基于银纳米材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银纳米粒子具有非常稳定的物理化学性能,因此在光学、催化、电学等众多领域表现出十分优异的特性。目前银纳米粒子仍是研究的热点。本论文以硝酸银为银源,在室温下合成了不同颗粒大小、不同尺寸分布、不同形貌的银纳米粒子,以及不同的含银复合材料,如Ag/ZnO复合物、Ag/GO(氧化石墨烯)复合物。并对合成的银纳米粒子及其复合物的性质、应用进行了研究。主要内容如下:
     1.采用液-液两相(水相-有机相)法,以十二烷基三甲基溴化铵作为表面活性剂,十二烷基硫醇作为保护剂,硼氢化钠作为还原剂,在室温下合成红棕色的纳米银溶胶。合成的银溶胶存在于有机相中。同时,对合成的银纳米粒子的光学性质进行了研究,发现不同的反应时间、有机溶剂对合成的银纳米粒子的粒径大小及尺寸分布有着较大的影响。反应时间越长,形成的银纳米粒子的粒径越小且尺寸分布越均匀。考察了三种不同的有机溶剂(甲苯、己烷及氯仿)对形成的银纳米粒子的影响,研究发现,在甲苯溶剂中形成的银纳米粒子的粒径较小且分布较窄。同时将合成的银纳米粒子作为催化剂,催化硼氢化钠还原对硝基苯酚合成氨基苯酚的反应。
     2.在水相-有机相两相体系中,以四正丁基溴化铵作为表面活性剂,十二烷基硫醇作为保护剂,水合肼作为还原剂,在室温下合成规则排列的银超晶格。考察了不同反应时间对银自组装结构的影响,实验结果表明反应时间太短,银纳米粒子不能很好的被十二烷基硫醇所包覆,形成的结构不完美。同时考察了以超晶格银作为催化剂,催化硼氢化钠还原对硝基苯酚的催化活性,结果显示,因形成超晶格银纳米粒子的颗粒非常小仅有3nm左右,因此其催化效果非常显著,其动力学反应常数(Kap)达到21.3×10-3s-1。
     3.采用液-液两相法,以癸二酸、油酸作为保护剂,十六烷基三甲基溴化铵为表面活性剂,考察了不同条件(如有无保护剂、保护剂的用量、反应时间等一系列条件)对形成的银纳米粒子的形貌、粒径的影响。研究发现,以癸二酸、油酸作为保护剂,形成的银纳米粒子是单分散的,且粒径分布范围比较窄。
     4.利用生物大分子壳聚糖既作为保护剂又作为还原剂,在室温下绿色合成了五边形、六边形、梯形、三角形等不同形貌的银纳米片。同时,对银纳米片的形成机理、光学性质进行了探讨。另外,以结晶紫为探针,银纳米片作为基底的表面增强拉曼效应(SERS)进行了研究,研究结果发现,其增强因子(EF)为2.6×103。
     5.在室温下,采用液-液两相法合成了片状的ZnO及ZnO片/Ag纳米复合材料,并对其形成机理进行了研究,同时考察了其作为催化剂,光催化降解甲基橙染料的催化活性。结果发现,形成的ZnO为片状,在高能电子束下不稳定,但当银纳米粒子负载在ZnO表面后,使得ZnO的稳定性显著增强,同时研究发现ZnO/Ag纳米复合材料的光催化活性明显的优于单纯的ZnO纳米材料。
     6.利用明胶既作为保护剂又作为还原剂,在室温下绿色合成了棱镜形的银纳米粒子,并将其负载在氧化石墨烯(GO)的表面上,形成Ag/GO复合材料。并对复合物的形貌、形成机理、抗菌活性进行了探讨。研究结果发现,合成的银纳米粒子为棱镜形状且负载在氧化石墨烯的褶皱处。同时,Ag/GO复合材料表现出较好的抗菌效果
Silver nanoparticles, due to its specific physical and chemical properties, show excellent characteristics in the optical, catalytic, electrical and many other fields. At present, the silver nanoparticles are still the research focus. The research of this thesis focuses on the synthesis, properties and potential application of silver nanoparticles and their composites such as Ag/ZnO and Ag/GO. The principal results of the dissertation are discussed as follows:
     1. Silver nanoparticles, which were produced by the sodium borohydride reduction of silver nitrate, were stabilized by means of 1-dodecanethiol providing sulfur atom. (n-dodecyl)trimethylammonium bromide (DTAB) which was used as phase transfer agent in two-phase system involving water and toluene played an significant role in the formation of monolayer-protected silver nanoparticles. It was also found that different organic solvent played major role in the particle size of silver nanoparticles. The results indicate that the particles size of silver nanoparticles were quite different under the three kind of condition. Furthermore,1-dodecanethiol-capped silver nanoparticles are found to serve as effective catalysts to activate the reduction of 4-nitrophenol (4NP) in the presence of NaBH4, where the size of silver nanoparticles is found to play the determining role on catalytic activity.
     2. Superlattice of silver nanoparticles were prepared using a liquid-liquid two-phase method with hydrazine hydrate (N2H4·H2O), tetra-n-butylammonium bromide ((C4H9)4NBr) and 1-dodecanethiol as reducing agent, phase transfer agent and stabilized agent, respectively. The reaction time plays a major role in the formation of superlattice of silver nanoparticles. Furthermore, the superlattice of silver nanoparticles are found to serve as effective catalysts to activate the reduction of 4-nitrophenol (4NP) in the presence of NaBH4. The results indicate that the formed silver nanoparticles are so small, only about 3 nm, but they have a high catalytic activity, the kinetic reaction rate constant (defined as Kap) of which reaches to 21.3×10-3s-1.
     3. The size-controlled synthesis of silver nanoparticles were prepared in a cetyl trimethyl ammonium bromide (CTAB)/toluene reverse micelle system using oleic acid or sebacic acid as stabilizing agents. The formation of silver nanoparticles was influenced by factors such as reaction time, concentration of CTAB, the quantity of fatty acid and so on. It can be seen that the formed silver nanoparticles are monodispersed with a narrow size distribution.
     4. Single-crystal silver slices with different shapes such as hexagon, trapezium, triangle were synthesized at room temperature with chitosan by a facile, one-pot, and totally green method. The results showed that chitosan, a novel environmentally benign and excellently biocompatible material, serves not only as a reducing agent but also as a stabilizer for the growth of anisotropic silver nanoparticles. The single-crystal silver slices with major facet of (111) can be used as a surface-enhanced Raman scattering (SERS) substrate, and crystal violet (CV) as a Raman probe to evaluate its enhancement ability. It was found that the enhancement ability of the silver slices was remarkable and enhancement factor(EF) reached to 2.6×103.
     5. The Ag nanoparticles-stabilized ZnO nanosheets were prepared using a liquid-liquid two-phase method with (n-dodecyl)trimethylammonium bromide (DTAB) as a phase transfer agent at the room temperature. The results demonstrate that the silver nanoparticles load on the surface of ZnO sheets and make the ZnO sheets stabilize. Furthermore, the formation mechanism of ZnO sheets stabilized by silver nanoparticles was also proposed and discussed in detail. Moreover, the photocatalysis test shows that the ZnO sheets stabilized by silver nanoparticles exhibit a higher photocatalytic activity than the pure ZnO nanosheets.
     6. A widely soluble graphene oxide sheets decorated by silver nanoprisms were prepared through green synthesis at the room temperature using gelatin as reducing and stabilizing agent. The results demonstrate that these silver-nanoprisms assembled on graphene oxide sheets are flexible and can form stable suspensions in aqueous solutions. Furthermore, the formation mechanism of soluble graphene oxide sheets decorated by silver nanoprisms was successfully explained. The anti-bacterial properties of graphene oxide sheets decorated by silver nanoprisms were tested against Escherichia coli.
