双亲短肽的超分子自组装及其在仿生中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然界中,生物体经过亿万年物竞天择、适者生存的自然选择与进化,形成诸多结构精妙且具有特殊功能的天然生物材料。然而生物系统是一个非常复杂的体系,所以人们希望利用仿生的概念使用简单的超分子自组装体系来模拟复杂的生物体,理解其复杂机理,进而从自然界获得设计材料的启发,突破传统观念,用超分子自组装的方法构建出具有实际应用价值的特殊功能的仿生材料。以模拟生物体结构和功能为基础的仿生矿化和人工仿酶是仿生领域非常重要的两个研究方向。
     在各种生物活性分子中,以多肽自组装体作为构筑基元的仿生体系,由于其具有良好的生物相容性、体内易降解吸收和分子识别特性,引起了仿生学家们极大的兴趣。本论文选择简单的寡肽单体—苯丙二肽及其Fmoc保护衍生物作为构筑基元,以其超分子自组装形成的纳米聚集体如纳米线、螺旋纳米线和纳米管等作为载体,在仿生学思想的指导下,分别研究其在仿生矿化和人工仿酶领域所展示的优异性质。具体研究结果如下:
     1)基于肽自组装的仿生矿化:我们制备了Fmoc-FFECG双亲五肽自组装纳米线,并以此纳米线作为有机模板,诱导Ag成核、取向生长,形成具有独特性质的银纳米粒子矿化五肽纳米线的无机有机杂化纳米复合材料。银纳米粒子矿化后的五肽纳米线复合物(Ag-PepNFs)具有高效、广泛的抗菌效果,因而其可作为高效的抗菌材料应用在临床及环境等领域,进一步扩展仿生矿化材料的应用范围。
     2)基于肽自组装的人工仿酶体系:通过模拟胰凝乳蛋白酶催化三联体的结构,我们设计合成了Fmoc-FFDHS双亲五肽螺旋纳米线水解酶模型(Helix-PepNFs),该螺旋纳米线上的催化三联体对催化水解底物PNPA起到了一定的促进作用,但由于Asp和Ser参与了形成螺旋纳米线的分子间氢键的自组装,减弱了其形成催化三联体的概率,致使水解酶活力提高有限。作为该体系的改进,我们制备了Fmoc-FFH双亲三肽自组装纳米线水解酶模型,该纳米线亲水表面分布大量的可作为水解酶活性中心的组氨酸,因而其可作为水解酶活性中心。我们进一步通过共组装的方法把不同比例的胍基引入到纳米线中,利用胍基结合稳定碳酸酯水解产生的四面体过渡态,成功地将催化中心、结合位点和稳定过渡态等催化基元富集于同一超分子自组装纳米线聚集体中,得到了最佳活力的纳米线水解酶模型。
     3)基于肽自组装的人工仿酶改进体系:为了改进上述所构建的纳米线酶模型,我们以芳香苯丙二肽(FF)自组装形成的纳米管作为构筑水解酶模型的载体,以与苯丙二肽(FF)骨架具有相似结构的FFH作为催化中心、以FFR作为稳定过渡态结合位点,将二者按不同比例共组装至苯丙二肽纳米管中,成功制备了催化中心和结合位点比例可调的最佳纳米管水解酶模型,实现了各催化基元在空间上的最佳匹配。这一方法是其它化学合成水解酶模型很难达到的,为合理设计超分子高效水解酶模拟物提供了新的思路。
Biomimetics - the science of imitating nature - is a growing multidisciplinaryfield by using the tools of molecular biology,chemistry and nanotechnology, which isnow leading to the fabrication of novel materials with remarkable mechanicalproperties. Through billions of years of evolution nature have produced extremelyefficient materials, which become an increasing source of inspiration for scientists.However, the biological systems are usually extremely complex, so scientists want tomake comparatively simple models to understand their complex mechanism.Furthermore, to mimic the syntheses of these materials, researchers not only emulateparticular biological architecture or system, but importantly to abstract the guidingprinciples and ideas and use such knowledge for the preparation of new syntheticmaterials and devices. Biomimetic mineralization and artificial enzyme are two criticalresearch topics in the field of biomimetic systems.
     One of most unique and fascinating features of natural biomineralizationprocesses is the controlled growth and hierarchical organization of inorganic mineralsalong with organic materials. Such marvels of nature give excellent physicochemicalproperties to natural biomaterials and provide inspiration for the synthesis of novelfunctional nanomaterials to chemists and materials scientists. For example, naturalbones with excellent mechanical properties are a kind of organic/inorganic hybridmaterials with organic collagen nanofibrils and inorganic calcium phosphatenanocrystals hierarchically organized on a nanoscale. By mimicking natural systems,one may gain insights into biomineralization mechanisms, and synthesize inorganic–organic hybrid materials with potentially interesting functions for applications in nano-and biotechnology. To further expand the scope of application of biomimetic materials,we prepared silver mineralization on self-assembled peptide nanofibers for long termantimicrobial effect.
     Natural enzymes are large biomacromolecues with extreme molecular complexity, but their mechanism of catalysis is frequently simple with only a few amino acidsinvolved in catalysis. Hence, it is inherently possible to make a comparatively simplemodel of an active site and obtain selective catalysis. Although artificial enzymesconstructed by chemical and genetic strategies previously have demonstrated highcatalytic activity, some disadvantages still remain in such efficient enzyme models. Onthe one hand, catalytic factors are commonly combined into one scaffold throughcovalent chemical methods, which have the limitation of complicated synthetic routes,expensive cost and low productivity. On the other hand, it is difficult to construct theoptimum artificial enzyme via altering the molar ratio of the catalytic factors as it is afixed value. To address this problem,we construct supramolecular models of enzymesbased on peptide with diverse topological structures such as nanofibers, helicalnanofiners and nanotube. These supramolecular models of enzyme based on peptideoffer obvious advantages of ease of fabrication, good biocompatibility, inexpensiveproduction, molecular-recognition capability, and functional flexibility.
     Among various biological systems, the self-assembly of peptide-based buildingblocks into ordered nanostructures has drawn much attention. Bioactive peptides are atype of suitable building blocks as the objects for fabricating such nanostructuralmaterials because they can be easily synthesized, engineered and modified chemicallyor functionalized biologically. In this research, the diphenylalanine peptide (FF) and itsFmoc-protected derivative were employed as the building blocks which self-assembledinto diverse topological structures such as nanofibers, helical nanofiners and nanotubes.These topological structures were used as scaffolds for application in biomimeticmineralization and artificial enzyme mimic.The research results are as followed:
     1) We apply peptide nanofibers self-assembled from Fmoc-FFECG as templatesto guide the growth of Ag nanocrystals along with peptide nanofibers. Amphipathicpeptide, Fmoc-FFECG, contain both hydrophobic and hydrophilic moieties. Thehydrophobic group promotes aggregation, which could be used to combineencapsulation of hydrophobic drugs for drug delivery. While the hydrophilic groupdisplay numerous carboxylic acid and thiol groups on peptide nanofiber surface, whichcan serve as nucleation sites for the growth of inorganic materials and metal bindingsites, respectively. In comparison to the traditional Ag-containing materials with silicaor polymer, Ag mineralized peptide nanofibers (Ag–PepNFs) offer obvious advantagesof the ease of fabrication, good biocompatibility, inexpensive production,molecular-recognition capability, and functional flexibility. More importantly, the tubular nanocomposite proves to possess an effective and long-term antibacterialactivity against both Gram-positive and negative bacteria.
     2) As artificial enzyme mimic. On the one hand, by simulating the catalytic triadstructure of chymotrypsin, we designed and synthesized peptide Fmoc-FFDHS, whichself- assembled to helical nanofibers (Helix-PepNFs) in aqueous solution. The catalytictriad (Asp, His and Ser) were introduced into helical nanofibers and improved enzymeactivity. On the other hand, as the improvement of the system, we apply peptidenanofibers self-assembled from Fmoc- FFH as catalyst center to hydrolase substratePNPA. We further introduced different proportions of guanidine(Fmoc-FFR)into thenanofibers by co-assembly method. In particular, the optimum artificial enzymemodels PepNFs-His-Argmaxwere achieved through changing the molar ratio of catalystcenter and stabilizing the transition state (Fmoc- FFH and Fmoc- FFR). The highactivity of PepNFs-His-Argmaxis attributed to the match degree among the catalyticfactors. This simple preparation process and better match of catalytic factors, theco-assembly nanofibers models may make the preparation of efficient artificial enzymemodels more eassy.
     3) For the enzyme model of PepNFs-His-Argmax, catalytic centers are combinedinto nanofibers through covalent chemical methods, which have the difficulty toconstruct the optimum artificial enzyme models via altering the molar ratio of thecatalytic factors as it is a fixed value. Thus, as an improvement, we applied peptidenanotubes self-assembled from diphenylalanine peptide (FF) as scaffold toco-assemble with FFH as the catalytic center and FFR as stable transition state bindingsites. In particular, the optimum artificial enzyme models FFNTs-His-Argmaxwereachieved through changing the molar ratio of catalyst center and stabilizing thetransition state (FFH and FFR). Among all the enzyme models we designed in thiswork, FFNTs-His-Argmaxshowed the highest enzyme activity. It is noted that not onlythe specific substrate binding ability but also the better match among the catalyticfactors play an important role in designing a desirable artificial enzyme model.
引文
[1] Lehn, J. M., Supramolecular Chemistry: Concepts and Perspectives, VCH,Weinheim, 1995.
    [2] Ringsdolf, H., Schlaeb, B., Venzmer, J. Molecular architecture and function inpolymeric oriented system: models for study of organization, surface recognition,and dynamics in biomembranes. Angew. Chem. Int. Ed. 1988, 27, 113-158.
