基于N-卤胺的抗菌纳米复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于多种细菌性疾病的出现,研究者们对高效广谱抗菌材料的研发产生了浓厚的兴趣。目前,已发现的具有抗菌活性的物质有次氯酸钠、臭氧、二氧化氯、金属离子、季铵盐、季磷盐、多肽、胍盐、N-卤胺等。其中,N-卤胺抗菌材料由于其独特的性质已受到学术界的高度重视。N-卤胺抗菌材料因具有抗菌性强、稳定性高、易保存、可再生、无腐蚀、无毒、廉价等优点,广泛应用于医疗器械、医院、水净化系统、食品包装、食物保鲜、卫生设施等多个领域。N-卤胺抗菌材料的抗菌机理为通过释放氯离子,在细菌细胞表面发生离子交换反应,从而破坏或阻止细胞正常的新陈代谢作用,促使细菌死亡。对于N-卤胺而言,接触面积对其抗菌性能至关重要。缩小N-卤胺抗菌材料的尺寸能增大其比表面积,能为材料提供更多的抗菌性官能团,有效官能团的增加可以提高材料的抗菌效率。
     纳米材料在尺寸上从几个纳米到百余纳米,能呈现出比传统材料更加优越的物理、化学、力学等性能。由于其小尺寸效应和表面界面效应,纳米材料具备巨大的应用潜力和良好的发展前景。因此,通过制备纳米尺寸的N-卤胺抗菌材料来增大其比表面积是提高抗菌效率的有效方法。但是,纳米尺寸的N-卤胺抗菌材料也存在不足之处,即回收过程过于繁琐。抗菌操作通常在水溶液中进行,且操作结束后须通过分离程序来处理残留的抗菌材料,而从大量的水溶液中分离出具有纳米尺寸的N-卤胺抗菌材料需要较高的成本。
     磁性纳米粒子由于其独特的性质已广泛应用于材料的磁分离技术中。磁分离技术是利用外加磁场对磁性或者易受磁场影响的粒子进行分离和回收的一种技术。利用该技术可以将纳米(或微米)粒子和生物微粒从水溶液中快速简便地分离出来。所以,磁分离技术被应用于生物工艺和生物医学领域,如:细胞排列、酶的固定、药物传输、蛋白分离等。该技术的优点是用最短的时间分离出最大量的目标物质。
     在本论文中,我们制备了一系列基于N-卤胺的抗菌纳米复合材料,并研究了其对革兰氏阳性菌和革兰氏阴性菌的抗菌活性。另外,我们还引入了磁分离技术,为N-卤胺抗菌纳米复合材料的回收和分离提供了更加快速简便的方法。具体内容如下:
     1.制备了N-卤胺功能化的SiO_2/聚苯乙烯核壳纳米粒子(SiO2@PS-N-卤胺),并研究了反应条件对纳米粒子形貌的影响。利用最小抑菌浓度法证明了SiO2@PS-N-卤胺纳米粒子对大肠杆菌和金黄色葡萄球菌都具有良好的抗菌效果,其抗菌活性为微米尺寸N-卤胺的2-8倍。SiO2@PS-N-卤胺纳米粒子对金黄色葡萄球菌的抗菌性能优于大肠杆菌。此外,研究还发现N-卤胺抗菌材料具有较高的稳定性。
     2.制备了四种单分散的SiO_2@N-卤胺核壳纳米粒子,并对其结构、形貌及组成进行了表征。四种纳米粒子都具有规整的球形外貌和明显的核壳结构,且相互间没有太大差异。SiO2@N-卤胺纳米粒子的尺寸可以通过调节SiO_2模板粒子的大小来控制。利用滴定法对SiO_2@N-卤胺纳米粒子中的氯含量进行了定量测定。另外,通过抗菌实验研究了材料尺寸、氯含量、接触时间对SiO_2@N-卤胺纳米粒子的抗菌性能的影响。FTIR测试证明了SiO_2@N-卤胺纳米粒子的可再生性。杀菌后的SiO_2@N-卤胺纳米粒子经简单的氯化处理后,使其重新具有抗菌活性。
     3.制备了单分散的Fe_3O_4@SiO2@N-卤胺纳米粒子,并利用多种测试手段对其进行了表征。通过抗菌实验研究了Fe_3O_4@SiO2@N-卤胺纳米粒子和微米尺寸的N-卤胺的抗菌性能。两种材料对金黄色葡萄球菌和绿脓杆菌都具有抑菌效果,且Fe_3O_4@SiO2@N-卤胺纳米粒子的抗菌效果明显优于微米尺寸的N-卤胺。通过抗菌动力学实验发现,Fe_3O_4@SiO2@N-卤胺纳米粒子的抗菌性随着材料氯含量的增加而随之增强。磁性能研究表明,Fe_3O_4@SiO2@N-卤胺纳米粒子具有超顺磁性,这种磁性特征可使该材料在水溶液中具有较好的可回收性。
     4.制备了PSA@Fe_3O_4@SiO2-N-卤胺核壳纳米粒子,并研究了反应参数对纳米粒子形貌和各组分含量的影响。通过抗菌实验发现,PSA@Fe_3O_4@SiO2纳米粒子对金黄色葡萄球菌和绿脓杆菌没有抑菌效果,而微米尺寸的N-卤胺和PSA@Fe_3O_4@SiO2-N-卤胺纳米粒子对两种实验菌均具有抗菌效果,表明PSA@Fe_3O_4@SiO2-N-卤胺纳米粒子的抗菌性能源于N-卤胺。此外,N-卤胺抗菌材料对绿脓杆菌的抑菌效果优于金黄色葡萄球菌。磁性能研究表明,PSA@Fe_3O_4@SiO2-N-卤胺纳米粒子具有超顺磁性,且在水相中具有较强的磁响应性,可以通过外加磁场的方式对其进行分离和回收。
     综上所述,本论文设计制备了多种基于N-卤胺的抗菌纳米复合材料,通过缩小材料尺寸有效提高了N-卤胺的抗菌活性。另外,通过引入磁分离技术,使N-卤胺抗菌材料的分离和回收变得更加简单快速。
In response to the wide spreading of infectious diseases caused by pathogen,antibacterial materials that can effectively inhibit the growth of microorganisms haveattracted significant research interests. To date, sodium hypochlorite, ozone, chlorineoxide, metal ions, quaternary ammonium salts, quaternary phosphonium salts,peptides, guanidinium, N-halamines, etc., have been used in the development ofantibacterial materials. Among them, N-halamine antibacterial materials have receivedintensive interest because of their unique properties, such as antibacterial efficacy,stability in aqueous solution and in dry storage, regenerability upon exposure towashing cycles, lack of corrosion, low toxicity, and relatively low expense. Due tothese characteristics, the application of N-halamine antibacterial materials rangesacross the area of medical devices, hospitals, water purification systems, foodpackaging, food storage, hygienic products, etc. The antibacterial mechanism ofN-halamine materials involves the direct transfer of halogen from the N-halamine tobacterial cells, and the halogen has a strong tendency to participate in ionic reactions,thereby leading to destruction or inhibition of metabolic processes in microorganisms.Antibacterial performances of N-halamine materials strongly depend on theiractivated surface area. N-halamine materials with larger surface area can provide moreN-halamine functional sites to contact with the bacteria, and the N-halamineincrement can lead to the enhanced antibacterial efficiency.
