中华真地鳖体型大小地理变异及相关免疫反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华真地鳖Eupolyphaga sinensis是一种重要的药用资源昆虫。随着人们对这种昆虫的开发与利用的重视,对其质量品质要求也越来越高。不同地理种群的中华真地鳖,其品质会有差异。本文以不同地理种群的中华真地鳖为研究对象,调查不同地理种群中华真地鳖的体型大小变异及其变异机制,同时在体型大小变异基础上探索其免疫变异并分离纯化免疫成分,为这种昆虫的资源开发与利用提供依据,其主要研究结果如下:
     A.中华真地鳖体型大小纬度变异
     在中华真地鳖主要分布区14个点采集其成虫,对成虫体长,体宽和前胸背板测量,同时检测10个气候指标对成虫体型的影响。结果发现中华真地鳖成虫随纬度变化呈现U型模型,成虫体型在低纬度和高纬度较大,在中间纬度较小;体型与气候的关系也呈现上述模型。根据结果推测季节长度的变化和中华真地鳖化性在地理上的可变性是造成这种模型的原因。气候因子也对这种模型具有重要贡献,这对于生物生态学和进化学研究具有重要的意义,进而可以预测全球气候变暖可能会影响此昆虫的地理变异。
     B.中华真地鳖卵鞘颜色和大小纬度变异
     采集中华真地鳖主要分布区不同地理种群的卵鞘,观察其颜色,测量其大小(包括长度,单卵鞘含卵量及呼吸孔数量)。同时对其进行实验室相同条件饲养,观察其后代变异。结果发现不同地理种群卵鞘颜色有差异,随纬度升高,颜色从黑色到红棕色逐渐变化,但在同等条件饲养下,差异消失;其卵鞘大小随纬度变化呈现U-型模型,由此判断,卵鞘的地理变异受各种环境影响,包括母体环境、周围环境与遗传等各方面影响,其中遗传影响可能是其主要原因。
     C.中华真地鳖体型大小变异机制——若虫、成虫对温度的反应
     对中华真地鳖不同地理种群若虫进行同条件饲养,发现其体长与体宽呈显著一元线性回归关系,不同地理种群斜率(体形)存在差异。不同地理种群各龄若虫发育历期并不随龄期增长而延长。雌性若虫期发育历期天津种群显著大于其他种群,其他种群间除江苏种群外均无显著差异。雄性若虫期发育历期除天津种群外均无显著差异。同一地理种群,雌性若虫期发育历期大于雄性若虫期发育历期。结果表明,中华真地鳖不同地理种群间在形态和生物学上均有一定的差异。
     检测温度变化(22、25、28和31℃)对中华真地鳖不同地理种群发育历期、成虫体型和存活率的影响。结果发现发育历期和成虫体型大小随温度上升而下降,说明发育温度显著影响此昆虫的生长和生活史的一些重要特征指标。同时,不同地理种群对温度变化的反应在这三个指标上存在显著差异,表明热反应行为在种群之间具有遗传性不同。然而,不同地理种群的纬度变异不能完全解释这种遗传上的不同。发育历期、成虫体型和存活率的变异都反映出该昆虫对热环境体系的一种适应,证实温度变异对其地理变异具有重要影响。
     D.中华真地鳖成虫体型大小性二型变异研究——验证differential-plasticity(雌雄体型不同可塑性)假说
     用具有体型雌雄二型现象的中华真地鳖为材料验证Differential-plasticity假说。将中华真地鳖不同地理种群一龄若虫分别放置于四个温度下(22、25、28和31℃)饲养至成虫。结果显示随着温度上升,雌雄虫个体变小;并且在所有温度下雌虫总是大于雄虫。体型的二型现象指标在31℃下最大,而在22℃下最小;体型的性二型现象在种群间有变异,但是雌雄虫对温度的适应程度没有显著差异。结果显示中华真地鳖体型性二型现象在种群间的变异与雌雄虫对温度的适应程度无关,本研究结果不支持此假说。此外,研究结果暗示性别选择作用(遗传作用)可能导致不同种群体型上的性二型变异。
     E.中华真地鳖抗菌肽变异、抗菌成分及抗菌机制研究
     对不同地理种群的中华真地鳖抗菌肽进行凝胶层析分离纯化,发现不同地理种群的抗菌肽粗成分无显著差别。为确定其主要成分本实验通过对其初步分离,凝胶层析分离,AKTA explorer层析,高效液相色谱分析等对其抗菌肽进一步分析。分离出一种小肽,分子量在806Da左右,通过质谱分析,其结构有六种可能,有可能是抗菌肽活性片段或者完整小肽。对抗菌肽处理过的阴性细菌细胞超微结构观察发现,此抗菌肽可通过破坏细胞膜,细胞壁或细胞质从而造成细胞死亡。结果表明,细菌细胞壁和细胞膜可能是中华真地鳖抗菌肽的作用靶点,此种抗菌肽抗菌机制是多样性的。
Eupolyphaga sinensis Walker (Blattaria) is an insect of medical importance. The high quality is required along with the market demand of it. However, the quality is different between populations. This paper focused on variation in body size, ootheca size, sexual dimorphism and antimicrobial peptides in E. sinensis among populations and we also showed the mechanism.