    [3] V gtle, F.著,张希,林志宏,高倩译.超分子化学.长春:吉林大学出版社,1995.
    [4] Dodiuk, H., Introduction to Supramolecular Chemistry. Kluwer, AA Dordrecht,2002.
    [5] Lehn, J. M. Supramolecular Chemistry - Scope and Perspectives Molecules,Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed.1988, 27, 89-112.
    [6] Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes(Nobel Lecture). Angew. Chem. Int. Ed. 1988, 27, 1009-1020.
    [7] Pedersen, C. J. The Discovery of Crown Ethers (Nobel Lecture). Angew.Chem.Int. Ed. 1988, 27, 1021-1027.
    [8] Whitesides, G. M., Mathias, J. P., Seto, C. T., Molecular self-assembly andnanochemistry: a chemical strategy for the synthesis of nanostructures. Science1991, 254, 1312-1319.
    [9] Steed, J. W., Atwood, J. L., Supramolecular Chemistry, John Wiley & Sons,Baffins Lane, 2000.
    [10] Seidel, R. S., Stang, P. J. High-symmetry coordination cages via self-assembly.Acc. Chem. Res. 2002, 35, 972-983.
    [11]周灵德,阎玉华,戴红莲,胡鹏,余海湖.“生物分子自组装.”生命的化学2006,26, 9-11.
    [12] Lehn , J. M., Toward self-organization and complex matter. Science 2002, 295,2400-2403.
    [13] Hamley, I. W., Nanotechnology with soft materials. Angew. Chem.Int. Ed. 2003,42, 1692-1712.
    [14] Yan, D., Zhou, Y., Hou, J., Supramolecular self-assembly of macroscopic tubes.Science 2004, 303, 65-67.
    [15] Sanchez, C., Arribart, H., Madeleine, M., Guille, G., Biomimetism andbioinspiration as tools for the design of innovative materials and systems. Nat.Mat. 2005, 4, 277-288.
    [16] Sarikaya, M., Biomimetics: materials fabrication through biology. Proc. Natl.Acad. Sci. USA 1999, 96, 14183-14185.
    [17] Sarikaya, M., Tamerler, C., Jen, A. K., Schulten, K., Baneyx, F., Molecularbiomimetics: nanotechnology through biology. Nat. Mat. 2003, 2, 577-585.
    [18] Seeman, N. C., Belcher, A. M., Emulating biology: building nanostructures fromthe bottom up. Proc. Natl. Acad. Sci. USA 2002, 99, 6451-6455.
    [19] Shin, H., Jo, S., Mikos, A. G., Biomimetic materials for tissue engineering.Biomaterials 2003, 24, 4353-4364.
    [20] Tu, R. S., Tirrell, M., Bottom-up design of biomimetic assemblies. Adv. DrugDelivery Rev. 2004, 56, 1537-1563.
    [21] Zhang, S. G., Fabrication of novel biomaterials through molecular self-assembly.Nat. Biotechnol. 2003, 21, 1171-1178.
    [22] Thompson, D. W., On the Growth and Form, Cambridge Univ. Press, Cambridge,UK, 1942.
    [23] Stevens, P. S., Patterns in Nature, Atlantic Monthly, Boston, 1974.
    [24] Wainwright, S. A., Biggs,W. D., Currey, J. D., Gosline, J. M. (eds) MechanicalDesign in Organisms, Princeton Univ. Press, Princeton, 1976.
    [25] Mann, S., Calvert, P., Synthesis and biological composites formed by in-situprecipitation. J. Mater. Sci. 1988, 23, 3801-3815.
    [26] Sarikaya, M., Aksay, I. A. (eds.) Biomimetics: Design & Processing of Materials,American Institute of Physics, New York, 1995.
    [27] Mann, S. (ed.) Biomimetic Materials Chemistry, VCH, New York, 1996.
    [28] Niemeyer, C. M., Nanoparticles, proteins, and nucleic acids: Biotechnologymeets materials science. Angew. Chem. Int. Ed. 2001, 40, 4128-4158.
    [29] Drexler, K. E., Nanosystems, Wiley Interscience, New York, 1992.
    [30] Ryu, D. D. Y., Nam, D. H., Recent progress in biomolecular engineering.Biotechnol. Prog. 2000, 16, 2-16.
    [31] Sarikaya, M., Biomimetics: Materials fabrication through biology. Proc. NatlAcad. Sci. USA 1999, 96, 14183-14185.
    [32] Seeman, N. C., Belcher, A. M., Emulating biology: building nanostructures fromthe bottom up. Proc. Natl Acad. Sci. USA 2002, 99, 6452-6455.
    [33] Venkatesh, S., Byrne, M. E., Peppas, N. A., Hilt, J. Z., Applications ofbiomimetic systems in drug delivery. Expert Opin. Drug Deliv. 2005, 2,1085-1096.
    [34] Silva, G. A., Introduction to nanotechnology and its applications to medicine.Surg. Neurol. 2004, 61, 216-220.
    [35] Silva, G. A., Czeisler, C., Niece, K. L., Beniash, E., Hartgerink, J. D., Kessler, J.A., Stupp, S. I., Selective differentiation of neural progenitor cells byhigh-epitope density nanofibers. Science 2004, 303, 1352-1355.
    [36] Lackey, C. A., Press, O. W., Hoffman, A. S., Stayton, P. S., A biomimeticpH-responsive polymer directs endosomal release and intracellular delivery of anendocytosed antibody complex. Bioconjug. Chem. 2002, 13, 996-1001.
    [37] Ehrick, J. D., Deo, S. K., Browning, T. W. et al, Genetically engineered proteinin hydrogels tailors stimuli-responsive characteristics. Nat. Mater. 2005, 4,298-302.
    [38] Monera, O. D., Kay, C. M., Hodges, R. S., Electrostatic interactions control theparallel and antiparallel orientation of alpha-helical chains in two-strandedalpha-helical coiledcoils. Biochemistry 1994, 33, 3862-3871.
    [39] Su, J. Y., Hodges, R. S., Kay, C. M., Effect of chain length on the formation andstability of synthetic alpha-helical coiled coils. Biochemistry 1994, 33,15501-15510.
    [40] Wagschal, K., Tripet, B., Hodges, R. S., De novo design of a model peptidesequence to examine the effects of single amino acid substitutions in thehydrophobic core on both stability and oligomerization state of coiled-coils. J.Mol. Biol. 1999, 285, 785-803.
    [41] Kohn, W. D., Kay, C. M., Hodges, R. S., Orientation, positional, additivity, andoligomerization-state effects of interhelical ion pairs in alpha-helical coiled-coils.J. Mol. Biol. 1998, 283, 993-1012.
    [42] Bushey, M. L., Nguyen, T. Q., Nuckolls, C., Synthesis, self-assembly, andswitching of one-dimensional nanostructures from new crowded aromatics. J. Am.Chem. Soc. 2003, 125, 8264-8269.
    [43] Halper, S. R., Cohen, S. M., Self-assembly of two distinct supramolecular motifsin a single crystalline framework. Angew. Chem. Int. Ed. 2004, 43, 2385-2388.
    [44] Kryschenko, Y. K., Seidel, S. R., Arif, A. M., Stang, P. J., Coordination-drivenself-assembly of predesigned supramolecular triangles. J. Am. Chem. Soc. 2003,125, 5193-5198.
    [45] Petitjean, A., Cuccia, L. A., Lehn, J. M., Nierengarten, H., Schmutz, M.,Cation-promoted hierarchical formation of supramolecular assemblies ofself-organized helical molecular components. Angew. Chem. Int. Ed. 2002, 41,1195-1198.
    [46] van Gorp, J. J., Vekemans, J. A. J. M., Meijer, E. W., C3-symmetricalsupramolecular architectures: fibers and organic gels from discotic trisamidesand trisureas. J. Am. Chem. Soc. 2002, 124, 14759-14769.
    [47] Ringler, P., Schulz, G. E., Self-assembly of proteins into designed networks.Science 2003, 302, 106-109.
    [48] Sleytr, U. B., Schuster, B., Pum, D., Nanotechnology and biomimetics with 2-Dprotein crystals. IEEE engineering in medicine and biology magazine: thequarterly magazine of the Engineering in Medicine & Biology Society 2003, 22,140-50.
    [49] Aggeli, A., Bell, M., Carrick, L. M., Fishwick, C. W. G., Harding, R., Mawer, P.J., Radford, S. E., Strong, A. E., Boden, N., pH as a trigger of peptideβ-sheetself-assembly and reversible switching between nematic and isotropic phases. J.Am. Chem. Soc. 2003, 125, 9619-9628.
    [50] Bong, D. T., Clark, T. D., Granja, J. R., Ghadiri, M. R., Self-assembling organicnanotubes. Angew. Chem. Int. Ed. 2001, 40, 988-1011.
    [51] Brown, C. L., Aksay, I. A., Saville, D. A., Hecht, M. H., Template-directedassembly of a de novo designed protein. J. Am. Chem. Soc. 2002, 124,6846-6848.
    [52] Collier, J. H., Hu, B. H., Ruberti, J. W., Zhang, J., Shum, P., Thompson, D.H.,Messersmith, P. B., Thermally and photochemically triggered self-assemblyof peptide hydrogels. J. Am. Chem. Soc. 2001, 123, 9463-9464.
    [53] Rapaport, H., Kjaer, K., Jensen, T. R., Leiserowitz, L., Tirrell, D. A.,Two-dimensional order inβ-Sheet peptide monolayers. J. Am. Chem. Soc. 2000,122, 12523-12529.
    [54] Huang X, Dong ZY, Liu JQ, Mao SZ, Xu JY, Luo GM, Shen JC.Selenium-mediated micellar catalyst: an efficient enzyme model for glutathioneperoxidase-like catalysis. Langmuir 2007;23:1518–22.