     Nanomaterials with the size ranged from few nanometers to more than a hundrednanometers can present superior physical, chemical, and mechanical properties.Because of their small particle size and large surface area, nanomaterials possessremarkable potential and prospect. Therefore, to enhance antibacterial efficacy,fabrication of N-halamine materials with nanostructure to enlarge activate surface areais advisable. However, there is a major drawback to the application ofnanometer-sized N-halamine materials originating from the separation. Antibacterialperformance of N-halamine materials is usually conducted in an aqueous suspension,which requires an additional separation step to separate N-halamine nanomaterials from suspension, and separation of such fine nanostructures from a large volume ofsolution involves further expense.
     The recent successful synthesis of magnetic nanoparticles provides a convenienttool for exploring magnetic separation technique due to their specific characteristics.Magnetic separation is a technology involving the transport of magnetic ormagnetically susceptible particles in a gradient magnetic field. This technology can beemployed to recover desired species of submicron dimensions from solutioncontaining suspended solid particles or other biological particulates in a rapid andeasy way. Therefore, magnetic separation has been widely applied to various aspectsin biotechnology and biomedicine, such as cell sorting, enzyme immobilization, drugdelivery, and protein separation. The advantage of magnetic separation technology isto maximize the amount of target particles removed from the suspension whileminimizing the amount of time to carry out the separation process.
     In this thesis, a series of N-halamine-based antibacterial nanocomposite materialswere synthesized, and their antibacterial performances against Gram-positive andGram-negative bacteria were investigated. In addition, magnetic separation techniquewas introduced to facilitate the separation process of the N-halamine-basedantibacterial nanocomposite materials. The details are as follows:
     1. N-halamine-functionalized SiO_2@PS core-shell nanoparticles(SiO_2@PS-N-halamine) were prepared, and the effect of reaction condition onmorphology was studied. The excellent antibacterial activity of SiO_2@PS-N-halaminenanoparticles against E. coli and S. aureus was assayed via the minimum inhibitionconcentration (MIC) method. Antibacterial test indicated that SiO_2@PS-N-halaminenanoparticles displayed2-8times higher biocidal activity than the micrometer-sizedN-halamine, and these powerful and stable nano-sized biocides had higherantibacterial efficacy against S. aureus than E. coli. Finally, the long-term stability ofN-halamine structural biocide was confirmed.