     A. Latitudinal shifts in body size in cockroach, Eupolyphaga sinensis (Blattaria)
     In the present study we investigated the geographic variation in body size of the Chinese cockroach, Eupolyphaga sinensis, which has a variable life cycle length. Adults collected from fourteen localities across temperate zone to subtropical zone in China were measured by using body length, body width and pronotum width and 10 variables were examined to test whether climatic factors affect body size. We found that the body size of E. sinensis varied considerably with latitude, demonstrating a U-shaped pattern. Cockroaches were larger at low and high latitudes, but smaller at intermediate latitudes. Thus the relationship between climate and body size conformed to a U-shaped pattern. Results indicate that two factors were significantly associated with body size clines: season length and variability in life cycle length with latitude. Our results also demonstrated that climate variables contribute to latitudinal clines in body size, which has important ecological and evolutionary implications. It can be expected that global climate change may alter latitudinal clines in body size of E. sinensis.
     B. Geographic variation in ootheca size along a latitudinal gradient from China
     Body size has a considerable effect on offspring. In the first chapter, body size of E. sinensis varies with latitude and we expect that there is a relationship between ootheca size and latitude. We observed the colour of ootheca size and measured latitude-related ootheca size variation in field-collected E. sinensis individuals. We selected seven major collection locations that are the main distribution regions. We measured field-collected oothecas in terms of ootheca length, eggs per ootheca and crest numbers that are correlated with oothecas, and found that ootheca size demonstrated a U-shaped pattern with latitude, showing large size at low and high latitudes and small at intermediate latitudes. We conclude that there is clinal variation in ootheca size of E. sinensis and the variation is likely to be the result of maternal effect or local adaptation to environment.
     C. Effect of temperatures on development time and body size in Eupolyphaga sinensis along a latitudinal gradient from China
     The development of six population of Eupolyphaga sinensis were studied at 31℃in the laboratory. The relationship of the body length and the body width was the univaniate correlation of linear regression, which was extremely significance in the six population as well as the slopes (shape). The results showed that the duration of the nymph did not increased as the instar stage increased. The female developmental duration of Tianjin population was significantly greater than other populations, and there were no significant difference lies among the other populations except Jiangsu population. The male developmental duration of Tianjin was significant higher than the other five populations which had no significant difference. As far as the same population, the developmental duration of female was longer than that of the male. The results suggested that the six population had some difference in morphology and biology.
     We examined the effects of various temperatures (of 22,25,28 and 31℃) on development time, adult body size and pre-adult survivorship in three populations of the cockroach, E. sinensis, collected at different latitudes. We found substantial temperature-induced plasticity in development time, body size and pre-adult survivorship, indicating that developmental temperatures have strong impacts on growth and life history traits of E. sinensis. Genetic differences for development time, body size and pre-adult survivorship were detected among populations, and the three traits exhibited highly significant variations in the responses of different populations to various temperature conditions, indicating genetic differences among populations in terms of thermal reaction norms. We also found that two populations seem to support the beneficial acclimation hypothesis whereas the third mid-latitude population does not. The results are likely due to differences in season length and voltinism, indicating that not only temperature regime but also its interactions with generation time (and development time), voltinism, and season length are likely to have considerable effects on insect development time and body size. Overall, changes in development time, body size and pre-adult survivorship in E. sinensis can all be regarded as adaptations to changing thermal regimes.
     D. Variation in sexual size dimorphism among populations:testing the differential-plasticity hypothesis
     We test the differential-plasticity hypothesis that sex-differential plasticity to environmental variables generates among-population variation in the degree of sexual dimorphism in this study. We examined the effects of rearing animals at various temperatures (of 22,25,28 and 31℃) on sexual dimorphism in four populations of the cockroach, Eupolyphaga sinensis, collected at different latitudes. We found that females were larger than males at all temperatures and the degree of this dimorphism was largest at the highest temperature (31℃) but smallest at the lowest temperatures (22℃). There is variation in the degree of sexual size dimorphism among population (sex×population interaction), but differences between the sexes in their plastic responses (sex×temperature interaction) were not observed for body size. Our results indicated that sex-differential plasticity to temperature was not the cause of differences among populations in the degree of sexual dimorphism in body size.
     E. Antimicrobial peptides and antimicrobial mechanisms of Eupolyphaga sinensis
     We have confirmed that body size varied among populations along latitude. Body size is considered as one of the most important traits of an organism, because it influences nearly every aspect of the biology of the organism, especially in immunoreaction. Are antimicrobial peptides different among populations in Eupolophyga sinensis? Antimicrobial peptides were isolated from the E. sinensis by a four-step protocol including one step Sephadex G-50, one step Sephadex G-25 and two steps of RP-HPLC. We found that there seem to be no difference in antimicrobial peptides among populations. The antimicrobial mechanisms were also investigated. They may exert their antimicrobial functions by various means, including forming lamellar mesosome-like structures, and peeling off the cell walls, forming pores.