引文
[1]白春礼.纳米科学与技术[M].云南出版社,1995
    [2]张立德,解思深.纳米结构与纳米材料[M].科学工业出版社,2005
    [3]Gleiter H, Marquardt P. Nanocrystalline structures-an approach to new materials. Metallkd Z,1984,75:263-267
    [4]张立德.纳米材料和纳米结构[M].科学出版社,2001
    [5]曹茂盛,关长斌,徐甲强.纳米材料导论[M].哈尔滨工业大学出版社,2001
    [6]Burs L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state. J. Chem. Phys.,1984, 80(9):4403-4409
    [7]李玲,向航.功能材料与纳米技术[M].化学工业出版社,2002
    [8]Auer S, Frenkel D. Suppression of crystal nucleation in polydisperse colloid due to increase of the surface free energy. Nature,2001,413:711-713
    [9]Hilinski E, Lucas P, Wang Y. A picosecond bleaching study of quantum-confined cadmium sulfide microcrystallites in a polymer film. J. Chem. Phys,1988,89(6):3435-3441
    [10]Henglein A. Small-particle research:Physi-chemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev,1989,89:1861-1873
    [11]Wang Y, Herron N. Nanometer-sized semiconductor clusters:materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem,1991,95:525
    [12]程敬泉.银、金纳米材料的超声化学、电化学制备与表征.天津大学博士学位论文,2005
    [13]Barbaar B, Wernsdorfer W. T1 quantum tunneling effect in magnetic partieles SO. Curr. Opin. Solid. State. Mater. Sci.,1997,2:220-225
    [14]Zhang N, Raman N, Bailey J K. A new sol-gel route for the preparation of nanometer-scale semiconductor particles that exhibit quantum optical behavior. J. Phys. Chem, 1992,96(23):9098-9100
    [15]赵藻藩,周性尧,张悟铭,赵文宽.仪器分析[M].高等教育出版,1990
    [16]张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000,20-25
    [17]张立德.纳米材料[M].北京:化学工业出版社,2000,49-53
    [18]Schmid G, Eds. Clusters and colloids from theory to applications. VCH, Weiheim,1994
    [19]黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003
    [20]倪星军,沈军,张志华.纳米材料的理化特性与应用[M].化学工业出版社,2006
    [21]Yongchun Z, Mingrong J, Huagui Z, Yuan L, Zhiping Y, Yitai Q. Seed-mediated synthesis of silver with skeleton structures. Materials Letters,2004,58:1121-1126
    [22]Zaheer K, Shaeel A A T, El-Mossalamy E H, Obaid A Y. Studies on the kinetics of growth of silver nanoparticles indifferent surfactant solutions. Colloids and Surfaces B:Biointerfaces, 2009,73:284-288
    [23]Khanna P K, Narendra S, Shobhit C, Subbarao V V V S, Gokhale R, Mulik U P. Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Materials Chemistry and Physics,2005,93:117-121
    [24]Samal A K, Pradeep T. Lanthanum telluride nanowires:formation, doping, and Raman studies. J. Phys. Chem. C,2010,114 (13):5871-5878
    [25]Wanzhong Z, Xueliang Q, Jianguo C. Synthesis of silver nanoparticles-Effects of concerned parameters in water/oil microemulsion. Materials Science and Engineering B,2007, 142:1-15
    [26]James T H. Surface conditions of silver halides and the rate of reaction. Ⅲ. reduction of silver chloride by hydrazine. J. Am. Chem. Soc,1940,62 (7),1654-1658
    [27]Angshuman P, Sunil S, Surekha D. Synthesis of Au, Ag and Au-Ag alloy nanoparticles in aqueous polymer solution. Colloids and Surfaces A:Physicochem. Eng. Aspects,2007,302: 51-57
    [28]Haijun Z, Jun O, Naoki T. One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation. J. Colloid and Interface Science,2011,354:131-138
    [29]Manikandan S, Majumdar G, Chowdhury D, Paul A, Arun C. Solid-state storage of Ag nanoparticles in anion exchange resin beads and their recovery. Journal of Colloid and Interface Science,2006,295:148-154
    [30]Li D G, Chen S H, Zhao S Y, Hou X M, Ma H Y, Yang X G. Simple method for preparation of cubic Ag nanoparticles and their self-assembled films. Thin Solid Films,2004, 460:78-82
    [31]De G L, Shen H C, Shi Y Z, Xian M H, Hou Y M, Xue G Y. A study of phase transfer processes of Ag nanoparticles. Applied Surface Science,2002,200:62-67
    [32]Yan B G, De G W, Shu H L. Tribological behavior of in situ Ag nanoparticles/polyelectrolyte composite molecular deposition films. Applied Surface Science, 2010,256:1714-1719
    [33]He L, Dan W, Shibin S, Zhanqian S. Synthesis and characterization of Ag-Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites. Carbohydrate Polymers, 2011,83:38-43
    [34]Guo Y L, Wei Y C, Huan T C. One-pot synthesis of fluorescent oligonucleotide Ag nanoclusters for specific and sensitive detection of DNA. Biosensors and Bioelectronics,2011, 26:2431-2435
    [35]Chen H M, Liu R S, Jang L Y, Lee J F, Hu S F. Characterization of core-shell type and alloy Ag/Au bimetallic clusters by using extended X-ray absorption fine structure spectroscopy. Chemical Physics Letters,2006,421:118-123
    [36]Isabel P S, Carmen S R, Luis M L M. Self-Assembly of silver particle monolayers on glass from Ag+ solutions in DMF. Journal of Colloid and Interface Science,2000,221(2): 236-241
    [37]Gao Y, Jiang P, Song L, Wang J X, Liu L F, Liu D F, Xiang Y J, Zhang Z X, Zhao X W, Dou X Y, Luo S D, Zhou W Y, Xie S S. Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction. Journal of Crystal Growth,2006, 289:376-380
    [38]Lijian H, Yueming Z, Shaojun D, Jin W. Efficient preparation of silver nanoplates assisted by non-polar solvents. Journal of Colloid and Interface Science,2009,331:384-388
    [39]Audra I. Lukman, Bin Gong, Christopher E. Marjo, Ute Roessner, Andrew T. Harris Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. Journal of Colloid and Interface Science,2011,353: 433-444
    [40]Cao X L, Tang M, Liu F, Nie Y Y, Zhao C S. Immobilization of silver nanoparticles onto sulfonated polyethersulfone membranes as antibacterial materials. Colloids and Surfaces B: Biointerfaces,2010,81:555-562
    [41]Siskova K, Vlckova B, Turpin P Y, Thorel A, Grosjean A. Porphyrins as SERRS spectral probes of chemically functionalized Ag nanoparticles. Vibrational Spectroscopy,2008,48: 44-52
    [42]Supriya D, Vimalan B, Sampath S. Phase transfer of Au-Ag nanoparticles alloy from aqueous medium to an organic solvent:effect of aging of surfactant on the formation of Ag-rich alloy compositions. Journal of Colloid and Interface Science,2004,278:126-132
    [43]Soon-Gil K, Nobuhiro H, Ferry I, Kikuo O. Characterization of silica-coated nanoparticles synthesized using a water-soluble nanoparticle micelle. Advanced Powder Technology,2009,20:94-100
    [44]Paul J G G, Nicholas P W P, Ricardo F A. Protein-nanoparticle layer-by-layer films as substrates for surface-enhanced resonance Raman scattering. New approaches in biomedical spectroscopy. ACS Symposium Series,2007,963(11):152-163
    [45]Solbrig C M, Saucier-Sawyer J K, Cody V, Saltzman W M, Hanlon D J. Polymer nanoparticles for immunotherapy from encapsulated tumor-associated antigens and whole tumor cells. Mol. Pharmaceutics,2007,4 (1):47-57