     2. Four kinds of monodisperse SiO_2@N-halamine core-shell nanoparticles weresynthesized, and their structure, morphology, and component were characterizedsubsequently. All these nanoparticles have legible spherical shapes and obviouscore-shell structures, and no significant differences were observed in the morphologyamong them. Diameters of SiO_2@N-halamine nanoparticles were controlled viaadjusting the size of silica template. Chlorine contents of SiO_2@N-halamine nanoparticles were determined by the aid of iodometric/thiosulfate titration method.Effects of particle size, chlorine content, and contact time on antibacterial efficiencywere investigated. The regenerability feature of N-halamine-based materials wastestified by FTIR measurement. Hydantoin structure appeared after antibacterialperformance can convert to N-halamine via chlorination treatment.
     3. Monodisperse Fe_3O_4@SiO_2@N-halamine nanoparticles were fabricated andcharacterized by a series of measurement. Antibacterial test revealed that both themicrometer-sized N-halamine and Fe_3O_4@SiO_2@N-halamine nanoparticles possessedantibacterial property, and Fe_3O_4@SiO_2@N-halamine nanoparticles showed higherantibacterial capacity than micrometer-sized counterpart. The antibacterial kinetic testconfirmed that the antibacterial efficiency of Fe_3O_4@SiO_2@N-halamine nanoparticlesincreased with chlorine content. Magnetism study revealed thatFe_3O_4@SiO_2@N-halamine nanoparticles have super-paramagnetic property, whichcan make them magnetically separable from the aquaeos solution.
     4. PSA@Fe_3O_4@SiO_2-N-halamine core-shell nanoparticles were prepared, andeffects of reaction parameters on morphology and content were studied. Antibacterialtest revealed that both micrometer-sized N-halamine andPSA@Fe_3O_4@SiO_2-N-halamine nanoparticles have antibacterial activity against S.aureus and P. aeruginosa, while PSA@Fe_3O_4@SiO_2nanopartices without N-halaminemodification displayed no antibacterial property, indicating that antibacterialperformance of PSA@Fe_3O_4@SiO_2-N-halamine nanoparticles is provided by theN-halamine structure. Both these two N-halamine-structural materials have higherantibacterial efficacy against P. aeruginosa than S. aureus. Magnetism investigationshowed that PSA@Fe_3O_4@SiO_2-N-halamine nanoparticles have super-paramagneticproperty and magnetic response, and they can be separated readily by the aid of anexternal magnetic field.
     In summary, several N-halamine-based antibacterial nanocomposite materialswere synthesized, and their antibacterial performances were enhanced effectivelythrough particle size decrease. In addition, magnetic separation technology wasintroduced to facilitate the separation process of N-halamine-based materials.
引文
[1] X. Chen, S. S. Mao, Titanium dioxide nanomaterials: Synthesis, properties,modification, and applications, Chem. Rev.,2007,107,2891-2959.
    [2] A. Burns, H. Ow, U. Wiesner, Fluorescent core-shell silica nanoparticles: Towards“Lab on a Particle” architectures for nanobiotechnology, Chem. Soc. Rev.,2006,35,1028-1042.
    [3] M. C. Daniel, D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, andnanotechnology, Chem. Rev.,2004,104,293-346.
    [4] E. Katz, I. Willner, Intergrated nanoparticle-biomolecule hybrid systems:Synthesis, properties, and applications, Angew. Chem. Int. Ed.,2004,43,6042-6108.
    [5] F. Caruso, Nanoengineering of particle surfaces, Adv. Mater.,2001,13,11-23.
    [6] C. L. McCormick, S. E. Kirkland, A. W. York, Synthetic routes tostimuli-responsive micelles, vesicles, and surfaces via controlled/living radicalpolymerization, J. Macromol. Sci. C,2006,46,421-443.
    [7] M. Antonietti, K. Landfester, Polyreactions in miniemulsions, Prog. Polym. Sci.,2002,27,689-757.
    [8] B. D. Gates, New approaches to nanofabrication: Molding, printing, and othertechniques, Chem. Rev.,2005,105,1171-1196.
    [9] R. Roy, S. Komarneni, D. M. Roy, Multi-phasic ceramic composites made bysol-gel technique, Mater. Res. Soc. Sym. Proc.,1984,32,347-351.
    [10] S. Has, M. Wu, S. Chen, et al., Synthesis, morphology and physical properties ofmulti-walled carbon nanotube/biphenyl liquid crystalline epoxy composites,Carbon,2012,50,896-905.