引文
1. 冯学民,蔡德利,.土壤温度与气温及纬度和海拔关系的研究.土壤学报,2004,41(3),489-491
    2.金涛,唐庆峰,王清,吴振廷,吴尚澧,.中华真地鳖卵发育起点温度和有效积温的研究.经济动物学报,2005,9(3):170-173
    3.金涛,吴振廷,唐庆峰.中华真地鳖雌虫产卵习性及其卵的发育.昆虫知识,2007,44(1):97-101
    4.金涛,吴振廷,唐庆峰,王清,王学林,吴尚澧,.温度对越冬期中华真地鳖生长发育的影响.昆虫知识,2006,43(3):381-384
    5.刘静,谭梁飞,雷朝亮.中华真地鳖若虫分龄的研究.昆虫知识,2005,42(1):61-63]
    6.李长福,唐庆峰,张瑞昌.中华真地鳖生物学特征初步研究.昆虫知识,2003,40(3):258-261
    7. 李岗生,.地鳖虫,中国中医药出版社.2000,1-199
    8. 谭梁飞,朱芬,刘静,雷朝亮,2004.中华真地鳖断足再生.昆虫学报,47(6):719-724
    9.谭梁飞,朱芬,熊强,周兴苗,雷朝亮,.中华真地鳖断足再生对发育的影响.昆虫知识,2007,44(1):101-104
    10.唐庆峰,吴振廷,金涛, 吴尚澧,.中华真地鳖低龄若虫消化道结构及低龄若虫取食习性.昆虫知识,2004,41(6):575-577
    11.唐庆峰,吴振廷,金涛, 吴尚澧.中华真地鳖中肠主要消化酶的活性研究.昆虫知识,2005,42(5):557—561
    12.王立新,张树杰,吴伟伟,.地鳖虫后若虫期蛋白质和能量的需要量.动物学杂志,2003,38(5):75-79
    13.向前,李德全,魏爱枝,2007.土元养殖实用技术.河南科学技术出版社.1-163
    14.周彦钢,任玉翠,江月仙,.地鳖虫的营养成分分析.食品研究与开发,1998,19(2):51-53
    15.周彦钢,任玉翠,江月仙,.土鳖虫的营养成份分析.浙江省医学科学院学报,1997,31(2):24-26
    16.蓝江林,吴珍泉.美洲大蠊抗菌物质的诱导与提取.福建农林大学学报,2004,33(1):30-33.
    17.蓝江林,吴珍泉,周先治,等等.美洲大蠊血淋巴抗菌活性诱导差异比较.2008,2(24):59-62.
    18.金小宝,王艳,朱家勇.诱导前后美洲大蠊血淋巴抗菌活性的研.广东药学院学报,2006,22(6):665-666.
    19.郭郛, 忻介六.1988.昆虫学实验技术.中国科学出版社,北京,中国.
    20.胡玉伟,朱芬,谢永坚,杨秋生,潘悦,雷朝亮等.中华真地鳖六地理种群若虫生长发育研究,环境昆虫学报,2008,30(2):153-158.
    21.索相敏,陆秀君,董建臻.中华真地鳖抗菌物质的抑菌活性测定.中国生物防治,2007,23(1):64-67.
    22.唐亚丽.家蝇抗菌肽的分离及对细菌壁膜和DNA的作用.[博士学位论文].无锡:江南大学图书馆,2009.
    23.王义鹏,赖任.昆虫抗菌肽结构、性质和基因调控.动物学研究,2010,31(1):27-34.
    24.吴福桢.中国常见蜚蠊种类及其为害、利用与防治的调查研究.昆虫学报,1987(30):430-438.
    25.王芳,张双全,戴祝英.抗菌肽CM4组分对K562癌细胞染色质DNA断裂作用的SCGE研究.生物化学与生物物理进展,1998,25(01):64-67
    26.姚谦.中药蜚蠊的研究Ⅱ我国蜚蠊目昆虫室内常见种类、分布及主要种的检索表.天津药学,1995(7):37-41.
    27. Abouheif E, Fairbairn D J. A comparative analysis of allometry for sexual size dimorphism:Assessing Rensch's rule. Am Nat,1997,149:540-562.
    28. Aldrich JW, James F C. Ecogeographic variation in the American Robin (Turdus migratorius). The Auk,1991,108:230-249.
    29. Alexander MC. Antimicrobial peptide microbicides targeting HIV. Protein Pept Lett, 2005,12:41-47.
    30. Andersson M. Sexual Selection. Princeton,1994, NJ:Princeton Univ. Press.
    31. Ando K, Naton S. Inhibitory effect of sarcotoxin Ⅱ A, an antibacterial protein of Sarcophaga peregrine, on growth of Escherichia coli. J Biochem,1988,103:735-741.
    32. Atkinson D, Sibly RM. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol,1997,12:235-39.
    33. Angilletta M J, Dunham A E. The temperature-size rule in ectotherms:simple evolutionary explanations may not be general. Am. Nat,2003,162:333-342.
    34. Arak A. Sexual dimorphism in body size:a model and a test. Evolution,1988,42: 820-25.
    35. Arnett A E, Gotelli N J. Bergmann's rule in larval ant lions:testing the starvation resistance hypothesis. Ecol Entomol,2003,28:645-650.