    [46]Meikun F, Matthew T, Maria L A, Alexandre G B. Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing. Anal. Chem.,2010,82 (15): 6350-6352
    [47]Wu Q Z, Cao H Q, Luan Q Y, Zhang J Y, Wang Z, Jamie H W, Andrew A R W. Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg. Chem.,2008,47:5882-5888
    [48]Young H K, Don K L, Hyun G C, Chang W K, Young S K. Superlattice of Ag nanoparticles prepared by new one-step synthetic method in aqueous phase. Chem. Mater., 2007,19:5049-5051
    [49]Li G P, Luo Y J. Preparation and characterization of dendrimer-templated Ag-Cu bimetallic nanoclusters. Inorg. Chem.,2008,47:360-364
    [50]Doty R C, Tshikhudo T R, Brust M, Fernig D G. Extremely stable water-soluble Ag nanoparticles. Chem. Mater.,2005,17:4630-4635
    [51]El-Rafie M H, El-Naggar M E, Ramadan M A, Moustafa M G F, Salem S A, Hebeish A. Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydrate Polymers,2011,86:630-635
    [52]Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble metal nanoparticles. Angewandte Chemie International Edition,2004,43(5):597-601
    [53]顾大明,高农.次磷酸盐液相还原法快速制备纳米银粉.精细化工,2002,19(11):634-635,674
    [54]Sun Y G, Benjamin W, Li Z Y, Xia Y N. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc.,2004, 126:9399-9406
    [55]Sarkar A, Kapoor S, Mukherjee T. Preparation, characterization, and surface modification of silver nanoparticles in formamide. J. Phys. Chem. B.,2005,109:7698-7704
    [56]Sarkar A, Kapoor S, Mukherjee T. Synthesis of silver nanoprisms in formamide. Journal of Colloid and Interface Science,2005,287:496-500
    [57]Piao L H, Kyung H L, Won J K, Sang-Ho K, Sungho Y. The simple and facile methods to improve dispersion stability of nanoparticles:Different chain length alkylcarboxylate mixtures. Journal of Colloid and Interface Science,2009,334:208-211
    [58]Tae Y K, Won J K, Seung H H, Jong E K, Kwang S S. Ionic-liquid-assisted formation of silver nanowires. Angew. Chem. Int. Ed.,2009,48:3806-3809
    [59]Osman M B, Vincenzo A, Christine M A, Wim W, Rui L, Luca D N, George C S, Francesco S. Silver nanoparticles with broad multiband linear optical absorption. Angew. Chem. Int. Ed.,2009,48:5921-5926
    [60]Wang X K, Chen Y Y. A new two-phase system for the preparation of nearly monodisperse silver nanoparticles. Materials Letters,2008,62:4366-4368
    [61]Christophe P, Patricia L, Marie-Paule P. In situ synthesis of silver nanocluster in AOT reverse micelles. J. Phys. Chem.,1993,97:12974-12983
    [62]Taleb A, Petit C, Pileni M P. Synthesis of highly monodisperse silver nanoparticle from AOT reverse micelles:A way to 2D and 3D self-organization. Chem. Mater.,1997,9: 950-959
    [63]Prasad B L V, Sujatha K A, Tanushree B, Murali S. Solvent-adaptable silver nanoparticles. Langmuir,2005,21:822-826
    [64]Yang Y, Shuman L, Keisaku K. Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angew. Chem.,2006,118:5790-5793
    [65]Anjana S, Ridhima C, Nandita B, Tulsi M, Sudhir K. Phase-transfer and film formation of silver nanoparticles. Journal of Colloid and Interface Science,2009,332:224-230
    [66]Dong T Y, Wu H H, Lin M C. Superlattice of octanethiol-protected copper nanoparticles. Langmuir,2006,22:6754-6756
    [67]He S T, Yao J N, Jiang P, Shi D X, Zhang H X, Xie S S, Pang S J, Gao H J. Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice. Langmuir,2001, 17:1571-1575
    [68]Michael B S, Aaron E S, Brian A K. Metal nanocrystal superlattice nucleation and growth. Langmuir,2004,20:978-983
    [69]Walter E C, Murray B J, Favier F. Noble and coinage metal nanowires by electrochemical step edge decoration. J. Phys. Chem. B.,2002,106(44):11407-11411.
    [70]周民.贵金属纳米粒子的可控合成与表征.山东大学博士学位论文,2006
    [71]廖学红,赵小宁.类球形和树枝状纳米银的超声电化学制备.南京大学学报(自然科学版),2002,38(1):119-122
    [72]Zhu J J, Qiu Q F, Wang H, et al 1. Synthesis of silver nanowires by a sonoelectrochemical method. Inorganic Chemistry Communications,2002,5(3):242-244
    [73]Zhu J J, Liao X H, Zhao X N. Preparation of silver nanorods by electrochemical methods. Mater. Lett.,2001,49(2):91-95
    [74]王银海,牟季美.交流电在A1203模板中沉积金属机理探讨.物理化学学报.2001,17(2):116-118
    [75]Valerie M, Celine R B, Jean D, Jean M, Patrick F. Sono and electrochemical synthesis and characterization of copper core-silver shell nanoaprticles.Ultrasonics Sonochemistry, 2010,17:690-696
    [76]Ting L. Preparation of novel core-shell nanoaprticles by electrochemical synthesis. Transactions of Nonferrous Metals Society of China,2007,17:1343-1346
    [77]Jon U, Uma G, Annick H, Sara B, Herman T. Electrodeposition of Ag nanoaprticles onto carbon coated TEM grids:A direct approach to study early stages of nucleation. Electrochemistry Communications,2010,12:1706-1709
    [78]Han M H, Lin H F, Yuan Y H, et al. Pressure drop for two phase counter-current flow in a packed column with a novel internal. Chemical Engineering Journal,2003,94:171-260
    [79]Li H X, Lin M Z, Hou J G 1. Electrophoretic deposition of ligand-stabilized silver nanoparticles synthesized by the process of photochemical reduction.Journal of Crystal Growth,2000,212:222-226
    [80]Zhou Y, Yu S H, Wang C Y, et all. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials,1999,11:850-852
    [81]Scott C W, Aaron C J, Zachary D C C, Francis J D, Ulrich W. Nanoparticle synthesis via the photochemical polythiol process. J. Am. Chem. Soc.,2007,129:10072-10073
    [82]Subrata K, Madhuri M, Sujit K G, Tarasankar P. Photochemical deposition of SERS active silver nanoparticles on silica gel. Journal of Photochemistry and Photobiology A: Chemistry,2004,162:625-632
    [83]姚素薇,刘恒权,张卫国,等.在线性壳聚糖膜内原位还原制备银纳米粒子及银单晶体.物理化学学报,2003,(5)19:464-468
    [84]Antonino S, Mozzanega M N, Pichat P. Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. Photochem Photobiol A,1991,(2)59:181-183
    [85]井立强,侯海鸽,等Pd/ZnO和Ag/ZnO复合纳米粒子的制备、表征及光催化活性.催化学报,2002,(4)23:336-340
    [86]Zhu Y J, Qian Y T, Zhang M W, et al. Preparation of nanocrystalline silver powders by ray radiation combined with hydrothermal t reatment. Materials Letters,1993,17:314-318
    [87]Kazem N, Elias S, Khadijeh R, Wan M M Y. Influence of dose on particle size of colloidal silver nanoaprticles synthesized by gamma radiation. Radiation Physics and Chemistry,2010,79:1203-1208
    [88]Rao Y N, Banerjee D, Datta A, Das S K, Guin R, Saha A. Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoaprticles. Radiation Physics and Chemistry,2010,79:1240-1246
    [89]Kassaee M Z, Akhavan A, Sheikh N, Beteshobabrud R. y-Ray synthesis of starch-stabilized silver nanoaprticles with antibacterial activities. Radiation Physics and Chemistry,2008,77:1074-1078