    [11]孔晓丽,刘勇兵,杨波,纳米复合材料的研究进展,材料科学与工艺,2002,10,436-441.
    [12]王铀,沈静妹,制备聚合物纳米复合材料展望,化工新型材料,1998, l,8-12.
    [13]张恒,张力,纳米复合材料实用化技术前景,材料导报,2001,15,20-22.
    [14] J. Yan, Q. Ye, X. Wang, et al., CdS/CdSe quantum dot co-sensitized graphemenanocomposites via polymer brush template synthesis for potential photovoltaicapplications, Nanoscale,2012,4,2109-2116.
    [15] N. Jia, S. Li, M. Ma, et al., Hydrothermal fabrication, characterization, andbiological activity of cellulose/CaCO3bionanocomposites, Carbohyd. Polym.,2012,88,179-184.
    [16] S. Pothukuchi, Y. Li, C. P. Wong, Development of a novel polymer-metalnanacomposite obtained through the route of in situ reduction for integralcapacitor application, J. Appl. Polym. Sci.,2004,93,1531-1538.
    [17] L. Xiao, Y. Cao, J. Xiao, et al., High capacity, reversible alloying reactions inSnSb/C nanocomposites for Na-ion battery applications, Chem. Commun.,2012,48,3321-3323.
    [18] P. Persico, C. Carfagna, P. Musto, Nanocomposite fibers for cosmetotextileapplications, Macromol. Sympo.,2006,2349,147-155.
    [19] A. K. Cuentas-Gallegos, M. Lira-Cantu, N. Casan-Pastor, et al., Nanocompositehybrid molecular materials for application in solid-state electrochemicalsurpercapacitors, Adv. Funct. Mater.,2005,15,1125-1133.
    [20] S. Affatato, R. Torrecillas, P. Taddei, et al., Advanced nanocomposite materialsfor orthopaedic applications. I. A long-term in vitro wear study ofzirconi-toughened alumina, J. Biomed. Mater. Res. B,2006,78,76-82.
    [21] J. J. Schneider, Magnetic core/shell and quantum-confined semiconductornanoparticles via chimie douce organometallic synthesis Adv. Mater.,2001,13,529-533.
    [22] T. Ung, L. M. Liz-Marzán, P. Mulvaney, Redox catalysis using Ag@SiO2colloids, J. Phys. Chem. B,1999,103,6770-6773.
    [23] S. M. Marinakos, J. P. Novak, L. C. Brousseau, et al., Gold particles astemplateds for the synthesis of hollow polymer capsules, control of capsuledimensions and guest encapsulation, J. Am. Chem. Soc.,1999,121,8518-8522.
    [24] X. Teng, D. Black, N. J. Watkins, et al., Platinum-maghemite core-shellnanoparticles using a sequential synthesis, Nano Lett.,2003,3,261-264.
    [25] X. L. Li, T. J. Lou, X. M. Sun, et al., Highly sensitive WO3hollow-sphere gassensors, Inorg. Chem.,2004,43,5442-5449.
    [26] W. St ber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres inthe micron size range, J. Colloid Interface Sci.,1968,26,62-69.
    [27] Y. Zhu, H. Da, X. Yang, et al., Preparation and characterization of core-shellmonodispersed magnetic silica microspheres, Colloids Surfaces A,2003,231,123-129.
    [28] X. Xu, S. A. Asher, Synthesis and utilization of monodisperse hollow polymericparticles in photonic crystals, J. Am. Chem. Soc.,2004,126,7940-7945.
    [29]胡永红,容建华,刘应亮等, SiO2/Au核/壳结构纳米粒子的制备及表征,无机化学学报,2005,21,1672-1676.
    [30] F. Teng, Z. Tian, G. Xiong, et al., Preparation of CdS-SiO2core-shell particlesand hollow SiO2spheres ranging from nanometers to microns in the nonionicreverse microemulsions, Catal. Today,2004,93,651-657.
    [31] L. Y. Hao, C. L. Zhu, W. Q. Jiang, et al., Sandwich Fe2O3@SiO2@PPy ellipsoidalspheres and four types of hollow capsules by hematite olivary particles, J. Mater.Chem.,2004,14,2929-2934.
    [32] F. Caruso, Hollow capsule processing through colloidal templating andself-assembly, Chem. Eur. J.,2000,6,413-419.
    [33] R. A. Caruso, A. Susha, F. Caruso., Multilayered titania, silica, and laponitenanoparticle coatings on polystyrene colloidal templates and resulting inorganichollow spheres, Chem. Mater.,2001,13,400-409.
    [34] F. Caruso, Nanoengineering of Particle, Adv. Mater.,2001,13,11-22.
    [35] D. Wang, R. A. Caruso, F. Caruso, Synthesis of macroporous titania andinorganic composite materials from coated colloidal spheres-A novel route totune pore morphology, Chem. Mater.2001,13,364-371.