    36. Ashton, K G. Are ecological and evolutionary rules being dismissed prematurely? Divers Distrib,2001,7:289-295.
    37. Ashton, K G. Do amphibians follow Bergmann's rule? Can J Zool,2002a,80: 708-716.
    38. Ashton, K G. Patterns of within-species body size variation of birds:strong evidence for Bergmann's rule. Global Ecol Biogeogr,2002b,11:505-524.
    39. Ashton K G. Sensitivity of intraspecific latitudinal clinic of body size for tetrapods to sampling, latitude and longitude? Integr Comp Biol,2004,44:403-412.
    40. Ashton K G, Feldman C R. Bergmann's rule in nonavian reptiles:turtles follow it, lizards and snakes reverse it. Evolution,2003,57:1151-1163.
    41. Ashton K G, Tracy M C, de Queiroz, A. Is Bergmann's rule valid for mammals? Am Nat,2000,156:390-415.
    42. Atkinson D. Temperature and organism size-a biological law for ectotherms? Adv Ecol Res,1994,25:1-58.
    43. Atkinson D, Sibly R M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol Evol,1997,12:235-239.
    44. Badyaev A V, Growing apart:an ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol Evol,2002,17:369-378.
    45. Berger D, Walters R, Gotthard K. What keeps insects small? Size dependent predation on twospecies of butterfly larvae. Evol. Ecol.,2006,20:575-89
    46. Bergmann C. Uber die Verhaltnisse der Warmeokonomie der Thiere zu ihrer Grosse. Gottinger Stud,1847, Part 1:595-708.
    47. Berrigan D, Charnov EL. Reaction norms for age and size at maturity in response to temperature:a puzzle for life historians. Oikos,1994,70:474-78.
    48. Bidau C J, Marti D A. Geographic and climatic factors related to a body-size cline in Dichroplus pratensis Bruner,1900 Acrididae, Melanoplinae. J Orthopt Res,2008,17: 149-156.
    49. Bierbaum G, Sahl HG. Autolytic system of Staphylococcus simulans 22:influence of cationic peptides on activity of N-acetylmuramyl-L-alanine amidase. J Bacteriol, 1987(169):5452-5458.
    50. Bierbaum G, Sahl HG. Induction of autolysis of staphylococci by the basic peptide antibiotics Pep 5 and nisin and their influence on the activity of autolytic enzymes. Arch Microbiol,1985,141:249-254.
    51. Blackburn T M, Gaston K J, Loder N. Geographic gradients in body size:a clarification of Bergmann's rule. Divers Distrib,1999,_5:165-174.
    52. Blanckenhorn W U. Altitudinal life history variation in the dung flies Scathophaga stercoraria and Sepsis cynipsea. Oecologia,1997,109:342-352.
    53. Blanckenhorn WU. The evolution of body size:What keeps organisms small? Q Rev Biol,2000,75:385-407.
    54. Blanckenhorn WU. Behavioral causes and consequences of sexual size dimorphism. Ethology,2005,111:977-1016
    55. Blanckenhorn W U, Demont, M. Bergmann and converse Bergmann latitudinal clines in arthropods:Two ends of a continuum? Integr Comp Biol,2004,144:413-424.
    56. Blanckenhorn W U, Dixon A F G, Fairbairn D J, Foellmer M W, Gibert P, van der Linde K, Meier R, Nylin S, Pitnick S, Schoff C, Signorelli M, Teder T, Wiklund C. Proximate causes of Rensch's rule:does sexual size dimorphism in arthropods result from sex differences in development time? Am Nat,2007,169:245-257.
    57. Blanckenhorn W U and Fairbairn D J. Life history adaptation along a latitudinal cline in water striders. J Evol Biol,1995,8:21-41.
    58. Blanckenhorn W U, Stillwell R C, Young K A, Fox C W, Ashton K G. When Rensch meets Bergmann:Does sexual size dimorphism change systematically with latitude? Evolution,2006,60:2004-2011.
    59. Bobek LA, Situ H. MUC7 202-Mer investingation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action. Antimicrob. Agentss. Chemother,2003,47(2):643-652
    60. Bochdanovits Z, de Jong G. Temperature dependence of fitness components in geographical populations of Drosophila melanogaster. changing the association between size and fitness. Biol J Linn Soc,2003,80:717-725.
    61. Bonduriansky R. The evolution of condition dependent sexual dimorphism. Am Nat, 2007,169:9-19.
    62. Bradford M J, Roff D A. Genetic and phenotypic sources of life-history variation along a cline in voltinism in the cricket Allonemobius socius. Oecologia,1995,103: 319-326.
    63. Bradshaw WE, Holzapfel CM. Genetic constraints to life-history evolution in the pitcher-plant mosquito, Wyeomyia smithii. Evolution,1996,50:1176-81.
    64. Brown J H, Gillooly J F, Allen A P, Savage V M, West G B. Toward a metabolic theory of ecology. Ecology,2004,85:1771-1789.
    65. Brown KL, Hancock REW. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol,2006,18:24-30.
    66. Burnett C D. Geographic and climatic correlates of morphological variation. Eptesicus fuscus. J Mammal,1983,64:437-444.
    67. Carleton R. The application of Bergmann's and Allen's rules to the poikilotherms. J Morphol,1960,106:85-108.
    68. Cheverud JM, DowMM, Leutenegger W. The quantitative assessment of phylogenetic constraints in comparative analyses:sexual dimorphism in body weight among primates. Evolution,1985,39:1335-51.