    [55] Huang X, Dong ZY, Liu JQ, Mao SZ, Xu JY, Luo GM, Shen JC. Tellurium-basedpolymeric surfactants as a novel seleno-enzyme model with high activity.Macromol Rapid Commun 2006;27:2101–6.
    [56] Wang YP, Xu HP, Ma N, Wang ZQ, Zhang X, Liu JQ, Shen JC. Block CopolymerMicelles as Matrixes for Incorporating Diselenide Compounds: A Model Systemfor a Water-Soluble Glutathione Peroxidase Mimic Fine-Tuned by Ionic Strength.Langmuir 2006; 22:5552–55.
    [57] Yu SJ, Yin YZ, Zhu JY, Huang X, Luo Q, Xu JY, Shen JC, Liu JQ. A modulatorybifunctional artificial enzyme with both SOD and GPx activities based on a smartstar-shaped pseudo-block copolymer. Soft Matter 2010;6:5342–50.
    [58] Yin YZ, Huang X, Xu JY, Liu JQ, Shen JC. Construction of an artificialglutathione peroxidase active site on copolymer vesicles. Macromol Biosci2010;10:1505–16.
    [59] Huang X, Liu Y, Liang K, Tang Y, Liu JQ. Construction of the active site ofglutathione peroxidase on polymer-based nanoparticles. Biomacromolecules2008;9:1467–73.
    [60] Haratake M, Matsumoto S, Ono M, Nakayama M. Nanoparticulate glutathioneperoxidase mimics based on selenocystine-pullulan conjugates. BioconjugateChem 2008;19:1831–9.
    [61] Tang Y, Zhou LP, Li JX, Luo Q, Huang X, Wu P, Wang YG, Xu JY, Shen JC, LiuJQ. Giant nanotubes loading artificial peroxidase centers: self-assembly ofsupramolecular amphiphiles as a tool to functionalize nanotubes. Angew ChemInt Ed 2010;49:3920–4.
    [62] Guler MO, Stupp SI. A self-assembled nanofiber catalyst for ester hydrolysis. JAm Chem Soc 2007;129:12082–3.
    [63] Gao Y, Zhao F, Wang QG, Zhang Y, Xu B. Small peptide nanofibers as thematrices of molecular hydrogels for mimicking enzymes and enhancing theactivity of enzymes. Chem Soc Rev 2010;39:3425–33.
    [64] Resmini M, Flavin K, Carboni D. Microgels and nanogels with catalytic activity.Top Curr Chem 2011:1–37.
    [65] Rodriguez-Llansola F, Miravet JF, Escuder B. A supramolecular hydrogel as areusable heterogeneous catalyst for the direct aldol reaction. Chem Commun2009:7303–5.
    [66] Rodriguez-Llansola F, Escuder B, Miravet JF. Switchable perfomance of anL-proline-derived basic catalyst controlled by supramolecular gelation. J AmChem Soc 2009;131:11478–84.
    [67] Wang QG, Yang ZM, Wang L, Ma ML, Xu B. Molecular hydrogel-immobilizedenzymes exhibit superactivity and high stability in organic solvents. ChemCommun 2007:1032–4.
    [68] Wang QG, Yang ZM, Zhang XQ, Xiao XD, Chang CK, Xu B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase.Angew Chem Int Ed 2007;46:4285–9.
    [69] Wang QG, Yang ZM, Gao Y, Ge WW, Wang L, Xu B. Enzymatic hydrogelationto immobilize an enzyme for high activity and stability. Soft Matter2008;4:550–3.
    [70] Seebach, D., Matthews, J. L., Meden, A., Wessels, T., Naerlocher, C., Mccusker,L. B., Cyclo-β-peptides: Structure and tubular stacking of cyclic tetramers of3-aminobutanoic acid as determined from powder diffraction data. Helv. Chim.Acta 1997, 80, 173-182.
    [71] Clark, T. D., Buriak, J. M., Kobayashi, K., Isler, M. P., McRee, D. E., Ghadiri,M.R., Cylindricalβ-sheet peptide assemblies. J. Am. Chem. Soc. 1998, 120,8949-8962.
    [72] Amorin, M., Castedo, L., Granja, J. R., New cyclic peptide assemblies withhydrophobic cavities: The structural and thermodynamic basis of a new class ofpeptide nanotubes. J. Am. Chem. Soc. 2003, 125, 2844-2845.
    [73] Gauthier, D., Baillargeon, P., Drouin, M., Dory, Y. L., Self-assembly of cyclicpeptides into nanotubes and then into highly anisotropic crystalline materials.Angew. Chem. Int. Ed. 2001, 40, 4635-4638.
    [74] Semetey, V., Didierjean, C., Briand, J. P., Aubry, A., Guichard, G.,Self-assembling organic nanotubes from enantiopure cyclo-N, N′-linkedoligoureas: Design, synthesis, and crystal structure. Angew. Chem. Int. Ed. 2002,41, 1895-1898.
    [75] Ranganathan, D., Lakshmi, C., Karle, I. L., Hydrogen-bonded self-assembledpeptide nanotubes from cystine-based macrocyclic bisureas. J. Am. Chem. Soc.1999, 121, 6103-6107.
    [76] Horne, W. S., Stout, C. D., Ghadiri, M. R., A heterocyclic peptide nanotube. J.Am. Chem. Soc. 2003, 125, 9372-9376.
    [77] Kim, H. S., Hartgerink, J. D., Ghadiri, M. R., Oriented self-assembly of cyclicpeptide nanotubes in lipid membranes. J. Am. Chem. Soc. 1998, 120, 4417-4424.
    [78] Granja, J. R., Ghadiri, M. R., Channel-mediated transport of glucose across lipidbilayers. J. Am. Chem. Soc. 1994, 116, 10785-10786.
    [79] Fernandez-Lopez, S., Kim, H. S., Choi, E. C., Delgado, M., Granja, J. R.,Khasanov, A., Kraehenbuehl, K., Long, G., Weinberger, D. A., Wilcoxen, K. M.,Ghadiri, M. R., Antibacterial agents based on the cyclic D,L-a-peptidearchitecture. Nature 2001, 412, 452-455.
    [80] Klug, A., From macromolecules to biological assemblies (Nobel Lecture). Angew.Chem. Int. Ed. 1983, 22, 565-582.
    [81] MacKinnon, R., Potassium channels and the atomic basis of selective ionconduction (Nobel Lecture). Angew. Chem. Int. Ed. 2004, 43, 4265-4277.
    [82] Agre, P., Aquaporin water channels (Nobel Lecture). Angew. Chem. Int. Ed.2004, 43, 4278-4290.
    [83] Wallace, B. A., Structure of gramicidin A. Biophys. J. 1986, 49, 295-306.
    [84] Percec, V., Dulcey, A. E., Balagurusamy, V. S. K., Miura, Y., Smidrkal, J.,Peterca, M., Nummelin, S., Edlund, U., Hudson, S. D., Heiney, P. A., etal.Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 2004,430,764-768.
    [85] Percec, V., Dulcey, A. E., Peterca, M., Ilies, M., Ladislaw, J., Rosen, B. M.,Edlund, U., Heiney, P. A., The internal structure of helical pores self-assembledfrom dendritic dipeptides is stereochemically programmed and allostericallyregulated. Angew. Chem. Int. Ed. 2005, 44, 6516-6521.
    [86] Percec, V., Dulcey, A. E., Peterca, M., Ilies, M., Sienkowska, M. J., Heiney, P. A.Programming the internal structure and stability of helical pores self-assembledfrom dendritic dipeptides via the protective groups of the peptide. J. Am. Chem.Soc. 2005, 127, 17902-17909.
    [87] Percec, V., Dulcey, A. E., Peterca, M., Ilies, M., Miura, Y., Edlund, U., Heiney,P. A., Helical porous protein mimics self-assembled from the amphiphilicdendritic dipeptides. Aust. J. Chem. 2005, 58, 472-482.
    [88] Kaucher, M. S., Peterca, M., Dulcey, A. E., Kim, A. J., Vinogradov, S. A.,Hammer, D. A., Heiney, P. A., Percec, V., Selective transport of water mediatedby porous dendritic dipeptides. J. Am. Chem. Soc. 2007, 129, 11698-11699.
    [89] Zhou, M., Bentley, D., Ghosh, I., Helical supramolecules and fibers utilizingleucine zipper-displaying dendrimers. J. Am. Chem. Soc. 2004, 126, 734-735.
    [90] Kokkoli, E., Mardilovich, A., Wedekind, A., Rexeisen, E. L., Garg, A., Craig, J.A., Self-assembly and applications of biomimetic and bioactive peptideamphiphiles. Soft Matter 2006, 2, 1015-1024.
    [91] Jun, H. W., Paramonov, S. E., Hartgerink, J. D., Biomimetic self-assemblednanofibers. Soft Matter 2006, 2, 177-181.
    [92] Hartgerink, J. D., Beniash, E., Stupp, S. I., Supramolecular chemistry andself-assembly special feature peptide-amphiphile nanofibers: A versatile scaffoldfor the preparation of self-assembling materials. Proc. Natl. Acad. Sci. USA 2002,99, 5133-5138.
    [93] Hartgerink, J. D., Beniash, E., Stupp, S. I., Self-assembly and mineralization ofpeptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.
    [94] Rajangam, K., Behanna, H. A., Hui, M. J., Han, X., Hulvat, J. F., Lomasney, J.W., Stupp, S. I., Heparin binding nanostructures to promote growth of bloodvessels.Nano Lett. 2006, 6, 2086-2090.
    [95] Niece, K. L., Hartgerink, J. D., Donners, J. J. J. M., Stupp, S. I., Self-assemblycombining two bioactive peptide-amphiphile molecules into nanofibers byelectrostatic attraction. J. Am. Chem. Soc. 2003, 125, 7146-7147.