    [90]Liu Y S, Chen S M, Zhong L, Wu G Z. Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer undergamma radiation. Radiation Physics and Chemistry,2009,78:251-255
    [91]Chen P, Song L Y, Liu Y K, Fang Y. Synthesis of silver nanoaprticles by y-ray irradiation in acetic water solution containing chitosan. Radiation Physics and Chemistry,2007,76: 1165-1168
    [92]Long D W, Wu G Z, Chen S M. Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiation.Physics and Chemistry,2007,76:1126-1131
    [93]Chen Y H, Ye C S. Laser ablation method:use of surfactants to form the dis persed Ag nanoparticles. Colloids. Surf.A,2002,197:133-139
    [94]Tsuj I T, Kakita T, Tsuj I M. Preparation of nanosize particles of silver with femtosecond laser ablation in water. Applied Surface Science,2003,206 (124):314-320
    [95]Alonso J C, Diamant R, Castillo P, Acosta-Garcia M C, Batina N, Haro-Poniatowski E. Thin films of silver nanoparticles deposited in vacuum by pulsed laser ablation using a YAG:Nd laser. Applied Surface Science,2009,255:4933-4937
    [96]Majid D, Mansor B A, Reza Z, Abdul H A, Nor A I, Kamyar S, M.Shahril H. Preparation and characterization of gelatin mediated silver nanoparticles bylaser ablation. Journal of Alloys and Compounds,2011,509:1301-1304
    [97]杜勇,杨小成,方炎.激光烧蚀法制备纳米银胶体其特征研究.光电子.激光,2003,14(4):383-386
    [98]Man S L, Seong S H, Madjid M. Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent Journal of Molecular Catalysis A:Chemical,2005, 242:135-140
    [99]Shahab A A, Mohammad P, Azarmidokht H. Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli. Powder Technology,2009,196:241-245
    [100]张兆艳.影响Si02薄膜中银粒子发光强度的因素分析.无机材料学报.2001,16 (4):747-751
    [101]杨玉旺,刘敬利.纳米银研究和应用新进展.工业催化,2003,11:7-12
    [102]Liu X J, Cai X, Qiao J S,et al. The design of ZnS/Ag/ZnS transparent conductive multilayer films. Thin Solid Films,2003,441(1-2):200-206
    [103]许北雪,吴锦雷.稀土镧对真空蒸发沉积银纳米粒子团聚的影响.物理化学学报,2002,18(1):91-94
    [104]迟广俊,姚素薇,范君.银纳米线的TEM表征.物理化学学报,2002,18(6):532-535
    [105]Qian L, Yang X R. Preparation and characterization of Ag(Au) bimetallic core-shell nanoparticles with new seed growth method. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,260:79-85
    [106]Lu L H, Wang H S, Zhou Y H, Xi S Q, Zhang H J, Hu J W, Zhao B. Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem. Commun.,2002,144-145
    [107]邹凯,张晓宏,吴世康,等.光化学法合成银纳米线及其形成机理的研究.化学学报,2004,62(18):1771-1774
    [108]Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett.,1974,26:163-166
    [109]Jeanmaire D J, VanDuyne R P. Surface Raman scattering spectra and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem.,1977,84:1-20
    [110]Seong-Ho C, Hyun G P. Surface-enhanced Raman scattering (SERS) spectra of sodium benzoate and 4-picoline in Ag colloids prepared by y-irradiation. Applied Surface Science, 2005,243:76-81
    [111]Hou X M, Zhang X L, Chen S T, Fang Y, Yan J L, Li N, Qi P X. Facile synthesis of SERS active Ag nanoparticles in the presence of tri-n-octylphosphine sulfide. Applied Surface Science,2011,257:4935-4940
    [112]Daizy P, Gopchandran K G, Unni C, Nissamudeen K M. Synthesis, characterization and SERS activity of Au-Ag nanorods. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2008,70:780-784
    [113]Liu R M, Si M Z, Kang Y P, Zi X F, Liu Z Q, Zhang D Q. A simple method for preparation of Ag nanofilm used as active, stable, and biocompatible SERS substrate by using electrostatic self-assembly.Journal of Colloid and Interface Science,2010,343:52-57
    [114]Si M Z, Kang Y P, Zhang Z G. Surface-enhanced Raman scattering (SERS) spectra of Methyl Orange in Ag colloids prepared by electrolysis method. Applied Surface Science, 2009,255:6007-6010
    [115]Guo G M, Yu B B, Yu P, Chen X. Synthesis and photocatalytic applications of Ag/TiO2-nanotubes. Talanta.,2009,79:570-575
    [116]He C, Shu D, Su M H, Xia D H, Mudar A A, Long L, Ya X. Photocatalytic activity of metal (Pt, Ag, and Cu)-deposited TiO2 photoelectrodes for degradation of organic pollutants in aqueous solution. Desalination,2010,253:88-93
    [117]Man S L, Seong-Soo H, Madjid M. Synthesis of photocatalytic nanosized TiO2-Ag particles with sol-gel method using reduction agent. Journal of Molecular Catalysis A: Chemical,2005,242:135-140
    [118]Zhou G, Deng J C. Preparation and photocatalytic performance of Ag/ZnO nano-composites. Materials Science in Semiconductor Processing,2007,10:90-96
    [119]Lei Y, et al. Epoxidation via subnanometer size effects increased silver activity for direct propylene. Science,2010,328:224-228
    [120]石川,程谟杰等.纳米银催化的甲烷选择还原NO反应研究.复旦学报(自然科学版),2002,(3)41:269-273,279
    [121]Pallab S, Murugadoss A, P.V.Durga P, Siddhartha S G, Arun C. The antibacterial properties of a novel chitosan-Ag-nanoparticle composite. International Journal of Food Microbiology,2008,124:142-146
    [122]Rayna B, Daniela P, Girish M K, Umesh L, Kantardjiev T. Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. Journal of Colloid and Interface Science,2010,349:77-85
    [123]刘维良,陈汴琨.纳米抗菌粉体材料的制备与应用研究.江苏陶瓷,2002,(1)35:9-12
    [124]李喜宏,成国祥,等.PE/纳米银防霉保鲜膜研制,食品科学.2002,23(2):129-132
    [125]Kruszewsk S. The surface enchanced Raman scattering on electrochemicalling roughened silver electrodes. Vaccum.1997,48(3):363-364
    [126]Jensen T R, Malinsky D, Haynes C L, et al. Nanosphere lithography: tunable localized surface Plasmon resonance spectra of silver nanoparticles. Journal of Physical Chemistry B, 2000,104:10549-10556
    [127]Murata Y, Fukuta S, Ishikawa S,Yokoyama S. Photoelectrochemical properties of TiO2 rutile microalloyed with 4d and 5d transition elements. Solar Energy Materials & Solar Cells, 2000,62:157-165
    [128]Song C X, Lin Y S, Wang D B, Hu Z S. Facile synthesis of Ag/ZnO microstructures with enhanced photocatalytic activity. Materials Letters,2011,852:82-85
    [129]Li F, Wua J F, Qin Q H, Li Z, Huang X T. A facile method to prepare monodispersed ZnO-Ag core-shell microspheres. Superlattices and Microstructures,2010,47:232-240
    [130]Oleg L, Lee C, Luis K O, Beatriz R C, Guangyu C, Hani K, Sanghoon P, Alfons S. Synthesis and characterization of Ag- or Sb- doped ZnO nanorods by a facile hydrothermal route. J. Phys. Chem. C.,2010,114:12401-12408
    [131]Zheng Y H, Zheng L R, Zhan Y Y, Lin X Y, Zheng Q, Wei K M. Ag/ZnO heterostructure nanocrystals:synthesis, characterization, and photocatalysis. Inorg. Chem., 2007,46:6980-6986
    [132]Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Graphene:The new two-dimensional nanomaterial. Angew. Chem. Int. Ed.,2009,48(42):7752-7777
    [133]Kamat P V. Graphene based nanoarchitectures:Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett.,2009,1(2): 520-527.