    69. Chown S L, Gaston K J. Exploring links between physiology and ecology at macro-scales:the role of respiratory metabolism in insects. Biol Rev,1999,74: 87-120.
    70. Conover D O, Present T M C. Countergradient variation in growth rate: Compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia,1990,83:316-324.
    71. Davidowitz G. Population and environmental effects on the size-fecundity relationship in a common grasshopper across an aridity gradient. J Orthopt Res,2008, 17:265-71
    72. Davidowitz G, D'Amico LJ, Nijhout HF. The effects of environmental variation on a mechanism that controls insect body size. Evol Ecol Res,2004,6:49-62
    73. Davidowitz G, Nijhout HF. The physiological basis of reaction norms:the interaction among growth rate, the duration of growth and body size. Integr Comp Biol,2004,44: 443-49
    74. De Block M, Slos S, Johansson F, Stoks R. Intergrating life history and physiology to understand latitudinal size variation in a damselfly. Ecography,2008,31:115-123.
    75. De Lucca AJ, Walsh TJ. Antifungal peptides:origin, activity, and therapeutic potential. Rev Iberoam Micol,2000,17:116-120
    76. Delph L F, Bell D. A test of the differential-plasticity hypothesis for variation in the degree of sexual dimorphism in Silene latifolia. Evol Ecol Res,2008,10:61-75.
    77. Eleanor R H, Yannick M, Michael T S J, Jens R. Antimicrobial Defense and Persistent Infection in Insects. Science,2008,322,1257-1259.
    78. Ernsting G, Isaaks JA. Gamete production and sexual size dimorphism in an insect (Orchesella cincta) with indeterminate growth. Ecol Entomol,2002,27:145-51
    79. Esperk T, Tammaru T, Nylin S. Intraspecific variability in number of larval instars in insects. J Econ Entomol,2007,100:627-45
    80. Esperk T, Tammaru T, Nylin S, Teder T. Achieving high sexual size dimorphism in insects:females add instars. Ecol Entomol,2007,32:243-56
    81. Fairbairn DJ. Factors influencing sexual size dimorphism in temperate waterstriders. Am Nat,1990,136:61-86
    82. Fairbairn D J. Allometry for sexual size dimorphism:testing two hypotheses for Rensch's rule in the water strider Aquarius remigis. Am Nat,2005,166:S69-S84.
    83. Fehlbaum P, Bulet P, Gudmundsson GH. Structure-activity analysis of thanatin, a 21-reside inducible insect defense peptide with sequence homology to frog skin antibacterial peptides. Proc Natl Acad Sci, USA,1996, (93):1221-1225.
    84. Fernandez-Montraveta C, Moya-Larano J. Sex-specific plasticity of growth and maturation size in a spider:implications for sexual size dimorphism. J Evol Biol, 2007,20:1689-1699.
    85. Fischer K, Fiedler K. Dimorphic growth patterns and sex-specific reaction norms in the butterfly Lycaena hippothoe sumadiensis. J Evol Biol,2001,14:210-218.
    86. Fischer K, Fiedler K. Sex-related differences in reaction norms in the butterfly Lycaena tityrus (Lepidoptera:Lycaenidae). Oikos,2000,90:372-380.
    87. Friedrich CL, Moyles D, Beveridge TJ, Hancock RE. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother,2000,44(8):2086-2092.
    88. Fox CW, Czesak ME. Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol,2000,45:341-69
    89. Fox CW, Stillwell RC, Wallin WG, Hitchcock LJ. Temperature and host species affect nuptial gift size in a seed-feeding beetle. Funct. Ecol.,2006,20:1003-11
    90. Geist V. Bergmann's rule is invalid. Can J Zool,1987,65:1035-1038.
    91. Giangaspero A, Sandri L, Tossi A. Amphipathic a helical antimicrobial peptides A systematic study of the effects of structural and physical properties on biological activity. Eur J Biochem,2001,268:5589-5600.
    92. Gianoli E, Suarez L H, Gonzales W L, Gonzalez-Teuber M, Acuna Rodriguez, IS Host-associated variation in sexual size dimorphism and fitness effects of adult feeding in a bruchid beetle. Entomol Exp Appl,2007,122:233-237.
    93. Gilchrist G W, Huey R B. Plastic and genetic variation in wing loading as a function of temperature within and among parallel clines in Drosophila subobscura. Integr Comp Biol,2004,44:461-470.
    94. Gotthard K. Increased risk of predation as a cost of high growth rate:an experimental test in a butterfly. J Anim Ecol,2000,69:896-902
    95. Gotthard K, Nylin S, Wiklund C. Adaptive variation in growth rate:life history costs and consequences in the speckled wood butterfly, Pararge aegeria. Oecologia,1994, 99:281-89
    96. Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain, Biophysical J,2003,84:3052-3060.
    97. Hancock REW. Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis,2005,5:209-218.
    98. Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother,1999,43:1317-1323
    99. Harder J, Bartels J, Christophers E, et al. Isolation and characterization of human beta-defensin 3, a novel human inducible peptide antibiotic. J Biol Chem,2001, 276(8):5707-5713.