    [96] Behanna, H. A., Donners, J. J. J. M., Gordon, A. C., Stupp, S. I., Coassembly ofamphiphiles with opposite peptide polarities. J. Am. Chem. Soc. 2005, 127,1193-1200.
    [97] Guler, M. O., Soukasene, S., Hulvat, J. F., Stupp, S. I., Presentation andrecognition of biotin on nanofibers formed by branched peptide amphiphiles.Nano Lett. 2005, 5, 249-252.
    [98] Bull, S. R., Guler, M. O., Bras, R. E., Meade, T. J., Stupp, S. I., Self-assembledpeptide amphiphile nanofibers conjugated to MRI contrast agents. Nano Lett.2005, 5,1-4.
    [99] Guler, M. O., Pokorski, J. K., Appella, D. H., Stupp, S. I., Enhancedoligonucleotide binding to self-assembled nanofibers. Bioconjugate Chem. 2005,16, 501-503.
    [100] Matsui, H., Gologan, B., Crystalline glycylglycine bolaamphiphile tubules andtheir pH-sensitive structural transformation. J. Phys. Chem. B. 2000, 104,3383-3386.
    [101] Douberly, G. E., Pan, S., Walters, D., Matsui, H., Fabrication of protein tubules:Immobilization of proteins on peptide tubules. J. Phys. Chem. B. 2001, 105,7612-7618.
    [102] Banerjee, I. A., Yu, L., Matsui, H., Application of host-guest chemistry innanotube-based device fabrication: photochemically controlled immobilization ofazobenzene nanotubes on patternedα-CD monolayer/Au substrates via molecularrecognition. J. Am. Chem. Soc. 2003, 125, 9542-9543.
    [103] Djalali, R., Chen, Y. F., Matsui, H., Au nanowire fabrication from sequencedhistidine-rich peptide. J. Am. Chem. Soc. 2002, 124, 13660-13661.
    [104] Matsui, H., MacCuspie, R., Metalloporphyrin nanotube fabrication using peptidenanotubes as templates. Nano Lett. 2001, 1, 1-4.
    [105] Djalali, R., Chen, Y. F., Matsui, H., Au nanocrystal growth on nanotubescontrolled by conformations and charges of sequenced peptide templates. J. Am.Chem. Soc. 2003, 125, 5873-5879.
    [106] Banerjee, I. A., Yu, L., Matsui, H., Cu nanocrystal growth on peptide nanotubesby biomineralization: Size control of Cu nanocrystals by tuning peptideconformation. Proc. Natl. Acad. Sci. USA 2003, 100, 14678-14682.
    [107] Yu, L., Banerjee, I. A., Matsui, H., Incorporation of sequenced peptides onnanotubes for Pt coating: smart control of nucleation and morphology viaactivation of metal binding sites on amino acids. J. Mater. Chem. 2004, 14,739-743.
    [108] Yu, L., Banerjee, I. A., Matsui, H., Size-controlled Ni nanocrystal growth onpeptide nanotubes and their magnetic properties. Adv. Mater. 2004, 16, 709-712.
    [109] Nuraje, N., Banerjee, I. A., MacCuspie, R., Yu, L., Matsui, H., Biologicalbottom-up assembly of antibody nanotubes on patterned antigen arrays. J. Am.Chem Soc. 2004, 126, 8088-8089.
    [110] Gore, T., Dori, Y., Talmon,Y., Tirrell, M., Bianco-Peled, H., Self-assembly ofmodel collagen peptide amphiphiles. Langmuir 2001, 17, 5352-5360.
    [111] Paramonov, S. E., Jun, H. W., Hartgerink, J. D., Self-assembly ofpeptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilicpacking. J. Am. Chem. Soc. 2006, 128, 7291-7298.
    [112] Bitton, R., Schmidt, J., Biesalski, M., Tu, R., Tirrell, M., Bianco-Peled, H.,Self-assembly of model DNA-binding peptide amphiphiles. Langmuir 2005, 21,11888-11895.
    [113] Vauthey, S., Santoso, S., Gong, H., Watson, N., Zhang, S., Molecularself-assembly of surfactant-like peptides to form nanotubes and nanovesicles.Proc. Natl. Acad. Sci. USA, 2002, 99, 5355-5360.
    [114] Santoso, S., Hwang, W., Hartman, H., Zhang, S., Self-assembly ofsurfactant-like peptides with variable glycine tails to form nanotubes andnanovesicles. Nano Lett. 2002, 2, 687-691.
    [115] von Maltzahn, G., Vauthey, S., Santoso, S., Zhang, S., Positively chargedsurfactant-like peptides self-assemble into nanostructures. Langmuir 2003, 19,4332-4337.
    [116] G rbitz, C. H., Gundersen, E., L-valyl-L-alanine. Acta. Cryst. C 1996, 52,1764-1767.
    [117] G rbitz, C. H., Nanotube formation by hydrophobic dipeptides. Chem. Eur. J.2001, 7, 5153-5159.
    [118] Reches, M., Gazit, E., Casting metal nanowires within discrete self-assembledpeptide nanotubes. Science 2003, 300, 625-627.
    [119] Kol, N., Adler-Abramovich, L., Barlam, D., Shneck, R. Z., Gazit, E., Rousso, I.,Self-assembled peptide nanotubes are uniquely rigid bio-inspiredsupramolecularstructures. Nano Lett., 2005, 5, 1343-1346.
    [120] Song, Y. J., Challa, S. R., Medforth, C. J., Qiu, Y., Watt, R. K., Pena, D., Miller,J. E., van Swol, F., Shelnutt, J. A., Synthesis of peptide-nanotubeplatinum-nanoparticle composites. Chem. Commun. 2004, 1044-1045.
    [121] Carny, O., Shalev, D. E., Gazit, E., Fabrication of coaxial metal nanocablesusing a self-assembled peptide nanotube scaffold. Nano Lett. 2006, 6, 1594-1597.
    [122] Yemini, M., Reches, M., Rishpon, J., Gazit, E., Novel electrochemicalbiosensing platform using self-assembled peptide nanotubes. Nano Lett., 2005, 5,183-186.
    [123] Mahler, A., Reches, M., Rechter, M., Cohen, S., Gazit, E., Rigid, self-assembledhydrogel composed of a modified aromatic dipeptide. Adv. Mater. 2006, 18,1365-1370.
    [124] Jayawarna, V., Ali, M., Jowitt, T. A., Miller, A. F., Saiani, A., Gough, J. E.,Ulijn,R. V., Nanostructured hydrogels for three-dimensional cell culture throughself-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv. Mater. 2006, 18,611-614.
    [125] Hendler, N., Sidelman, N., Reches, M., Gazit, E., Rosenberg, Y., Richter, S.,Formation of well-organized self-assembled films from peptide nanotubes. Adv.Mater. 2007, 19, 1485-1488.
    [126] Reches, M., Gazit, E., Controlled patterning of aligned self-assembled peptidenanotubes. Nature Nanotech. 2006, 1, 195-200.
    [127] Wang,Y., Lingenfelder, M., Classen, T., Costantini, G., Kern, K., Ordering ofdipeptide chains on Cu surfaces through 2D cocrystallization. J. Am. Chem. Soc.2007, 129, 15742-15743.
    [128] Gupta, M., Bagaria, A., Mishra, A., Mathur, P., Basu, A., Ramakumar, S.,Chauhan, V. S., Self-assembly of a dipeptide-containing conformationallyrestricted dehydrophenylalanine residue to form ordered nanotubes. Adv. Mater.2007, 19, 858-861.
    [129] De Groot, N. S., Parella, T., Aviles, F. X., Vendrell, J., Ventura,S., Ile-Phedipeptide self-assembly: clues to amyloid formation. Biophys. J. 2007, 92,1732-1741.
    [130] Zhang, S., Holmes, T., Lockshin, C., Rich, A., Spontaneous assembly of aself-complementary oligopeptide to form a stable macroscopic membrane. Proc.Natl. Acad. Sci. USA 1993, 90, 3334-3338.
    [131] Zhang, S. et al. Self-complementary oligopeptide matrices support mammaliancell attachment. Biomaterials 1995, 16, 1385-1393.
    [132] Aggeli, A., Bell, M., Boden, N., Keen, J. N., Knowles, P. F., McLeish, T.C.,Pitkeathly, M., Radford, S. E., Responsive gels formed by the spontaneousself-assembly of peptides into polymeric beta-sheet tapes. Nature 1997, 386,6622, 259-262.
    [133] Aggeli, A., Nyrkova, I. A., Bell, M., Harding, R., Carrick, L., McLeish, T.C.B.,Semenov, A. N., Boden, N., Hierarchical self-assembly of chiral rod-likemolecules as a model for peptide b-sheet tapes, ribbons, fibrils, and fibers. Proc.Natl. Acad. Sci. USA 2001, 98, 11857-11862.
    [134] Ryadnov, M. G., Woolfson, D. N., Engineering the morphology of aselfassembling protein fibre. Nature Mater. 2003, 2, 329-332.
    [135] Smith, A. M., Acquah, S. F. A., Bone, N., Kroto, H. W., Ryadnov, M. G.,Stevens, M. S. P., Walton, D. R. M., Woolfson, D. N., Polar assembly in adesigned protein fiber. Angew. Chem. Int. Ed. 2005, 44, 325-328.
    [136] Potekhin, S. A., Melnik, T. N., Popov, V., Lanina, N. F., Vazina, A. A., Rigler,P., Verdini, A. S., Corradin, G., Kajava, A. V., De novo design of fibrils made ofshortα-helical coiled coil peptides. Chemistry & Biology 2001, 8, 1025-1032.
    [137] Deming, T. J., Facile synthesis of block copolypeptides of defined architecture.Nature 1997, 390, 386-389.
