Micellization and other associations of amphiphilic antimicrobialquaternary ammonium salts in aqueous solutions. Pharmazie,1996,51(3):135-144.
    [59] Regis RR, Zanini AP, Della VM, et al. Physical properties of an acrylic resin afterincorporation of an antimicrobial monomer. J Prosthodont,2011,20(5):372-379.
    [60] Tezvergil-Mutluay A, Agee KA, Uchiyama T, et al. The inhibitory effects ofquaternary ammonium methacrylates on soluble and matrix-bound MMPs. J Dent Res,2011,90(4):535-540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700