    100.Hariton Gazal E, Fede rR, MorA, et al. Targeting o fonokaryophilic cell permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals. Biochemistry,2002,41(29):9208-9214.
    101.Honek A. Intraspecific variation in body size and fecundity in insects:a general relationship. Oikos,1993,66:483-92
    102.Huey WH. Action of antimicrobial peptides:two-state model. Biochemistry,2000,39: 8347-8352.
    103.Hunt G, Roy K. Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes. Proc Natl Acad Sci,2006,103:1347-1352.
    104.Jablonski D. Body-size evolution in Cretaceous molluscs and the status of Cope's rule. Nature,1997,385:250-252.
    105.James F C. Complementary descriptive and experimental studies of clinal variation in birds. Amer Zool,1991,31:694-706.
    106.James F C. Geographic size variation in birds and its relationship to climate. Ecology, 1970,51:365-390.
    107.Jianxu Li, Xueqing Xu, Chunhua Xu, Weiping Zhou, Keyun Zhang, Haining Yu, Yaping Zhang, Yongtang Zheng, Huw H Rees, Ren Lai, Dongming Yang, Jing Wu. Anti-infection peetidomics of amphibian skin. Mol cell Proteomics,2007, 6(5):882-894.
    108.Johansson F. Latitudinal shifts in body size of Enallagma cyathigerum (Odonata). J Biogeogr,2003,30:29-34.
    109.Jones J, Gibb C E, Millard S C, Barg J J, Girvan M K, Veit M L, Friesen V L, Robertson R J. Multiple selection pressures generate adherence to Bergmann's rule in a Neotropical migratory songbird. J Biogeogr,2005,32:1827-1833..
    110.Juvvadi P. Antibacterial peptides cecropin A-melittin hybrid analogues, C-terminal amides. J Pept Sci,1996,2(4):223-232
    111.Kamysz W, Okroj M, Lukasiak J (2003) Novel properties of antimicrobial peptides. Acta Biochim Pol 50:461-469
    112.Karl I, Fischer K. Why get big in the cold? Towards a solution to a life-history puzzle. Oecologia,2008,155:215-225.
    113.Kato Y. Geographic variation in photoperiodic response for the induction of pupal diapause in the Aristolochia-feeding butterfly Atrophaneura alcinous. Appl Entomol Zool,2005,40 (2):347-350.
    114.Karan D, Dubey S, Moreteau B, Parkash R and David JR. Geographical clines for quantitative traits in natural populations of a tropical drosophilid:Zaprionus indianus. Genetica,2000,108:91-100.
    115.Kingsolver J G, Huey R B. Size, temperature, and fitness:three rules. Evol Ecol Res, 2008,10:251-268.
    116.Kingsolver J G, Massie K R, Smith M H. Rapid population divergence in thermal reaction norms for an invading species:breaking the temperature-size rule. J Evol Biol,2007,20:892-900.
    117.Krause M A, Burghardt G M, Gillingham J C. Body size plasticity and local variation of relative head and body size sexual dimorphism in garter snakes (Thamnophis sirtalis). J Zool,2003,261:399-407.
    118.Kraushaar U, Blanckenhorn W U. Population variation in sexual selection and its effect on body size allometry in two species of flies with contrasting sexual size dimorphism. Evolution,2002,56:307-321.
    119.Lande R. Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution,1980,34:292-305
    120.Leroi A M, Bennett A F, Lenski R E. Temperature acclimation and competitive fitness:an experimental test of the beneficial acclimation assumption. Proc Natl Acad Sci,1994,91:1917-1921.
    121.Lockey TD. Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae. Eur J biochem,1996,236(1): 263-271
    122.Lonsdale D J, Levinton J S. Latitudinal differentiation in copepod growth-an adaptation to temperature. Ecology,1985,66:1397-1497.
    123.Lovich J E, Gibbons J W. A review of techniques quantifying sexual size dimorphism. Growth Dev Aging,1992,56:269-281.
    124.Madhani M, Barchowsky A, Klei L, Ross CR. Antibacterial peptide PR-39 affects local nitric oxide and preserves tissue oxygenation in the liver during septic shock. Biochimica et Biophysica Acta (BBA),2002.1588(3):232-240.
    125.Maisnier-Patin S, Richard J. Cell wall changes in nisin-resistant variants of Listeria innocua grown in the presence of high nisin concentrations. FEMS Microbiol Lett, 1996,140:29-35.
    126.Masaki S. Climatic adaption and photoperiodic response in the band-legged ground cricket. Evolution,1972,26:587-600.
    127.Masaki S. Climatic adaptation and species status in the Lawn Ground Cricket. Ⅱ. Body Size. Oecologia (Bed.),1978,35:343-356.
    128.Masaki S. Geographic variation and climatic adaption in a field cricket, (Orthoptera: Grylidae). Evolution,1967,21:725-741
    129.McLain D K. Cope's rules, sexual selection, and the loss of ecological plasticity. Oikos,1993,68:490-500.
    130-Mikolajewski D J, Joop G, Wohlfahrt B. Coping with predators and food limitation: testing life history theory for sex-specific larval development. Oikos,2007,116: 242-649.