    [138] Deming, T. J., Curtin, S. A., Chain initiation efficiency in cobalt- andnickel-mediated polypeptide synthesis. J. Am. Chem. Soc. 2000, 122, 5710-5717.
    [139] Nowak, A. P., Breedveld, V., Pakstis, L., Ozbas, B., Pine, D. J., Pochan, D.,Deming, T. J., Rapidly recovering hydrogel scaffolds from self-assemblingdiblock copolypeptide amphiphiles. Nature 2002, 417, 424-428.
    [140] Schneider, J. P., Pochan, D. J., Ozbas, B., Rajagopal, K., Pakstis, L. M., Gill, J.,Responsive hydrogels from the intramolecular folding and self-assembly of adesigned peptide. J. Am. Chem. Soc. 2002, 124, 15030-15037.
    [141] Pochan, D. J., Pakstis, L., Ozbas, B., Nowak, A. K., Deming, T. J., SANS andcryo-TEM study of self-assembled diblock copolypeptide hydrogels with richnanothrough microscale morphology. Macromolecules, 2002, 35, 5358-5360.
    [142] Kopecek, J., Polymer chemistrySwell gels. Nature 2002, 417, 388-391.
    [143] Bellomo, E., Wyrsta, M. D., Pakstis, L., Pochan D. J., Deming, T.J.,Stimuli-responsive polypeptide vesicles by conformation-specific assembly.Nat.Mater. 2004, 3, 244-248.
    [144] Holowka, E. P., Sun, V. Z., Kamei, D. T., Deming, T. J., Polyargininesegmentsin block copolypeptides drive both vesicular assembly and intracellulardelivery. Nat. Mater. 2007, 6, 52-57.
    [145] Yan, X.H., He, Q., Wang, K.W., Duan, L., Cui, Y., Li, J.B., Transition ofcationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew.Chem. Int.Ed. 2007, 46, 2431-2434.
    [1] L. Addadi and S. Weiner, Biomineralization: A pavement of pearl. Nature, 1997,389, 912-915.
    [2] S. Weiner and L. Addadi, Design strategies in mineralized biological materials. J.Mater. Chem., 1997, 7, 689-702.
    [3] S. Mann, Molecular tectonics in biomineralization and biomimetic materialschemistry. Nature, 1993, 365, 499-505.
    [4] M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten and F. Baneyx, Molecularbiomimetics: nanotechnology through biology. Nat. Mater., 2003, 2, 577-585.
    [5] T. Fan, S. K. Chow and D. Zhang, Biomorphic mineralization: From biology tomaterials. Prog. Mater. Sci., 2009, 54, 542-659.
    [6] X. Gao and H. Matsui, Peptide-based Nanotubes and Their Applications inBionanotechnology. Adv. Mater., 2005, 17, 2037-2050.
    [7] A. Xu, Y. Ma and H. C lfen, Biomimetic mineralization. J. Mater. Chem., 2007,17, 415-449.
    [8] E. Braun, Y. Eichen, U. Sivan and G. Ben-Yoseph, DNA-templated assembly andelectrode attachment of a conducting silver wire. Nature, 1998, 391, 775-778.
    [9] E. Dujardin, C. Peet, G. Stubbs, J. N. Culver and S. Mann, Organization ofMetallic Nanoparticles Using Tobacco Mosaic Virus Templates. Nano Lett., 2003,3, 413-417.
    [10] Y. Huang, C. Y. Chiang, S. K. Lee, Y. Gao, E. L. Hu, J. D. Yoreo and A. M.Belcher, Programmable Assembly of Nanoarchitectures Using GeneticallyEngineered Viruses. Nano Lett., 2005, 5, 1429-1434.
    [11] M. T. Kumara, B. C. Tripp and S. Muralidharan, Self-Assembly of MetalNanoparticles and Nanotubes on Bioengineered Flagella Scaffolds. Chem. Mater.,2007, 19, 2056-2064.
    [12] M. B. Dickerson, K. H. Sandhage and R. R. Naik, Protein- and Peptide-DirectedSyntheses of Inorganic Materials. Chem. Rev., 2008, 108, 4935-4978.
    [13] T. Scheibel, R. Parthasarathy, G. Sawicki, X. Lin, H. Jaeger and S. L. Lindquist,Conducting nanowires built by controlled self-assembly of amyloid fibers andselective metal deposition. Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 4527-4532.
    [14] X. Fu, Y. Wang, L. Huang, Y. Sha, L. Gui, L. Lai and Y. Tang, Assemblies ofMetal Nanoparticles and Self-aAssembled Peptide Fibrils-Formation of DoubleHelical and Single-Chain Arrays of Metal Nanoparticles. Adv. Mater., 2003, 15,902-906.
    [15] E. Kasotakis, E. Mossou, L. Adler-Abramovich, E. P. Mitchel, V. T. Forsyth, E.Gazit and A. Mitraki, Design of Metal-Binding Sites Onto Self-AssembledPeptide Fibrils. Biopolymers, 2009, 92, 164-172.
    [16] P. P. Bose, M. G. B. Drew and A. Banerjee, Decoration of Au and AgNanoparticles on Self-Assembling Pseudopeptide-Based Nanofiber by Using aShort Peptide as Capping Agent for Metal Nanoparticles. Org. Lett., 2007, 9,2489-2492.
    [17] S. Zhang, Fabrication of novel biomaterials through molecular self-assembly.Nature Biotechnology, 2003, 21, 1171-1178.
    [18] S. Wang, X. Ge, J. Xue, H. Fan, L. Mu, Y. Li, H. Xu and J. R. Lu, MechanisticProcesses Underlying Biomimetic Synthesis of Silica Nanotubes fromSelf-Assembled Ultrashort Peptide Templates. Chem. Mater., 2011, 23,2466-2474.
    [19] B. M. Rabatic, R. C. Claussen and S. I. Stupp, Templated Mineralization ofPeptide-Based Unsymmetric Bolaamphiphiles. Chem. Mater., 2005, 17,5878-5879.
    [20] E. D. Sone and S. I. Stupp, Semiconductor-Encapsulated Peptide-AmphiphileNanofibers. J. Am. Chem. Soc., 2004, 126, 12756-12757.
    [21] E. D. Sone and S. I. Stupp, Bioinspired Magnetite Mineralization ofPeptide Amphiphile Nanofibers. Chem. Mater., 2011, 23, 2005-2007.
    [22] M. Reches and E. Gazit, Casting Metal Nanowires Within DiscreteSelf-Assembled Peptide Nanotubes. Science, 2003, 300, 625-627.
    [23] O. Carny, D. E. Shalev and E. Gazit, Fabrication of Coaxial Metal NanocablesUsing a Self-Assembled Peptide Nanotube Scaffold. Nano Lett., 2006, 8,1594-1597.
    [24] R. Djalali, Y. Chen and H. Matsui, Au Nanowire Fabrication from SequencedHistidine-Rich Peptide. J. Am. Chem. Soc., 2002, 124, 13660-13661.
    [25] S. Roy and Arindam Banerjee, Amino acid based smart hydrogel: formation,characterization and fluorescence properties of silver nanoclusters within thehydrogel matrix. Soft Matter, 2011, 7, 5300-5308.
    [26] K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond,Y. M. Chiang and A. M. Belcher, Virus-Enabled Synthesis and Assembly ofNanowires for Lithium Ion Battery Electrodes. Science, 2006, 312, 885-888.
    [27] Y. J. Lee, H. Yi, W.-J. Kim, K. Kang, D. S. Yun, M. S. Strano, G. Ceder and A.M. Belcher, Fabricating Genetically Engineered High-Power Lithium-IonBatteries Using Multiple Virus Genes. Science, 2009, 324, 1051-1055.
    [28] J. Ryu, S. W. Kim, K. Kang and C. B. Park, Mineralization of Self-assembledPeptide Nanofi bers for Rechargeable Lithium Ion Batteries. Adv. Mater., 2010,22, 5537-5541.
    [29] Y. Zhou, M. Kogiso, M. Asakawa, S. Dong, R. Kiyama and T. Shimizu,Antimicrobial Nanotubes Consisting of Ag-Embedded Peptidic Lipid-BilayerMembranes as Delivery Vehicles. Adv. Mater., 2009, 21, 1742-1745.
    [30] J. D. Hartgerink, E. Beniash and S. I. Stupp, Self-Assembly and Mineralizationof Peptide-Amphiphile Nanofibers. Science, 2001, 294, 1684-1688.
    [31] E. D. Spoerke, S. G. Anthony and S. I. Stupp, Enzyme Directed Templating ofArtificial Bone Mineral. Adv. Mater. 2009, 21, 425-430.
    [32] L. C. Palmer, C. J. Newcomb, S. R. Kaltz, E. D. Spoerke and S. I. Stupp,Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone andEnamel. Chem. Rev., 2008, 108, 4754-4783.
    [33]Z. A. C. Schnepp, R. Gonzalez-McQuire and S. Mann, Hybrid BiocompositesBased on Calcium Phosphate Mineralization of Self-Assembled SupramolecularHydrogels. Adv. Mater., 2006, 18, 1869-1872.
    [34] I. W. Hamley, Peptide Fibrillization. Angew. Chem. Int. Ed., 2007, 46,8128-8147.
    [35] I. W. Hamley, Self-assembly of amphiphilic peptides. Soft Matter, 2011, 7,4122-4138.
    [36] X. Zhao and S. Zhang, Fabrication of molecular materials using peptideconstruction motifs. Trends Biotechnol., 2004, 22, 470-476.
    [37] S. Zhang and X. Zhao, Design of molecular biological materials using peptidemotifs. J. Mater. Chem., 2004, 14, 2082–2086.
    [38] R. V. Ulijn and A. M. Smith, Designing peptide based nanomaterials. Chem. Soc.Rev., 2008, 37, 664-675.