    [36] Z. Lu, Y. Qin, J. Fang, et al., Monodisperse magnetizable silica compositeparticles from heteroaggregate of carboxylic polystyrene latex and Fe3O4nanoparticles, Nanotechnology,2008,19,055602.
    [37] T. Ji, V. G. Lirtsman, Y. Avny, et al., Preparation, characterization, and applicationof Au-shell/polystyrene beads and Au-shell/magnetic beads, Adv. Mater.,2001,13,1253-1256.
    [38] J. H. Zhang, J. B. Liu, Facile methods to coat polystyrene and silica colloids withmetal, Adv. Funct. Mater.,2004,14,1089-1096.
    [39] C. Barthet, S. P. Armes, S. F. Lascelles, et al., Synthesis and characterization ofmicrometer-sized, polyaniline-coated polystyrene latexes, Langmuir,1998,14,2032-2041.
    [40] S. F. Lascelles, S. P. Armes, Synthesis and characterization of micrometre-sized,polypyrrole-coated polystyrene latexes, J. Mater. Chem.,1997,7,1339-1347.
    [41] M. A. Khan, S. P. Armes, Synthesis and characterization of micrometer-sizedpoly(3,4-ethylenedioxythiophene)-coated polystyrene latexes, Langmuir,1999,15,3469-3475.
    [42] S. F. Lascelles, S. P. Armes, P. A. Zhdan, et al., Surface characterization ofmicrometre-sized, polypyrrole-coated polystyrene latexes: Verification of a‘core–shell’ morphology, J. Mater. Chem.,1997,7,1349-1355.
    [43] M. A. Khan, S. P. Armes, Conducting polymer-coated latex particles, Adv. Mater.,2000,12,671-674.
    [44] Z. W. Niu, Z. Z. Yang, Z. B. Hu, et al., Polyaniline-silica composite conductivecapsules and hollow spheres, Adv. Funct. Mater.,2003,13,949-954.
    [45]黄俐研,杜江,刘正平,壳层可控导电聚吡咯/聚苯乙烯复合微球及聚吡咯中空微胶囊的制备,高等学校化学学报,2005,6,1186-1188.
    [46] J. Yin, X. Qian, J. Yin, et al., Preparation of ZnS/PS microspheres and ZnShollow shells, Mater. Lett.,2003,57,3859-3863.
    [47] J. Yin, X. Qian, J. Yin, et al., Preparation of polystyrene/zirconia core-shellmicrospheres and zirconia hollow shells, Inorg. Chem. Commun.,2003,6,942-945.
    [48] Z. Zhong, Y. Yin, B. Gates, et al., Preparation of mesoscale hollow spheres ofTiO2and SnO2by template against crystalline arrays of polystyrene beads, Adv.Mater.,2000,12,206-209.
    [49] S. Xuan, W. Jiang, X. Gong, et al., Magnetically separable Fe3O4/TiO2hollowspheres: Fabrication and photocatalytic activity, J. Phys. Chem. C,2009,113,553-558.
    [50] J. Li, W. Ma, C. Wei, et al., Poly(styrene-co-acrylic acid) core and silvernanoparticle/silica shell composite microspheres as high performancesurface-enhanced Raman spectroscopy (SERS) substrate and molecular barcodelable, J. Mater. Chem.,2011,21,5992-5998.
    [51] C. H. Zhou, J. F. Wu, Z. S. Zhang, et al., Synthesis and characterization ofcopolymer(core)-silver(shell) composite microspheres, Chinese J. Chem.,2005,23,1071-1075.
    [52] P. H. Wang, C. Y. Pan, Polymer-metal composite particles: Metal particles onpoly(St-co-MAA) microspheres, J Appl. Polym. Sci.,2000,75,1693-1698.
    [53] P. H. Wang, C. Y. Pan, Preparation of styrene/methacrylic acid copolymermicrospheres and their composites with metal particles, Colloid Polym. Sci.,2000,278,581-586.
    [54] Y. Ma, L. Qi, J. Ma, et al., Synthesis of submicrometer-sized CdS hollow spheresin aqueous solutions of a triblock copolymer, Langmuir,2003,19,9079-9085.
    [55] Y. Ma, L. Qi, J. Ma, et al., Facile synthesis of hollow ZnS nanospheres in blockcopolymer solutions, Langmuir,2003,19,4040-4042.
    [56] D. Zhang, L. Qi, J. Ma, et al., Synthesis of submicrometer-sized hollow silverspheres in mixed polymer-surfactant solutions, Adv. Mater.,2002,14,1499-1502.
    [57] L. Qi, J. Li, J. Ma, Biomimetic morphogenesis of calcium carbonate in mixedsolutions of surfactants and double-hydrophilic block copolymers, Adv. Mater.,2002,14,300-303.