    131.Morin J P, Moreteau B, Petavy G, David J R. Divergence of reaction norms of size characters between tropical and temperate populations of Drosophila melanogaster and D. simulans. J Evol Biol,1999,12:329-339.
    132.Mousseau T A. Ectotherms follow the converse to Bergmann's rule. Evolution,1997, 51:630-632.
    133.Mousseau T A, Roff D A. Adaptation to seasonality in a cricket:patterns of phenotypic and genotypic variation in body size and diapause length along a cline in season length. Evolution,1989,43:1483-1496.
    134.Norry F M, Bubliy O A, Loeschcke V. Development time, body size and wing loading in Drosophila buzzatii from lowland and highland populations in Argentina. Hereditas,2001,135:35-40.
    135.Nygren G H, Bergstrom A, Nylin S. Latitudinal Body Size Clines in the Butterfly Polyommatus icarus are Shaped by Gene-Environment Interactions. J Insect Sci, 2008,47:1-13.
    136.Oscariz JC, Lasa I, Pisabarro AG. Detection and characterization of cerein7, a new bacteriocin prduced by Bacillus cereus with a broad spectrum of activity. FEMS Microbiol Lett,1999,178(2):337-341
    137.Park O. Application of the converse Bergmann principle to the carabid beetle, Dicaelus purpuratus. Physiol Zool,1949,22:359-372.
    138.Park CB, Kim HS. Mechanism of Action of the Antimicrobial Peptide Buforin Ⅱ: Buforin Ⅱ Kills Microorganisms by Penetrating the Cell Membrane and Inhibiting Cellular Functions. Biochem Biophys Res Commun,1998.244(1):253-257.
    139.Partridge L, Barrie B, Fowler K, French V. Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution,1994, 48:1269-1276.
    140.Partridge L, Coyne J A. Bergmann's rule in ectotherms:is it adaptive? Evolution, 1997,51:632-635.
    141.Partridge L, Fowler K. Direct and correlated responses to selection on thorax length in Drosophila melanogaster. Evolution,1993,47:213-226.
    142.Paterson, J.D. Bergmann's rule is invalid:A reply to V. Geist. Can J Zool,1990,68: 1610-1612.
    143.Pearson D, Shine R, Williams A. Geographic variation in sexual size dimorphism within a single snake species(Morelia spilota, Phythonidae). Oecologia,2002,131: 418-426.
    144.Powers JS, Hancock REW (2003) The relationship between peptide structure and antibacterial activity. Peptides,24:1681-1691.
    145.Preziosi R F, Fairbairn D J. Sexual size dimorphism and selection in the wild in the waterstrider Aquarius remigis:lifetime fecundity selection on female total length and its components. Evolution,1997,51:467-474.
    146.Preziosi RF, Fairbairn DJ, Roff DA, Brennan JM. Body size and fecundity in the waterstrider Aquarius remigis:a test of Darwin's fecundity advantage hypothesis. Oecologia,1996,108:424-31
    147.Price TD. The evolution of sexual size dimorphism in Darwin's finches. Am Nat, 1984,123:500-18
    148.Ramamoorthy A, Marassi F, Zasloff M, Opella SJ. Three-dimensional solid-state NMR spectroscopy of a peptide oriented in membrane bilayers. J Biomol NMR,1995, 6:329-334.
    149.Ramsden N, Elek J A. Life cycle and development rates of the leaf beetle Chrysophtharta agricola (Chapuis) (Coleoptera:Chrysomelidae) on Eucalyptus nitens at two temperature regimens. Aus J Entomol,1998,37:238-242.
    150.Reeve JP, Fairbairn DJ. Sexual size dimorphism as a correlated response to selection on body size:an empirical test of the quantitative genetic model. Evolution,1996,50: 1927-38
    151.Reeve JP, Fairbairn DJ. Predicting the evolution of sexual size dimorphism. J Evol Biol,2001,14:244-54
    152.Reiss MJ. The Allometry of Growth and Reproduction. Cambridge, UK:Cambridge Univ. Press,1989
    153.Relyea RA. Getting out alive:how predators affect the decision to metamorphose. Oecologia,2007,152:389-400
    154.Reeve M W, Fowler K, Partridge L. Increased body size confers greater fitness at lower experimental temperature in male Drosophila melanogaster. J Evol Biol,2000, 13:836-844.
    155.Rensch B. Die Abhangigkeit der relativen Sexualdifferenz von der Korpergrosse. Bonn Zool Beitr,1950,1:58-69.
    156.Reznick D. Costs of reproduction:an evaluation of the empirical evidence. Oikos, 1985,44:257-267.
    157.Roff D A. Optimizing development time in a seasonal environment:the ups and downs of clinal variation. Oecologia,1980,45:202-208.
    158.Roff D A. Trade-offs between growth and reproduction:an analysis of quantitative genetic evidence. J Evol Biol,2000,13:434-445.
    159.Rosenzweig M L. The strategy of body size in mammalian carnivores. Am Midl Nat, 1968,.80:299-315.
    160.Sambucetti P, Loeschcke V, Norry F M. Development time and size-related traits in Drosophila buzzatii along an altitudinal gradient from Argentina. Hereditas,2006, 143:77-83.