    [134]Xu C, Wang X. Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. Small,2009, (5) 19:2212-2217
    [135]Xu C, Wang X, Zhu J W. Graphene metal particle nanocomposites. J. Phys. Chem. C., 2008,112:19841-19845
    [136]Spassova T, Lyubenovaa L, Liub Y, Bliznakovb S, Spassovaa M, Dimitrov N. Mechanochemical synthesis, thermal stability and selective electrochemical dissolution of Cu-Ag solid solutions. Journal of Alloys and Compounds,2009,478:232-236
    [137]Uenishi K, Kobayashi K F, Ishihara K N. Formation of a super-saturated solid solution in the Ag-Cu system by mechanical alloying. Mat. Sci. Eng.,1991,134:1342-1345
    [138]Wan X J, Xu F B, Li Q S, et al. Synthesis and crystal structure of metal (M=Ag, Cu) crown ether with N-heterocyclic carbine linkage. Inorganic Chemistry Communication,2005, 8:1053-1055
    [139]Kangas T, Nivalainen N, Pitkanen H, et al. Oxygen induced segregation of copper to Ag/Cu(100) surface. Surface Science,2006,600:4103-4107
    [140]Ji Y T, Yang S C, Guo S W, Song X P, Ding B J, Yang Z M, Bimetallic Ag/Au nanoparticles:A low temperature ripening strategy in aqueous solution. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,372:204-209
    [141]Albonetti S, Blosi M, Gatti F, Migliori A, Ortolani L, Morandi V, Baldi G, Barzanti A, Dondi M. Microwave-assisted synthesis of Au, Ag and Au-Ag nanoparticles and their catalytic activities for the reduction of nitrophenol. Studies in Surface Science and Catalysis, 2010,175:621-624
    [142]Supriya D, Parthasarathi B, Sampath S. Bimetallic nanoparticles:A single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, and Au-Pt in sol-gel derived silicates. Journal of Colloid and Interface Science,2005,290:117-129
    [143]Zheng D Y, Hu C G, Gan T, Dang X P, Hu S S. Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors and Actuators B: Chemical,2010,148:247-252
    [144]Zhan H J, Jun O, Naoki T. One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation. Journal of Colloid and Interface Science,2011,354:131-138
    [145]Anna Z J, Ewa K, Janusz W S, Wojciech L, Bunsho O, Adriana Z. Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light. Applied Catalysis B:Environmental,2011,101:504-514
    [146]Daizy P. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,73: 374-381
    [147]Chen L X, Zhao W F, Jiao Y F, He X W, Wang J, Zhang Y K. Characterization of Ag/Pt core-shell nanoparticles by UV-vis absorption, resonance light-scattering techniques. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2007,68:484-490
    [148]Mee R K, Dong K L, Du J J. Facile fabrication of hollow Pt/Ag nanocomposites having enhanced catalytic properties. Applied Catalysis B:Environmental,2011,103:253-260
    [149]Wu M L, Lai L B. Synthesis of Pt/Ag bimetallic nanoparticles in water-in-oil microemulsions. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2004, 244:149-157
    [150]Zhang H J, Naoki T. Preparation of novel Au/Pt/Ag trimetallic nanoparticles and their high catalytic activity for aerobic glucose oxidation. Applied Catalysis A:General,2011,400: 9-13
    [151]Yang J H, Lu L H, Wang H S, Zhang H J. Synthesis of Pt/Ag bimetallic nanorattle with Au core. Scripta Materialia,2006,54:159-162
    [152]He C, Shu D, Su M H, Xia D H, Mudar A A, Lin L, Xiong Y. Photocatalytic activity of metal (Pt, Ag, and Cu)-deposited TiO2 photoelectrodes for degradation of organic pollutants in aqueous solution. Desalination,2010,253:88-93
    [153]Anna Z, Ewa K, JanuszW S, Izabela A, Maria G, Bunsho O, Jan H, Adriana Z. Silver-doped TiO2 prepared by microemulsion method:Surface properties, bio-and photoactivity. Separation and Purification Technology,2010,72:309-318
    [154]Gu G X, Xu J X, Wu Y F, Chen M, Wu L M. Synthesis and antibacterial property of hollow SiO2/Ag nanocomposite spheres. Journal of Colloid and Interface Science,2011,359: 327-333
    [155]Young H K, Don K L, Young S K. Synthesis and characterization of Ag and SiO2/Ag nanoparticles. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005, 257-258:273-276
    [156]Hsieh J H, Li C, Wu Y Y, Jang S C. Optical studies on sputter-deposited SiO2/Ag nanoparticle composites.Thin Solid Films,2011,519:7124-7128
    [157]Guo L Q, Guan A H, Lin X H, Zhang C L, Chen G N. Preparation of a new core-shell SiO2/Ag nanocomposite and its application for fluorescence enhancement.Talanta,2010,82: 1696-1700
    [158]Sun Y Y, Guo G Z, Yang B H, Zhou X, Liu Y Q, Zhao G Z. One-step fabrication of Fe2O3/Ag core-shell composite nanoparticles at low temperature. Journal of Non-Crystalline Solids,2011,357:1085-1089
    [159]Kwan K, Jeong Y C, Hyang B L, Kuan S S. Silanization of Ag-deposited magnetite particles:An efficient route to fabricate magnetic nanoparticle-based Raman barcode materials. Applied materials and interfaces,2010,2:1872-1878
    [160]Cui Z L, Dong L F, Hao C C. Microstructure and magnetic property of nano Fe particles by hydrogen arc plasama. Matel. Sci. Eng.,2000,286(A):205-207
    [161]李亚东,贺蕴普,钱逸泰.银纳米粒子的制备及表面特性研究.化学物理报,1999,12:465-468.