    [58] T. Liu, Y. Xie, B. Chu, Use of block copolymer micelles on formation of hollowMoO3nanospheres, Langmuir,2000,16,9015-9022.
    [59] J. Du, Y. Chen, Y. Zhang, et al., Organic/inorganic hybrid vesicles based on areactive block copolymer, J. Am. Chem. Soc.,2003,125,14710-14711.
    [60] Q. Sun, P. J Kooyman, J. G. Grossmann, et al., The formation of well-definedhollow silica spheres with multilamellar shell structure, Adv. Mater.,2003,15,1097-1100.
    [61] L. Zhang, M. Wan, Self-assembly of polyaniline-from nanotubes to hollowmicrospheres, Adv. Funct. Mater.,2003,13,815-820.
    [62] Z. Wei, M. Wan, Hollow microspheres of polyaniline synththesized with ananiline emulsion template, Adv. Mater.,2002,14,1314-1317.
    [63] J. H. Park, C. Oh, S. I. Shin, et al., Preparation of hollow silica microspheres inW/O emulsions with polymers, J. Colloid Interface Sci.,2003,266,107-114.
    [64] B. Putlitz, K. Landfester, H. Fischer, et al., The generation of armored latexes andhollow inorganic shells made of clay sheets by templating cationicminiemulsions and latexes, Adv. Mater.,2001,13,500-503.
    [65] S. Mishima, M. Kawamura, S. Matsukawa, et al., Preparation of a hollowmicrosphere composed of porous organic-inorganic hybrid wall in a W/Omicroemulsion system, Chem. Lett.,2002,31,1092-1093.
    [66] A. M. Collins, C. Spickermann, S. Mann, Synthesis of titania hollowmicrospheres using non-aqueous emulsions, J. Mater. Chem.,2003,13,1112-1114.
    [67] X. Wang, W. Zhou, J. Cao, et al., Preparation of core-shell CaCO3capsules viaPicking emulsion templates, J. Colloid Interface Sci.,2012,372,24-31.
    [68] R. L. Harbron, T. O. McDonald, S. P. Rannard, et al., One-pot, single-componentsynthesis of functional emulsion-templated hybrid inorganic-organic polymercapsules, Chem. Commun.,2012,48,1592-1594.
    [69] Y. He, A novel emulsifier-free emulsion route to synthesize ZnS hollowmicrospheres, Mater. Res. Bull.,2005,40,629-634.
    [70] J. S. Hu, Y. G. Guo, H. P. Liang, et al., Interface assembly synthesis of Inorganiccomposite hollow spheres, J. Phys. Chem. B,2004,108,9734-9738.
    [71] C. E. Fowler, D. Khushalani, S. Mann, Facile synthesis of hollow silicamicrospheres. J. Mater. Chem.,2001,11,1968-1971.
    [72] C. Fowler, D. Khushalani, S. Mann, Interfacial synthesis of hollow microspheresof mesostructured silica, Chem. Commun.,2001,19,2028-2029.
    [73] W. Li, X. Sha, W. Dong, et al., Synthesis of stable hollow silica microsphereswith mesoporous shell in nonionic W/O emulsion, Chem. Commun.,2002,20,2434-2435.
    [74] J. Jang, J. H. Oh, X. L. Li, A novel synthesis of nanocapsules using identicalpolymer core/shell nanospheres, J. Mater. Chem.,2004,14,2872-2880.
    [75] J. Bao, Y. Liang, Z. Xu, et al., Facile synthesis of hollow nickel submicrometerspheres, Adv. Mater.,2003,15,1832-1835.
    [76] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, et al., Colloidosomes: Selectivelypermeable capsules composed of colloidal particles, Science,2002,298,1006-1009.
    [77] Y. He, Preparation of polyaniline/nano-ZnO composites via a novel Pickeringemulsion route, Powder Technol.,2004,147,59-63.
    [78] Y. He, Preparation and modification of ZnO microspheres using a Pickeringemulsion as template, Mater. Lett.,2005,59,114-117.
    [79] Y. He, Synthesis of polyaniline/nano-CeO2composite microspheres via asolid-stabilized emulsion route, Mater. Chem. Phys.,2005,92,134-137.
    [80] Y. He, Nanostructured CeO2microspheres synthesized by a novel surfactant-freeemulsion, Powder Technol.,2005,155,1-4.
    [81] Y. He, Preparation of polyaniline microspheres with nanostructured surfaces by asolids-stabilized emulsion, Mater. Lett.,2005,59.2133-2136.
    [82] Q. Peng, Y. Dong, Y. Li, ZnSe semiconductor hollow microspheres, Angew.Chem. Int. Ed.,2003,115,3135-3138.