    161.Schluter D, Price TD, Rowe L. Conflicting selection pressures and life history trade-offs. Proc R Soc London Sci Ser B,1991,246:11-17
    162.Schutze M K, Clarke A R. Converse Bergmann cline in a Eucalyptus herbivore, Paropsis atomaria Olivier (Coleoptera:Chrysomelidae):phenotypic plasticity or local adaptation? Global Ecol Biogeogr,2008,17(3):424-431.
    163.Seraj U M, Hoq M I, Anwar M N, Chowdhury S A.61kDa Antibacterial Protein Isolated and Purified from the Hemolymph of the American Cockroach Periplaneta amreicana. Pakistan J Biol Sci,2003,6(7):715-720.
    164.Shindo, J I, Masaki, S. Photoperiodic control of larval development in the semivoltine cockroach Periplaneta japonica (Blattidae:Dictyoptera). Ecol Res,1995, 10:1-12.
    165.Sibly R M, Atkinson D. How rearing temperature affects optimal adult size in ectotherms. Funct Ecol,1994,8:486-493.
    166.Smith R J. Statistics of sexual size dimorphism. J. Human Evol,1999,36:423-459.
    167.Stillwell R C, Blanckenhorn W U, Teder T, Fox C W. Sex Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects:From Physiology to Evolution. Annu Rev Entomol,2010,55:227-245.
    168.Stillwell R C, Fox CW. Complex patterns of phenotypic plasticity:interactive effects of temperature during rearing and oviposition. Ecology,2005,86:924-934.
    169.Stillwell R C, Fox C W. Geographic variation in body size, sexual size dimorphism and fitness components of a seed-feeding beetle:local adaptation versus phenotypic plasticity. Oikos,2009,118:703-712.
    170.Stillwell R C, Fox C W. Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia,2007,153:273-280.
    171.Stillwell R C, Morse G E, Fox C W. Geographic variation in body size and sexual size dimorphism of a seed-feeding beetle. Am Nat,2007,170:358-369.
    172.Subbalakshmi C, Sitaram N., Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett,1998.160(1):91-96.
    173.Tammaru T, Esperk T. Growth allometry of immature insects:Larvae do not grow exponentially. Funct Ecol,2007,21:1099-105
    174.Tammaru T, Esperk T, Ivanov V, Teder T. Proximate sources of sexual size dimorphism in insects:locating constraints on larval growth schedules. Evol Ecol, 2009,24:161-175
    175.Tanaka S, Uemura Y. Flexible life cycle of a cockroach Periplaneta japonica with nymphal diapause. J Orthop Res,1996,5:213-219.
    176.Tanaka S, Zhu D H. Presence of three diapauses in a subtropical cockroach. Physiol Entomol,2003,28:323-330.
    177.Teder T, Tammaru T. Sexual size dimorphism within species increases with body size in insects. Oikos,2005,108:321-334.
    178.Van der Have T M, De Jong G. Adult size in ectotherms:temperature effects on growth and differentiation. J Theor Biol,1996,183:329-340.
    179.Vannote R L, Sweeny B W. Geographic analysis of thermal equilibria:a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am Nat,1980,115:667-695.
    180.Van Voorhies W A. Bergmann size clines:a simple explanation for their occurrence in ectotherms. Evolution,1996,50:1259-1264.
    181.Van Voorhies W A. On the adaptive nature of Bergmann size clines:a reply to Mousseau, Partridge and Coyne. Evolution,1997,51:635-640.
    182.Vizioli J, Salzet M (2002a) Antimicrobial peptides versus parasitic infections? Trends Parasitol,18:475-476.
    183.Vizioli J, Salzet M (2002b) Antimicrobial peptides from animals:focus on invertebrates. Trends Pharmacol Sci,23:494-496.
    184.Wang HX, Ng TB (2005). An antifungal peptide from the coconut. Peptides,26: 2392-2396.
    185.Wang JX, Zhao XF, Liang YL, Li L, Zhang W, Ren Q, Wang LC,Wang LY (2006) Molecular characterization and expression of the antimicrobial peptide defensin from the housefly (Musca domestica). Cell Mol Life Sci 63:3072-3082.
    186.Wigginton J D, Dobson F S. Environmental influences on geographic variation in body size of western bobcats. Can J Zool,1999,77:802-813.
    187.Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev,2003,55:27-55.
    188.Yom-Tov Y, Geffen E. Geographic variation in body size:the effects of ambient temperature and precipitation. Oecologia,2006,148:213-218.
    189.Yom-Tov Y, Nix H. Climatological correlates for body size of five species of Australian mammals. Biological Journal of the Linnean Society,1986,29:245-262.
    190.Yount NY, Yeaman MR. Immunocontinuum:perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept Lett,2005,12:49-67.
    191.Zasloff M. Antimicrobial peptides of multicellular organisms. Nature,2002,415: 389-95.
    192.Zhang. L, Benz R, Hancock RE. Influence of proline residuces on the antibacterial and synergistic activities of a-helical peptides. Biochemistry,1999,38:8102-8111
    193.Zhu D H, Tanaka S. Photoperiod and temperature affect the life cycle of a subtropical cockroach, Opisoplatia orientalis:seasonal pattern shaped by winter mortality. Physiol Entomol,2004,29:16-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700