    [162]Hayward R C, Saville D A, Aksay I A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature,2000,404:56-59
    [163]Teranishi T, Hosoe M, Tanaka T, Miyake M. Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J. Phys. Chem. B., 1999,103:3818-3827
    [164]Esumi K, Hosoyo T, Suzuki A, Torigoe K. Spontaneous formation of gold nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers. Langmuir,2000,6:2978-2980
    [165]Stoeva S I, Klabunde K J, Sorensen C M, Dragieva I. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J. Am. Chem. Soc., 2002,124:2305-2311
    [166]Kumar A, Mandal S, Selvakannan P R, Pasricha R, Mandale A B, Sastry M. Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir,2003,19:6277-6282
    [167]Kumar A, Mukherjee P, Guha A, Adyantaya S D, Mandale A B, Kumar R, Sastry M. Amphoterization of colloidal gold particles by capping with valine molecules and their phase transfer from water to toluene by electrostatic coordination with fatty amine molecules. Langmuir,2000,16:9775-9783
    [168]Swami A, Kumar A, Sastry M. Formation of water-dispersible gold nanoparticles using a technique based on surface-bound interdigitated bilayers. Langmuir,2003,19:1168-1172
    [169]Wang Y, Wong J F, Teng X, Lin X Z, Yang, H. "Pulling" nanoparticles into water:Phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of a-cyclodextrin. Nano Lett.,2003,3:1555-1559
    [170]Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach A L, Parak W J. Hydrophobic nanocrystals coated with an amphiphilic polymer shell:A general route to water soluble. Nanocrystals. Nano Lett.,2004,4:703-707
    [171]Doty R C, Yu H, Shih C K, Korgel B A. Temperature-dependent electron transport through silver nanocrystal superlattices. J. Phys. Chem. B.,2001,35:8291-8296
    [172]Van Hyning D L, Zukoski C F. Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir,1998,14:7034-7046
    [173]Lee G J, Shin S I, Kim Y C,Oh S G. Preparation of silver nanorods through the control of temperature and pH of reaction medium. Materials Chemistry and Physics,2004,84: 197-204
    [174]Manna A, Imae T, Iida M, Hisamatsu N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex. Langmuir,2001,19,6000-6004
    [175]Martin J E, Wilcoxon J P, Odinek J, Provencio P. Superlattices of platinum and palladium nanoparticles. J. Phys. Chem. B.,2002,106:971-978
    [176]李世琳,毛健,陈治,李华峰,陈国需,蒋渝.纳米银溶胶稳定性的影响机制研究.稀有金属材料与工程,2008,8(37):1436-1440
    [177]熊金钰,徐国财.纳米银的制备及表征.金属功能材料,2004,(11)2:39-42
    [178]Korgel B A, Fullam S, Connolly S, Fitzmaurice D. Assembly and self-organization of silver nanocrystal superlattices:Ordered "soft spheres". J. Phys. Chem. B.,1998,102: 8379-8388
    [179]Robabeh B, Kamran A, Ali M. Nanopowders of 3D AgI coordination polymer:A new precursor for preparation of silver nanoparticles. Inorganica Chimica Acta.,2009,362: 1035-1041
    [180]Vanhyning D L, Klemperer W G, Zukoski C F. Characterization of colloidal stability during precipitation reactions. Langmuir,2001,17:3120-3127
    [181]Yugang S, Benjamin W, Zhi Y L, Younan X. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc.,2004,126:9399-9406
    [182]Dipak K B, Harekrishna B, Priyanka S, Gobinda P S, Sankar P D, Ajay M. Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution. Journal of Molecular Liquids,2009,145:33-37
    [183]A. Satyanarayana R, Chien Y C, Simon C. B, Chien C C, Jiin S J, Cheng W F, Hau R C, Jung C W. Synthesis of silver nanoparticles using surfactin:A biosurfactant as stabilizing agent. Materials Letters,2009,63:1227-1230
    [184]Alexander B S, Kenneth J K, Christopher M S. Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. Journal of Colloid and Interface Science,2005,284:521-526
    [185]Palash S, Anjan C, Debabrata S, M. Umananda B, P. V. Satyam, Nilmoni S. Synthesis, optical properties, and surface enhanced Raman scattering of silver nanoparticles in nonaqueous methanol reverse micelles. J. Phys. Chem. C.,2007,111:3901-3907
    [186]Alexander P, Munehiro Y, Masaaki S. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J. Phys. Chem., C.2007,111:7910-7917
    [187]武汉大学化学系编.仪器分析[M].高等教育出版社,2001,135
    [188]Xin H, Xiujian Z. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies:Application to metal-enhanced fluorescence (MEF). Applied Surface Science,2009,255:7361-7368
    [189]Aswathy A S, Vidhu V K, Daizy P. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,85:99-104
    [190]Jianfeng H, Sascha V, Shaochun T, Haiming L, Xiangkang M. Highly catalytic Pd-Ag bimetallic dendrites. J. Phys. Chem. C.2010,114:15005-15010
    [191]Jie H, Liya L, Rong G. Novel approach to controllable synthesis of gold nanoparticles supported on polyaniline nanofibers. Macromolecules,2010,43:10636-10644
    [192]林鸿溢.超晶格.现代物理知识,1999,11(2):19-20
    [193]张跃.超晶格材料.半导体杂志,1999,1(24):43-46
    [194]Murphy C J, San T K, Gole A M, Orendorff C J, Gao J X, Gou L E. Anisotropic metal nanoparticles:Synthesis, assembly, and optical applications. J. Phys. Chem. B.,2005,109: 13857-13870
    [195]Willets K A, Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem.,2007,58:267-297
    [196]Aiken J D, Finke R G. A review of modern transition-metal nanoclusters:their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A:Chem.,1999,145: 1-44
    [197]Wiley B, Sun Y, Xia Y A. Synthesis of silver nanostructures with controlled shapes and properties. Chem. Res.,2007,40:1067-1076
    [198]Wang Z L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater., 1998,10:13-30
    [199]Wang Z L, Harfenist S A, Vezmar I, Whetten R L, Bentley J, Evans N D, Alexander K B. Superlattices of self-assembled tetrahedral Ag nanocrystals. Adv. Mater.1998,10: 808-812
    [200]Harfenist S A, Wang Z L, Alvarez M M, Vezmar I, Whetten R L. Highly oriented molecular Ag nanocrystal arrays. J. Phys. Chem. B.,1996,100:13904-13910
    [201]Korgel B A, Fitzmaurice D. Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater.,1998,10:661-665
    [202]Pileni M P, Taleb A, Petit C. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles:A way to 2D and 3D self-organization, Chem. Mater.,1997,9: 950-959
    [203]Templeton A C, Wuelfing W P, Murray R W. Monolayer-protected cluster molecules. Ace. Chem. Res.,2000,33:27-36
    [204]汤皎平.水合肼还原法制备银纳米粒子.科学技术与工程,2005,5(16):1187-1192
    [205]Sheng T H, Yu L L, Hideaki M.Controlled synthesis of colloidal silver nanoparticles in capillary micro-flow reactor. J Nanopart Res.,2008,10:209-215
    [206]Henglein A. Colloidal Silver Nanoparticles:Photochemical preparation and interaction with O2, CC14, and some metal ions. Chem. Mater.1998,10:444-450
    [207]Young H K, Don K L, Hyun G C, Chang W K, Young S K. Superlattice of Ag nanoparticles prepared by new one-step synthetic method in aqueous phase. Chem. Mater. 2007,19:5049-5051
    [208]Fu Y. Zhang J, Lakowicz J R. Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle. J. Fluoresc.,2007,17:811-816
    [209]He X, Zhao X J. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies:Application to metal-enhanced fluorescence (MEF). Applied Surface Science,2009,255:7361-7368
    [210]Zhang A P, Fang Y, Shao H B. Studies of quenching and enhancement of fluorescence of methyl orange adsorbed on silver colloid. Journal of Colloid and Interface Science,2006, 298:769-772
    [211]Yihua Z, Jianhua S, Kangfu Z, Cheng C, Xiaoling Y, Chunzhong Li. Multifunctional magnetic composite microspheres with in situ growth Au nanoparticles:A highly efficient catalyst system. J. Phys. Chem. C.,2011,115:1614-1619
    [212]Yan L, Jiayin Y, Frank P, Markus D, Johannes P. In situ growth of catalytic active Au-Pt bimetallic nanorods in thermoresponsive core-shell microgels. ACS NANO,2010,4: 7078-7086
    [213]Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem.,1996,31:13226-13239
    [214]Aihara N, Torigoe K, Esumi K, Aihara Aihara. Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions. Langmuir,1998,17:4945-4949
    [215]Zhang Z, Patel R C, Kothari R, Johnson C P, Friberg S E, Aikens P A. Stable silver clusters and nanoparticles prepared in polyacrylate and inverse micellar solutions. J. Phys. Chem. B.,2000,33:1176-1182
    [216]Matejka P, Vlckova B, Vohidal J, Pancoska P, Baumrunk V. The role of triton X-100 as an adsorbate and a molecular spacer on the surface of silver colloid:a surface-enhanced Raman scattering study. J. Phys. Chem.,1992,3:1361-1366
    [217]Sun T, Seff K. Silver clusters and chemistry in zeolites. Chem. Rev.,1994,4:857-870
    [218]Hayward R C, Saville D A, Aksay I A. Electrophoretic assembly of colloidal crystals with optically tunablemicropatterns. Nature,2000,404:56-59
    [219]Burda C, Chen X, Narayanan R, El-Sayed M A. Chemistry and properties of. nanocrystals of different shapes, Chem. Rev.,2005,105:1025-1102.