    [83] L. Zhu, X. Zheng, X. Liu, et al., In situ vesicle-template-interface reaction toself-encapsulated microsphere CdS, J. Colloid Interface Sci.,2004,273,155-159.
    [84] X. Zhang, Q. Zhao, Y. Tian, et al., Large scale fabrication of hollow palladiumnanospheres by template-free approach, Chem. Lett.,2004,33,244-245.
    [85] Y. L. Wang, L. Cai, Y. N. Xia, Monodisperse spherical colloids of Pb and theiruse as chemical templates to produce hollow particles, Adv. Mater.,2005,17,473-476.
    [86] Y. D. Yin, R. M. Rioux, C. K. Erdonmez, et al., Formation of hollownanocrystals through the nanoscale Kirkendall Effect, Science,2004,304,711-714.
    [87] H. P. Liang, H. M. Zhang, J. S. Hu, et al., Pt hollow nanospheres: Facilesynthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed.,2004,43,1540-1543.
    [88] B. Y. Ahn, S. I. Seok, I. C. Baek, et al., Core/shell silica-based in-situmicroencapsulation: A self-templating method, Chem. Commun.,2006,189.
    [89] Q. Zhang, Y. Zhai, F. Liu, et al., Synthesis of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]-silica core-shellparticles with a self-templating method and their fluorescent properties, Eur.Polym. J.,2008,44,3957-3962.
    [90] Q. Zhang, A. Dong, Y. Zhai, et al., Synthesis of1,4-bis(o-cyanostyryl)benzene-silica nanoparticles with core-shell structures and effectsof reaction conditions, J. Phys. Chem. C,2009,113,12033-12039.
    [91] Q. Zhang, R. Li, Y. Zhai, et al., Synthesis and characterization ofoctylmethoxycinamate-silica core-shell nanoparticles with a self-templatingmethod, Chem. Res. Chinese U.,2010,26,339-343.
    [92] Z. P. Qiao, G. Xie, J. M. Huang, et al., One-pot monomer self-assembly route toPbS/Poly(methyl methacrylate) core/shell nanocomposite thin coatings, J. Mater.Chem.,2002,12,611-613.
    [93] S. W. Kim, M. Kim, W. Y. Lee, et al., Fabrication of hollow palladium spheresand their successful application to the recy-clable heterogeneous catalyst forSuzuki coupling reactions, J. Am. Chem. Soc.,2002,124,7642-7643.
    [94]周磊,杨海红,梁远等,核-壳结构的Fe-FeOxH2x-3催化UV/H2O2降解腐殖酸,环境科学学报,2007,27,1968-1971.
    [95] L. Lu, G. Sun, H. Zhang, et al., Fabrication of core-shell Au-Pt nanoparticle filmand its potential application as catalysis and SERS substrate, J. Mater. Chem.,2004,14,1005-1009.
    [96] F. Akira, S. Yoshiaki, Core-shell emulsion composition for architecture,JP11-92708,1999.
    [97] T. Teruo, Y. Hideo, Core-shell structured aqueous adhesive for dry laminate,JP2000-119618,2000.
    [98]蒋红梅,王久芬,王香梅,新型核-壳结构丙烯酸酯乳胶涂料,化学世界,1999,198-200.
    [99]方菲,朱龙章,叶芹苹等,核-壳型磁性纳米微球的制备及在核酸提取中的应用,现代生物医学进展,2009,9,470-474.
    [100] T. Bahar, S. Serdar, Immobilization of glucoamylase on magnetic polystyreneparticles, J. Appl. Polym. Sci.,2002,76,69-73.
    [101] J. I. Taylor, C. D. Hurst, M. J. Davies, et al., Application of magnetite andsilica–magnetite composites to the isolation of genomic DNA, J. Chromatogr. A,2000,890,159-166.
    [102]俞英,周震涛,核/壳纳米晶二硒化镉/硫化镉的合成及荧光法测定溶菌酶,分析化学,2005,33,650-652.
    [103]李朝辉,王柯敏,谭蔚泓等,硅壳包被的核/壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用,科学通报,2005,50,1318-1322.
    [104] L. R. Hirsch, R. J. Stafford, J. A. Bankson, et al., Nanoshell-mediatednear-infrared thermal therapy of tumors under magnetic resonance guidance, P.Natl. Acad. Sci. USA,2003,100,13549-13554.
    [105] O. Cherniavskaya, L. Chen, M. A. isiam, et al., Photoionization of individualCdSe/CdS core/shell nanocrystals on silicon with2-nm oxide depends on surfaceband bending, Nano lett.,2003,3,497-501.
    [106] Y. Cao, Banin U., Growth and properties of semiconductor core/shellnanocrystals with InAs cores, J. Am. Chem. Soc.,2000,122,9692-9702.