    [39] Y. Jin, X. Xu, C. Chen, S. Cheng, X. Zhang and R. Zhuo, Bioactive AmphiphilicPeptide Derivatives with pH Triggered Morphology and Structure. Macromol.Rapid Commun., 2008, 29, 1726-1730.
    [40] E. Gazit, Self-assembled peptide nanostructures: the design of molecular buildingblocks and their technological utilization. Chem. Soc. Rev., 2007, 36, 1263–1269.
    [41] M. Vestergaard, T. Hamada and M. Takagi, Using Model Membranes for theStudy of Amyloid Beta:Lipid Interactions and Neurotoxicity. Biotechnology andBioengineering, 2008, 99, 753-763.
    [42] J. Ryu, H. A. Joung, M. G. Kim and C. B. Park, Surface Plasmon ResonanceAnalysis of Alzheimer'sβ-Amyloid Aggregation on a Solid Surface: FromMonomers to Fully-Grown Fibrils. Analytical Chemistry, 2008, 80, 2400-2407.
    [43] P. Fratzl, H. S. Gupta, E. P. Paschalis and P. Roschger, Structure and mechanicalquality of the collagen–mineral nano-composite in bone. J. Mater. Chem., 2004,14, 2115-2123.
    [44] X. Huang, X. Liu, Q. Luo, J. Liu and J. Shen, Artificial selenoenzymes:Designed and redesigned. Chem. Soc. Rev., 2011, 40, 1171-1184.
    [45] Y. Tang, L. Zhou, X. Li, Q. Luo, X. Huang, P. Wu, Y. Wang, J. Xu, J. Shen andJ. Liu, Giant Nanotubes Loaded with Artificial Peroxidase Centers:Self-Assembly of Supramolecular Amphiphiles as a Tool To FunctionalizeNanotubes. Angew. Chem. Int. Ed., 2010, 49, 3920-3924.
    [46] M. A. Hollinger, Toxicological Aspects of Topical Silver Pharmaceuticals.Critical Reviews in Toxicology, 1996, 26, 255-260.
    [47] R. Kumar and H. Münstedt, Silver ion release from antimicrobialpolyamide/silver composites. Biomaterials, 2005, 26, 2081-2088.
    [48] V. Sambhy, M. M. MacBride, B. R. Peterson and A. Sen, Silver BromideNanoparticle/Polymer Composites: Dual Action Tunable Antimicrobial Materials.J. Am. Chem. Soc., 2006, 128, 9798-9808.
    [49] A. Drury, S. Chaure, M. Kr ll, V. Nicolosi, N. Chaure and W. J. Blau,Fabrication and Characterization of Silver/Polyaniline Composite Nanowires inPorous Anodic Alumina. Chem. Mater. 2007, 19, 4252-4258.
    [50] M. Sureshkumar, D. Y. Siswanto and C. K. Lee, Magnetic antimicrobialnanocomposite based on bacterial cellulose and silver nanoparticles. J. Mater.Chem., 2010, 20, 6948–6955.
    [51] M. Lv, S. Su, Y. He, Q. Huang, W. Hu, D. Li, C. Fan and S. T. Lee, Long-TermAntimicrobial Effect of Silicon Nanowires Decorated with Silver Nanoparticles.Adv. Mater., 2010, 22, 5463-5467.
    [52] M. Liong, B. France, K. A. Bradley and J. I. Zink, Antimicrobial Activity ofSilver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles. Adv.Mater., 2009, 21, 1-6.
    [53] J. Ryu and C. B. Park, High-Temperature Self-Assembly of Peptides intoVertically Well-Aligned Nanowires by Aniline Vapor. Adv. Mater., 2008, 20,3754-3758.
    [54] R. Orbach, L. Adler-Abramovich, S. Zigerson, I. Mironi-Harpaz, D. Seliktar andE. Gazit, Self-Assembled Fmoc-Peptides as a Platform for the Formation ofNanostructures and Hydrogels. Biomacromolecules, 2009, 10, 2646-2651.
    [55] X. Yan, P. Zhu and J. Li, Self-assembly and application of diphenylalanine-basednanostructures. Chem. Soc. Rev., 2010, 39, 1877-1890.
    [56] X. Yan, Q. He, K. Wang, L. Duan, Y. Cui and J. Li, Transition of CationicDipeptide Nanotubes into Vesicles and Oligonucleotide Delivery. Angew. Chem.Int. Ed., 2007, 46, 2431-2434.
    [57] A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins, M. L. Turner, A.Saiani and R. V. Ulijn, Fmoc-Diphenylalanine Self Assembles to a Hydrogel viaa Novel Architecture Based onπ-πInterlockedβ-Sheets. Adv. Mater., 2008, 20,37-41.
    [58] S. Toledano, R. J. Williams, V. Jayawarna and R. V. Ulijn, Enzyme-TriggeredSelf-Assembly of Peptide Hydrogels via Reversed Hydrolysis. J. Am. Chem. Soc.,2006, 128, 1070-1071.
    [59] V.Jayawarna, M. Ali, T. A. Jowitt, A. F. Miller, A. Saiani, J. E. Gough and R. V.Ulijn, Nanostructured Hydrogels for Three-Dimensional Cell Culture ThroughSelf-Assembly of Fluorenylmethoxycarbonyl–Dipeptides. Adv. Mater., 2006, 18,611-614.
    [60] R. V. Ulijn, Enzyme-responsive materials: a new class of smart biomaterials. J.Mater. Chem., 2006, 16, 2217–2225.
    [61] X. Xu, L. Liang, C. Chen, B. Lu, N. Wang, F. Jiang, X. Zhang and R. Zhuo,Peptide Hydrogel as an Intraocular Drug Delivery System for Inhibition ofPostoperative Scarring Formation. ACS Appl. Mater. Interfaces, 2010, 2,2663-2671.
    [62] Z. Yang, G. Liang and B. Xu, Enzymatic Hydrogelation of Small Molecules. Acc.Chem. Res, 2008, 41, 315-326.
    [63] Z. Yang and B. Xu, Supramolecular hydrogels based on biofunctional nanofibersof self-assembled small molecules. J. Mater. Chem., 2007, 17, 2385-2393.
    [64] J. Wang, Z. Wang, J. Gao, L. Wang, Z. Yang, D. Kong and Z. Yang,Incorporation of supramolecular hydrogels into agarose hydrogels-a potentialdrug delivery carrier. J. Mater. Chem., 2009, 19, 7892–7896.
    [65] M. O. Guler, R. C. Claussena and S. I. Stupp, Encapsulation of pyrene withinself-assembled peptide amphiphile nanofibers. J. Mater. Chem., 2005, 15,4507–4512.
    [66] A. Barth and C. Zscherp, What vibrations tell us about proteins. QuarterlyReviews of Biophysics, 2002, 35, 369-429.
    [67] M. Kogiso, Y. Okada, K. Yase and T. Shimizu, Metal-complexed nanofiberformation in water from dicarboxylic valylvaline bolaamphiphiles. Journal ofColloid and Interface Science, 2004, 273, 394-399.
    [68] X. Li, J. Zhang, W. Xu, H. Jia, X. Wang, B. Yang, B. Zhao, B. Li and Y. Ozaki,Mercaptoacetic Acid-Capped Silver Nanoparticles Colloid: Formation,Morphology, and SERS Activity. Langmuir, 2003, 19, 4285-4290.
    [69] C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F.Chiu and C. M. Che, Silver nanoparticles: partial oxidation and antibacterialactivities. J. Biol. Inorg. Chem., 2007, 12 , 527-534.
    [1] H. Eyring, The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935,3, 107-115.
    [2] L. Pauling, Molecular Architecture and Biological Reaction. Chem. Eng. News.1946, 24, 1375-1377.
    [3] L. Pauling, Chemical Achievement and Hope for the Future. Am. Sci. 1948, 36,50-58.
    [4] H. Eyring, The Activated Complex in Chemical Reactions. J. Chem. Phys. 1935,3, 107-115.
    [5] D. E. Jr. Koshland, Correlation of Structure and Function in Enzyme Action.Science. 1963, 142, 1533-1541.
    [6] R. Wolfenden, Transition State Analogues for Enzyme Catalysis. Nature. 1969,223, 704-705.
    [7] E. Lolis, G. A. Petsko, Transition State Analogues in Protein Crystallography:Probes of the Structural Source of Enzyme Catalysis. Annu. Rev. Biochem. 1990,59, 597-630.
    [8] A. Fedorov, W. Shi, G. Kicska, E. Fedorov, P. C. Tyler, R. H. Furneaux, J. C.Hanson, G. J. Gainsford, J. Z. Larese, V. L. Schramm, S. C. Almo, TransitionState Structure of Purine Nucleoside Phosphorylase and Principles of AtomicMotion in Enzymatic Catalysis. Biochemistry. 2001, 40, 853-860.
    [9] V. L. Schramm, Enzymatic Transition States and Transition State Analogues.Curr. Opin. Struc. Biol. 2005, 15, 604–613.
    [10] V. L. Schramm, Enzymatic Transition States and Transition State Analog Design.Annu. Rev. Biochem. 1998, 67, 693-720.
    [11] A. Fersht, Enzyme Structure and Mechanism, 2nd ed.; W. Freeman and Co. NewYork, 1985.
    [12] R. Breslow, S. D. Dong, Biomimetic Reactions Catalyzed by Cyclodextrins andTheir Derivatives. Chem. Rev. 1998, 98, 1997-2012.
    [13] L. Barr, C. J. Easton, K. Lee, S. F. Lincoln, J. S. Simpson, Metallo cyclodextrincatalysts for hydrolysis of phosphate triesters. Tetrahedron Letter. 2002, 43,7797-7800.
    [14] R. Breslow, N. Nesnas, Burst kinetics and turnover in an esterase mimic.Tetrahedron Letter. 1999, 40, 3335-3338.