    [220]Kumar A, Mukherjee P, Guha A, Adyantaya S D, Mandale A B, Kumar R, Sastry M. Amphoterization of colloidal gold particles by capping with valine molecules and their phase transfer from water to toluene by electrostatic coordination with fatty amine molecules. Langmuir,2000,16:9775-9783
    [221]Toby S, Takashi I, David O, Daniela P, Jean M J F, Alex Z. Self-assembly of Gold nanoparticles at the surface of amine-and thiol- functionalized boron nitride nanotubes. J. Phys. Chem. C.,2007,111:12992-12999
    [222]Cao G. Nanostructures and nanomaterials:Synthesis, properties and applications; Imperial College Press:London,2004
    [223]Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Shape control in Gold nanoparticle synthesis. Chem. Soc. Rev.,2008,37:1783-1791
    [224]Rouhana L L, Jaber J A, Schlenoff J B. Aggregation-resistant water-soluble gold nanoparticles. Langmuir,2007,23:12799-12801
    [225]Ivanov M R, Bednar H R, Haes A J. Investigations of the mechanism of gold nanoparticle stability and surface functionalization in capillary electrophoresis. ACS Nano., 2009,3:386-394
    [226]Xiong Y J, Xia Y N. Shape-controlled synthesis of metal nanostructures:The case of palladium. Adv. Mater.,2007,19:3385-3391
    [227]Tanyakorn M, Noriaki S, Shin-Ichi Y, Nawin V, Tawatchai C. Facile strategy for stability control of gold nanoparticles synthesized by aqueous reduction method. Current Applied Physics,2010,10:708-714
    [228]Turkevitch J, Stevenson P C, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc.,1951,11:55-57
    [229]Kim T H, Lee C H, Joo S W, Lee K T. Kinetics of gold nanoparticle aggregation: experiments and modeling. J. Coll. Interf. Sci.,2008,318:238-243
    [230]Dipak K B, Harekrishna B, Priyanka S, Gobinda P S, Sankar P D, Ajay M. Synthesis and UV-vis spectroscopic study of silver nanoparticles in aqueous SDS solution. Journal of Molecular Liquids,2009,145:33-37
    [231]Phillip C, Suljo L. Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation. Chem. Cat. Chem.,2010,2:78-83
    [232]Longo A, Calandra P, Casaletto M P, Giordano C, Venezia A M, Turco Liveri V, Synthesis and physico-chemical characterization of gold nanoparticles softly coated by AOT. Mater. Chem. Phys.,2006,96:66-72
    [233]Damian A, Deirdre M L, Matthew G, John M K. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater.,2008,18:2005-2016
    [234]So "nnichsen C, Franzl T, Wilk T, Von Plessen G, Feldmann J, Wilson O, Mulvaney P. Drastic reduction of plasmon damping in gold nanorods. P. Phys. Rev. Lett.,2002,88:07740
    [235]Maryuri Roca, Nirajkumar H. Pandya, Sudip Nath, Amanda J. Haes. Linear assembly of gold nanoparticle clusters via centrifugation. Langmuir,2010,26(3):2035-2041
    [236]张太蔚,张露,杨生春.银纳米粒子的形状控制合成及应用.稀有金属材料与工程,2007,8(36):1495-1499
    [237]安静.银纳米粒子的形貌控制合成及其SERS活性研究.吉林大学博士学位论文, 2007
    [238]Mock J J, Barbic M, Smith D R, Schultz D A, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys.,2002,116:6755-6759
    [239]Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms. Science,2001,294:1901-1903
    [240]Daniel M C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.,2004,104 (1):293-346
    [241]Kuma A, Mukherjee P, Guha A, Adyantaya S D, Mandale A B, Kumar R, Sastry M. Amphoterization of colloidal gold particles by capping with valine molecules and their phase transfer from water to toluene by electrostatic coordination with fatty amine molecules. Langmuir,2000,16:9775-9783
    [242]严瑞瑄.水溶性高分子.北京:化学工业出版社,1998:519-566
    [243]Wang R H, Hu Z G, Liu Y Y, Lu H F, Fei B, Szeto Y S, Chan W L, Tao X M, Xin J H. Self-sssembled gold nanoshells on biodegradable chitosan fibers. Biomacromolecules,2006, 7:2719-2721
    [244]Huang H Z, Yang X R. Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate. Biomacromolecules,2004,5:2340-2346
    [245]Raveendran P, Fu J, Wallen S L. Completely "green" synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc.,2003,125 (46):13940-13941
    [246]Huang H Z, Yuan Q, Yang X R. Preparation and characterization of metal-chitosan nanocomposites. Colloid. Surf. B.,2004,39:31-37
    [247]Huang L, Peng L J, Xu L, Guo Z Z, Wu J Q, Li Q, Gen S S. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J. Nanopart. Res.,2008,10:1193-1202
    [248]Zhao L L, Kelly K L, Schatz G C. The extinction spectra of silver nanoparticle arrays:Influence of array structure on plasmon resonance wavelength and width. J. Phys. Chem. B.,2003,107 (30):7343-7350
    [249]Sosa I Q, Noguez C, Barrera R G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B.,2003,107 (26):6269-6275
    [250]Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment. J. Phys.Chem.B.,2003, 107:668-677
    [251]Malynych S, Chumanov G. Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. J. Am. Chem. Soc.,2003,125:2896-2898
    [252]Mie G. A contribution to the optics of turbid media special colloidal metal solutions. Phys,1908,25:377-382
    [253]Ali S A, Singh R P. Synthesis and characterization of a modified chitosan. Macromol. Symp.,2009,277:1-7
    [254]Wei D W, Ye Y Z, Jia X P, Yuan C, Qian W P. Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydrate Research,2009,345(1):74-81
    [255]Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh S K, Pal T. Synthesis and size-selective catalysis by supported gold nanoparticles:Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C.,2007,111 (12):4596-4605
    [256]Huang L, Zhai M L, Peng J, Xu L, Li J Q, Wei G S. Synthesis, size control and fluorescence studies of gold nanoparticlesin carboxymethylated chitosan aqueous solutions. Journal of Colloid and Interface Science,2007,316:398-404
    [257]Millstone J E, Park S, Shuford K L, Qin L D, Schatz G C, Mirkin C A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc., 2005,127 (15):5312-5313
    [258]Wu L L, Shi C S, Tian L F, Zhu J. A one-pot method to prepare gold nanoparticle chains with chitosan. J. Phys. Chem. C.,2008,112 (2):319-323
    [259]Shih C M, Shieh Y T, Twu Y K. Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydrate Polymers,2009,78:309-315
    [260]Santos D S, Goulet P J G, Pieczonka N P W, Oliveira O N, Aroca R F. Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir,2004,20:10273-10277
    [261]Jeong D H, Zhang Y X, Moskovits M. Polarized Surface Enhanced Raman Scattering from aligned silver nanowire rafts. J. Phys. Chem. B.,2004,108 (34):12724-12728