    [15] A. Harada, Cyclodextrin-Based Molecular Machines. Acc. Chem. Res. 2001,34(6), 456-464.
    [16] V. T. D’Souza, M. L. Bender, Miniature organic models of enzymes. Acc. Chem.Res. 1987, 20, 146-152.
    [17] R. Breslow, B. L. Zhang, Binding and catalysis with flexible locks and flexiblekeys. J. Am. Chem. Soc. 1997, 119, 1676-1681.
    [18] R. Breslow, N. Greenspoon, T. Guo, R. Zarzycki, Very strong binding ofappropriate substrates by cyclodextrin dimers. J. Am. Chem. Soc. 1989, 111,8296-8297.
    [19] R. Breslow, S. Chung, Strong binding of ditopic substrates by a doubly linkedocclusive C1 clamshell as distinguished from an aversive C2 loveseatcyclodextrin dimmer. J. Am. Chem. Soc. 1990, 112, 9659-9600.
    [20] Y. Matsui, A. Okimoto, The Binding and Catalytic Properties of a PositivelyCharged Cyclodextrin. Bull. Chem. Soc. Japn. 1978, 51, 3030-3034.
    [21] F. Cramer, G. Mackensen, A Model for the Action of Chymotrypsin. Angew. Chem.Int. Ed. Engl. 1966, 5, 601-602.
    [22] R. K. Rama, T.N. Serimivasan, P. B. Astur, J. Chem. Soc. Chem. Commun. 1990,10.
    [23] A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins, M. L. Turner, A.Saiani and R. V. Ulijn, Fmoc-Diphenylalanine Self Assembles to a Hydrogel viaa Novel Architecture Based onπ-πInterlockedβ-Sheets. Adv. Mater., 2008, 20,37-41.
    [24]Z. Yang, H. Gu, D. Fu, P. Gao, J. Lam and B. Xu, Enzymatic Formation ofSupramolecular Hydrogels. Adv. Mater., 2004, 16, 1440-1444.
    [25] A. Barth and C. Zscherp, What vibrations tell us about proteins. QuarterlyReviews of Biophysics, 2002, 35, 369-429.
    [26] J. Ryu and C. B. Park, High-Temperature Self-Assembly of Peptides intoVertically Well-Aligned Nanowires by Aniline Vapor. Adv. Mater., 2008, 20,3754-3758.
    [27] R. Orbach, L. Adler-Abramovich, S. Zigerson, I. Mironi-Harpaz, D. Seliktar andE. Gazit, Self-Assembled Fmoc-Peptides as a Platform for the Formation ofNanostructures and Hydrogels. Biomacromolecules, 2009, 10, 2646-2651.
    [28] X. Yan, P. Zhu and J. Li, Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev., 2010, 39, 1877-1890.
    [29] X. Yan, Q. He, K. Wang, L. Duan, Y. Cui and J. Li, Transition of CationicDipeptide Nanotubes into Vesicles and Oligonucleotide Delivery. Angew. Chem.Int. Ed., 2007, 46, 2431-2434.
    [30] A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins, M. L. Turner, A.Saiani and R. V. Ulijn, Fmoc-Diphenylalanine Self Assembles to a Hydrogel viaa Novel Architecture Based onπ-πInterlockedβ-Sheets. Adv. Mater., 2008, 20,37-41.
    [31] S. Toledano, R. J. Williams, V. Jayawarna and R. V. Ulijn, Enzyme-TriggeredSelf-Assembly of Peptide Hydrogels via Reversed Hydrolysis. J. Am. Chem. Soc.,2006, 128, 1070-1071.
    [32] V.Jayawarna, M. Ali, T. A. Jowitt, A. F. Miller, A. Saiani, J. E. Gough and R. V.Ulijn, Nanostructured Hydrogels for Three-Dimensional Cell Culture ThroughSelf-Assembly of Fluorenylmethoxycarbonyl–Dipeptides. Adv. Mater., 2006, 18,611-614.
    [33] R. V. Ulijn, Enzyme-responsive materials: a new class of smart biomaterials. J.Mater. Chem., 2006, 16, 2217–2225.
    [34] X. Xu, L. Liang, C. Chen, B. Lu, N. Wang, F. Jiang, X. Zhang and R. Zhuo,Peptide Hydrogel as an Intraocular Drug Delivery System for Inhibition ofPostoperative Scarring Formation. ACS Appl. Mater. Interfaces, 2010, 2,2663-2671.
    [35] Z. Yang, G. Liang and B. Xu, Enzymatic Hydrogelation of Small Molecules.Acc. Chem. Res, 2008, 41, 315-326.
    [36] Z. Yang and B. Xu, Supramolecular hydrogels based on biofunctionalnanofibers of self-assembled small molecules. J. Mater. Chem., 2007, 17,2385-2393.
    [37] J. Wang, Z. Wang, J. Gao, L. Wang, Z. Yang, D. Kong and Z. Yang,Incorporation of supramolecular hydrogels into agarose hydrogels-a potentialdrug delivery carrier. J. Mater. Chem., 2009, 19, 7892–7896.
    [38] G rbitz, C. H., Gundersen, E., L-valyl-L-alanine. Acta. Cryst. C 1996, 52,1764-1767.
    [39] G rbitz, C. H., Nanotube formation by hydrophobic dipeptides. Chem. Eur. J.2001, 7, 5153-5159.
    [40] Reches, M., Gazit, E., Casting metal nanowires within discrete self-assembledpeptide nanotubes. Science 2003, 300, 625-627.
    [41] Kol, N., Adler-Abramovich, L., Barlam, D., Shneck, R. Z., Gazit, E., Rousso, I.,Self-assembled peptide nanotubes are uniquely rigid bio-inspiredsupramolecularstructures. Nano Lett., 2005, 5, 1343-1346.
    [42] Song, Y. J., Challa, S. R., Medforth, C. J., Qiu, Y., Watt, R. K., Pena, D., Miller, J.E., van Swol, F., Shelnutt, J. A., Synthesis of peptide-nanotubeplatinum-nanoparticle composites. Chem. Commun. 2004, 1044-1045.
    [43] Carny, O., Shalev, D. E., Gazit, E., Fabrication of coaxial metal nanocables usinga self-assembled peptide nanotube scaffold. Nano Lett. 2006, 6, 1594-1597.
    [44] Yemini, M., Reches, M., Rishpon, J., Gazit, E., Novel electrochemical biosensingplatform using self-assembled peptide nanotubes. Nano Lett., 2005, 5, 183-186.
    [45] Mahler, A., Reches, M., Rechter, M., Cohen, S., Gazit, E., Rigid, self-assembledhydrogel composed of a modified aromatic dipeptide. Adv. Mater. 2006, 18,1365-1370.
    [46] Jayawarna, V., Ali, M., Jowitt, T. A., Miller, A. F., Saiani, A., Gough, J. E.,Ulijn,R. V., Nanostructured hydrogels for three-dimensional cell culture throughself-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv. Mater. 2006, 18,611-614.
    [47] Hendler, N., Sidelman, N., Reches, M., Gazit, E., Rosenberg, Y., Richter, S.,Formation of well-organized self-assembled films from peptide nanotubes. Adv.Mater. 2007, 19, 1485-1488.
    [48] Reches, M., Gazit, E., Controlled patterning of aligned self-assembled peptidenanotubes. Nature Nanotech. 2006, 1, 195-200.
    [49] Wang,Y., Lingenfelder, M., Classen, T., Costantini, G., Kern, K., Ordering ofdipeptide chains on Cu surfaces through 2D cocrystallization. J. Am. Chem. Soc.2007, 129, 15742-15743.
    [1] Huang X, Dong ZY, Liu JQ, Mao SZ, Xu JY, Luo GM, Shen JC. Selenium-mediated micellar catalyst: an efficient enzyme model for glutathione peroxidase-like catalysis. Langmuir 2007;23:1518–22.
    [2] Huang X, Dong ZY, Liu JQ, Mao SZ, Xu JY, Luo GM, Shen JC. Tellurium-basedpolymeric surfactants as a novel seleno-enzyme model with high activity.Macromol Rapid Commun 2006;27:2101–6.
    [3] Wang YP, Xu HP, Ma N, Wang ZQ, Zhang X, Liu JQ, Shen JC. Block CopolymerMicelles as Matrixes for Incorporating Diselenide Compounds: A Model Systemfor a Water-Soluble Glutathione Peroxidase Mimic Fine-Tuned by Ionic Strength.Langmuir 2006; 22:5552–55.
    [4] Yu SJ, Yin YZ, Zhu JY, Huang X, Luo Q, Xu JY, Shen JC, Liu JQ. A modulatorybifunctional artificial enzyme with both SOD and GPx activities based on a smartstar-shaped pseudo-block copolymer. Soft Matter 2010;6:5342–50.
    [5] Yin YZ, Huang X, Xu JY, Liu JQ, Shen JC. Construction of an artificial glutathioneperoxidase active site on copolymer vesicles. Macromol Biosci 2010;10:1505–16.
    [6] Huang X, Liu Y, Liang K, Tang Y, Liu JQ. Construction of the active site ofglutathione peroxidase on polymer-based nanoparticles. Biomacromolecules2008;9:1467–73.
    [7] Haratake M, Matsumoto S, Ono M, Nakayama M. Nanoparticulate glutathioneperoxidase mimics based on selenocystine-pullulan conjugates. BioconjugateChem 2008;19:1831–9.
    [8] Tang Y, Zhou LP, Li JX, Luo Q, Huang X, Wu P, Wang YG, Xu JY, Shen JC, LiuJQ. Giant nanotubes loading artificial peroxidase centers: self-assembly ofsupramolecular amphiphiles as a tool to functionalize nanotubes. Angew Chem IntEd. 2010;49:3920–4.