    [262]Jun L, Ka M N. Efficient, one-step mechanochemical process for the synthesis of ZnO nanoparticles. Ind. Eng. Chem. Res.,2008,47:1095-1101
    [263]Lim J H, Kong C K, Kim K K, Park I K, Hwang D K, Park S J. UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radio frequency sputtering. Adv. Mater.,2006,18:2720-2724
    [264]Kim J H, Hong Y C, Uhm H S. Synthesis of oxide nanoparticles via microwave plasma decomposition of initial materials. Surf. Coat. Technol.,2007,201:5114
    [265]Demir M M, Munoz-Espi R, Lieberwirth I, Wegner G. Precipitation of monodisperse ZnO nanocrystals via acid-catalyzed esterification of zinc acetate. J. Mater. Chem.2006,16: 2940-2947
    [266]Tokumoto M S, Briois V, Santilli C V. Preparation of ZnO nanoparticles:Structural study of the molecular precursor. J. Sol. Gel. Sci. Technol.2003,26:547-551
    [267]Zhang J, Sun L D, Yin J L, Su H L, Liao C S, Yan C H. Control of ZnO morphology via a simple solution route. Chem. Mater.2002,14:4172-4177
    [268]Park S, Lee K R, Jung C H, Kim S J, Shin H C. Rapid Ag recovery using photocatalytic ZnO nanopowders prepared by solution combustion method. Jpn. J. Appl. Phys.1996,35: L996
    [269]Zhao X, Zheng B, Li C. Acetate-derived ZnO ultrafine particles synthesized by spray pyrolysis. Powder Technol,1998,100:20-23
    [270]Mohammad M T, Hashim A A, Al-Maamory M H. Highly conductive and transparent ZnO thin films prepared by spray pyrolysis technique. Mater. Chem. Phys.,2006,99: 382-387
    [271]Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater.,2003,13:9-24
    [272]Radoi R, Fernandez P, Piqueras J, Wiggins M S, Solis J. Luminescence properties of mechanically milled and laser irradiated ZnO. Nanotechnology,2003,14:794-798
    [273]Shen L, Bao N, Yanagisawa K, Domen K, Gupta A, Grimes C A. Direct synthesis of ZnO nanoparticles by a solution-free mechano-chemical reaction. Nanotechnology,2006,17: 5117-5123
    [274]Sun X H, Wong N B, Li C P. Chainlike silicon electronic structure and luminescence studies. J. Appl. Phys.,2004,96:3447-3452
    [275]Hsu N E, Hung W K, Chen Y F. Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods. Appl. Phys. Lett,2004,96:4671-4673
    [276]Xing Y J, Xi Z H, Zhang X. D, Song J H, Wang R M, Xu J., Xue Z Q, Yu D P. Nanotubular structures of zinc oxide. Solid State Commun,2004,129:671-675
    [277]Bai X D, Gao P X, Wang Z L. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett.,2003,82:4806-4808
    [278]Li L H, Deng J C, Deng H R, Liu Z L, Li X L. Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films. Chemical Engineering Journal,2010, 160:378-382
    [279]Li F, Wu J F, Qin Q H, Li Z, Huang X T. A facile method to prepare monodispersed ZnO-Ag core-shell microspheres. Superlattices and Microstructures,2010,47:232-240
    [280]Xie J S, Wu Q S. One-pot synthesis of ZnO/Ag nanospheres with enhanced photocatalytic activity. Mater. Let.,2010,64:389-392
    [281]Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science,2003,300: 1269-1272
    [282]Yamazoe N. New approaches for improving semiconductive gas. Sens. Actuators B, 1991,5:7-19
    [283]Gu C D, Cheng C, Huang H Y, Wong T L, Wang N, Zhang T Y. Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals. Crystal Growth & Design,2009,9:3278-3285
    [284]Lin D D, Wu H, Zhang R, Pan W. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers. Chem. Mater.,2009,21:3479-3484
    [285]Reenamole G, Michael K S, Suresh C P. A highly efficient Ag-ZnO photocatalyst: Synthesis, properties, and mechanism. J. Phys. Chem. C.,2008,112:13563-13570
    [286]Chang Y G, Xu J, Zhang Y Y, Ma S Y, Xin L H, Zhu L N, Xu C T. Optical properties and photocatalytic performances of Pd modified ZnO samples. J. Phys. Chem. C.,2009,113: 18761-18767
    [287]Zeng H, Cai W, Liu P, Xu X, Zhou H, Klingshim C, Kalt H. ZnO-based hollow nanoparticles by selective etching:elimination and reconstruction of metal semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano.,2008,2:1661-1670
    [288]Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science,2003,300: 1269-1272
    [289]Lin D D, Wu H, Zhang R, Pan W. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers. Chem. Mater.,2009,21:347-384
    [290]Bunch J S, Yaish Y, Brink M, et al. Coulomb oscillations and hall effect in quasi-2D graphite quantum dots. Nano Letters.2005,5:287-290
    [291]张万忠,乔学亮,陈建国.银纳米材料的可控合成研究.稀有金属材料与工程.2008,37(11):2059-2064
    [292]杨海贤.绿色合成技术的新进展.济南职业学院学报.2006,3:76-77
    [293]黄培强,高景星.绿色合成:一个逐步形成的学科前沿.化学进展,1998,10(3):265-272
    [294]Zhang J J, Gu M M, Zheng T T, Zhu J J. Synthesis of gelatin-stabilized gold nanoparticles and assembly of carboxylic single-walled carbon nanotubes/Au composites for cytosensing and drug uptake. Anal. Chem.,2009,81:6641-6648
    [295]Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater.,1999,11:771-778
    [296]Zhang D H, Liu X H, Wang X. Synthesis of single-crystal silver slices with predominant (111) facet and their SERS effect. Journal of Molecular Structure,2011,985: 82-85
    [297]Geim A N, Novoselov K S. The rise of graphene. Nat. Mater.,2007,6:183-191
    [298]Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences,2005,102(30):10451-10453
    [299]Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets. Nature,2007,446(7131):60-63
    [300]Meyer J C, Geim A K, Katsnelson M I, et al. On the roughness of singal and bio-layer graphene membranes. Solid State Communication,2007,143(1-2):101-109
    [301]He X, Zhao X J. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies:Application to metal-enhanced fluorescence (MEF). Applied Surface Science,2009,255:7361-7368
    [302]Najma S, Asia N, M.Saeed A, M.Ahmed M. Synthesis, characterization, antibacterial, antifungal and immunomodulating activities of gatifloxacin-metal complexes. Journal of Molecular Structure,2010,969:17-24
    [303]Shahab A A, Mohammad P, Azarmidokht H. Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli. Powder Technology,2009,196:241-245
    [304]Rivera M, Garza M, Olgun T. Silver supported on natural Mexican zeolite as an antibacterial material. Microporous and Mesoporous Materials,2000,39:431-444
    [305]Sung P, Jae-Chun L, Jung-Uk S. Synthesis of solution-combusted ZnO nanopowder and its application to gold recovery. Engineering Materials,2006,318:841-844

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700