    [9] Guler MO, Stupp SI. A self-assembled nanofiber catalyst for ester hydrolysis. J AmChem Soc 2007;129:12082–3.
    [10] Gao Y, Zhao F, Wang QG, Zhang Y, Xu B. Small peptide nanofibers as thematrices of molecular hydrogels for mimicking enzymes and enhancing theactivity of enzymes. Chem Soc Rev 2010;39:3425–33.
    [11] Resmini M, Flavin K, Carboni D. Microgels and nanogels with catalytic activity.Top Curr Chem 2011:1–37.
    [12] Rodriguez-Llansola F, Miravet JF, Escuder B. A supramolecular hydrogel as areusable heterogeneous catalyst for the direct aldol reaction. Chem Commun2009:7303–5.
    [13] Rodriguez-Llansola F, Escuder B, Miravet JF. Switchable perfomance of anL-proline-derived basic catalyst controlled by supramolecular gelation. J AmChem Soc 2009;131:11478–84.
    [14] Wang QG, Yang ZM, Wang L, Ma ML, Xu B. Molecular hydrogel-immobilizedenzymes exhibit superactivity and high stability in organic solvents. ChemCommun 2007:1032–4.
    [15] Wang QG, Yang ZM, Zhang XQ, Xiao XD, Chang CK, Xu B. A supramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidase. AngewChem Int Ed 2007;46:4285–9.
    [16] Wang QG, Yang ZM, Gao Y, Ge WW, Wang L, Xu B. Enzymatic hydrogelation toimmobilize an enzyme for high activity and stability. Soft Matter 2008; 4:550–3.
    [17] Steed, J. W., Atwood, J. L., Supramolecular Chemistry, John Wiley & Sons,Baffins Lane, 2000.
    [18] Whitesides, G. M., Mathias, J. P., Seto, C. T. Molecular self-assembly andnanochemistry: a chemical strategy for the synthesis of nanostructures. Science1991,254, 1312-1319.
    [19] Zhang, S. G., Fabrication of novel biomaterials through molecular self-assembly.Nat. Biotechnol. 2003, 21, 1171-1178.
    [20] Gao, X. Y., Matsui, H., Peptide-based nanotubes and their application inbionanotechnology. Adv. Mater. 2005, 17, 2037-2050.
    [21] Bong, D. T., Clark, T. D., Granja, J. R., Ghadiri, M. R., Self-assembling organicnanotubes. Angew. Chem. Int. Ed. 2001, 40, 988-1011.
    [22] Silva, G. A., Czeisler, C., Niece, K. L., Beniash, E., Hartgerink, J. D., Kessler, J.A., Stupp, S. I., Selective differentiation of neural progenitor cells by high-epitopedensity nanofibers. Science 2004, 303, 1352-1355
    [23] Jayawarna, V., Ali, M., Jowitt, T. A., Miller, A. F., Saiani, A., Gough, J. E., Ulijn,R. V., Nanostructured hydrogels for three-dimensional cell culture throughself-assembly of fluorenylmethoxycarbonyl-dipeptides. Adv. Mater. 2006, 18,611-614.
    [24] Hartgerink, J. D., Beniash, E., Stupp, S. I., Self-assembly and mineralization ofpeptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.
    [25] Holmes, T. C., de Lacalle, S., Su, X., Liu, G., Rich, A., Zhang, S., Extensiveneurite outgrowth and active synapse formation on self-assembling peptidescaffolds.Proc. Natl. Acad. Sci. USA. 2000, 97, 6728-6733.
    [26] Kisiday, J., Jin, M., Kurz, B., Hung, H., Semino, C., Zhang, S., Grodzinsky, A. J.,Self-assembling peptide hydrogel fosters chondrocyte extracellular matrixproductionand cell division: Implications for cartilage tissue repair. Proc. Natl.Acad. Sci. USA.2002, 99, 9996-10001.
    [27] Rajangam, K., Behanna, H. A., Hui, M. J., Han, X., Hulvat, J. F., Lomasney, J.W.,Stupp, S. I., Heparin binding nanostructures to promote growth of bloodvessels. NanoLett. 2006, 6, 2086-2090.
    [28] Beniash, E., Hartgerink, J. D., Storrie, H., Stendahl, J. C., Stupp, S. I., Self-assembling peptide amphiphile nanofiber matrices for cell entrapment.ActaBiomaterialia 2005, 1, 387-397
    [29] Zhang, S., Yan, L., Altman, M., L ssle, M., Nugent, H., Frankel, F.,Lauffenburger,D. A., Whitesides, G. M., Rich, A., Biological surface engineering: asimplesystem for cell pattern formation. Biomaterials 1999, 20, 1213-1220.
    [30] Nowak, A. P., Breedveld, V., Pakstis, L., Ozbas, B., Pine, D. J., Pochan, D.,Deming, T. J., Rapidly recovering hydrogel scaffolds from self-assemblingdiblockcopolypeptide amphiphiles. Nature 2002, 417, 424-428.
    [31] Mahler, A., Reches, M., Rechter, M., Cohen, S., Gazit, E., Rigid, self-assembledhydrogel composed of a modified aromatic dipeptide. Adv. Mater. 2006, 18,1365-1370.
    [32] Fernandez-Lopez, S., Kim, H. S., Choi, E. C., Delgado, M., Granja, J.R.,Khasanov, A., Kraehenbuehl, K., Long, G., Weinberger, D. A., Wilcoxen, K.M.,Ghadiri, M. R., Antibacterial agents based on the cyclic D,L-a-peptidearchitecture.Nature 2001, 412, 452-455.
    [33] Quesada, J. S., Isler, M. P., Ghadiri, M. R., Modulating ion channel properties oftransmembrane peptide nanotubes through heteromeric supramolecularassemblies. J.Am. Chem. Soc. 2002, 124, 10004-10 005.
    [34] Percec, V., Dulcey, A. E., Balagurusamy, V. S. K., Miura, Y., Smidrkal,J.,Peterca, M., Nummelin, S., Edlund, U., Hudson, S. D., Heiney, P. A.,etal.Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature2004, 430,764-768.
    [35] Percec, V., Dulcey, A. E., Peterca, M., Ilies, M., Ladislaw, J., Rosen, B. M.,Edlund, U., Heiney, P. A., The internal structure of helical pores self-assembledfromdendritic dipeptides is stereochemically programmed and allostericallyregulated.Angew. Chem. Int. Ed. 2005, 44, 6516-6521.
    [36] Percec, V., Dulcey, A. E., Peterca, M., Ilies, M., Nummelin, S., Sienkowska, M.J., Heiney, P. A., Principles of self-assembly of helical pores from dendriticdipeptides.Proc. Natl. Acad. Sci. USA. 2006, 103, 2518-2523.
    [37] MacKinnon, R., Potassium channels and the atomic basis of selectiveionconduction (Nobel Lecture). Angew. Chem. Int. Ed. 2004, 43, 4265-4277.
    [38] Agre, P., Aquaporin water channels (Nobel Lecture). Angew.Chem. Int. Ed. 2004,43, 4278-4290.
    [39] Ghadiri, M. R., Granja, J. R., Buehler, L. K., Artificial transmembrane ionchannels from self-assembling peptide nanotubes. Nature 1994, 369, 301-304,
    [40] Hartgerink, J. D., Beniash, E., Stupp, S. I., Supramolecular chemistry and self-assembly special feature peptide-amphiphile nanofibers: A versatile scaffold forthe preparation of self-assembling materials. Proc. Natl. Acad. Sci. USA 2002,99,5133-5138.
    [41] Reches, M., Gazit, E., Casting metal nanowires within discrete self-assembledpeptide nanotubes. Science 2003, 300, 625-627.
    [42] Vauthey, S., Santoso, S., Gong, H., Watson, N., Zhang, S., Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles.Proc.Natl. Acad. Sci. USA 2002, 99, 5355-5360,
    [43] Zhang, S. G., Marini, D. M., Hwang, W., Santoso, S., Design of nanostructuredbiological materials through self-assembly of peptides and proteins. Curr.Opin.Chem.Biol. 2002, 6, 865-871.
    [44] Santoso, S., Hwang, W., Hartman, H., Zhang, S. G., Self-assembly of Surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles.NanoLett. 2002, 2, 687-691.
    [45] Song, Y. J., Challa, S. R., Medforth, C. J., Qiu, Y., Watt, R. K., Pena, D., Miller,J. E., van Swol, F., Shelnutt, J. A., Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem. Commun. 2004, 6, 1044-1045.
    [46] G rbitz, C. H., Nanotube formation by hydrophobic dipeptides. Chem.-Eur. J.2001, 7, 5153-5159.
    [47] Matsui, H., Holtman, C., Organic nanotube bridge fabrication by controllingmolecular self-assembly processes between spherical and tubular formations.NanoLett. 2002, 2, 887-889.
    [48] Reches, M., Gazit, E., Formation of closed-cage nanostructures by self-assemblyof aromatic dipeptides. Nano Lett. 2002, 4, 581-585.
    [49] Zhang, Y., Gu, H., Yang, Z., Xu, B., Supramolecular hydrogels respond toligand-receptor interaction. J. Am. Chem. Soc. 2003, 125, 13 680-13 681.
    [50] R. Breslow, N. Nesnas, Burst kinetics and turnover in an esterase mimic.Tetrahedron Letter. 1999, 40, 3335-3338.
    [51] Yan, X.Y., Zhu, P. and Li, J.B., Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev., 2010, 39, 1877-1890.
    [52] Yan, X.Y., He, Q., Wang, K., Duan, L., Cui, Y. and Li, J.B., Transition ofCationic Dipeptide Nanotubes into Vesicles and Oligonucleotide Delivery. Angew.Chem. Int. Ed., 2007, 46, 2431-2434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700