    [107] P. Reiss, J. Bleuse, A. Pron, Highly luminescent CdSe/ZnSe core/shellnanocrystals of low size dispersion, Nano lett.,2002,2,781-784.
    [108] S. Q. Wang, J. Y. Zhang, C. H. Chen, Dandelion-like hollow microspheres ofCuO as anode material for lithium-ion batteries, Scripta Materialia,2007,57,337-340.
    [109] A. Rogach, A. Susha, F. Caruso, et al., Nano and microengineering:Three-dimensional colloidal photonic crystals prepared fromsubmicrometer-sized polystyrene latex spheres pre-coated with luminescentpolyelectrolyte/nanocrystal shells, Adv. Mater.,2000,12,333-337.
    [110] W. Zhao, Q. Y. Zhang, H. P. Zhang, et al., Preparation of PS/Ag microspheresand its application in microwave absorbing coating, J. Alloy Compd.,2009,473,206-211.
    [111]赵雯,张秋禹,王结良等,磁流变液及其应用,材料导报,18,68-71.
    [112] M. F. Bellin, C. Beigelman, S. P. Morel, Iron oxide-enhanced MRlymphography: initial experience, Eur. J. Radiol.,2003,34,257-264.
    [113] N. C. Balci, M. Sirvanci, C. Duran, et al., Hepatic adenomatosis MRIdemonstration with the use of superparamagnetic iron oxide, J. Clin. Imag.,2002,26,35-38.
    [114] R. S. Moday, L. L. Moday, Separation of cells labeled with immunonspecificiron oxide dextran microspheres using high magnetic chromatography, FEBS,1984,170,232-237.
    [115] C. Junu, F. H. Youse, J. C. Ching, Polythylene magnetic nanoparticle: A newmagnetic material for biomedical applications, J. Magn. Magn. Mater.,2002,246,382-391.
    [116] M. G. Bawendi, M. L. Steigerwald, L. E. Brus, The quantum mechanics oflarger semiconductor clusters (“quantum dots”), Annu. Rev. Phys. Chem.,1990,41,477-496.
    [117] H. Wei, E. Wang, Fe3O4magnetic nanoparticles as peroxidase mimetics andtheir applications in H2O2and glucose detection, Anal. Chem.,2008,80,2250-2254.
    [118] S. H. Sun, H. Zeng, Size-controlled synthesis of magnetic nanoparticles, J. Am.Chem. Soc.,2002,124,8204-8205.
    [119] D. K. Kim, M. Mikhaylova, Y. Zhang, et al., Protective coating ofsuperparamagnetic iron oxide nanoparticles, Chem. Mater.,2003,15,1617-1627.
    [120] T. J. Daou, G. Pourroy, S. Begin-Colin, at al., Hydrothermal synthesis ofmonodisperse magnetite nanoparticles, Chem. Mater.,2006,18,4399-4404.
    [121] J. A. L. Perez, M. A. L. Quintela, J. Mira, et al., Advances in the preparation ofmagnetic nanoparticles by the microemulsion method, J. Phys. Chem. B,1997,101,8045-8047.
    [122] Y. Lee, J. Lee, C. J. Bae, et al., Large-scale synthesis of uniform and srystallinemagnetite nanoparticles using weverse micelles as nanoreactions under refluxconditions, Adv. Funct. Mater.,2005,15,503-509.
    [123] L. A. Harris, J. D. Goff, A. Y. Carmichael, et al., Saunders magnetitenanoparticle dispersions stabilized with triblock sopolymerization, Chem. Mater.,2003,15,1367-1377.
    [124] S. H. Sun, H. Zeng, D. B. Robinson, et al., Monodisperse MFe2O4(M=Fe, Co,Mn) nanoparticles, J. Am. Chem. Soc.,2004,126,273-279.
    [125] T. Valdés-Solís, P. Tartaj, G. Marbán, et al., Facile synthetic route to nanosizedferrites by using mesoporous silica as a hard template, Nanotechnology,2007,18,145603.
    [126] W. H. Suh, K. S. Suslick, Magnetic and porous nanospheres from ultrasonicspray pyrolysis, J. Am. Chem. Soc.,2005,127,12007-12010.
    [127] T. Sugimoto, H. Itoh, T. Mochida, Shape control of monodisperse hematiteparticles by organic additives in the gel-sol system, J. Colloid Interface Sci.,1998,205,42-52.
    [128] Y. S. Kang, S. Risbud, J. F. Rabolt, et al., Synthesis and characterization ofnanometer-size Fe3O4and γ-Fe2O3particles, Chem. Mater.,1996,8,2209-2211.
    [129] F. Chenga, C. Sua, Y. Yanga, et al., Characterization of aqueous dispersions ofFe3O4nanoparticles and their biomedical applications, Biomaterials,2005,26,729-738.
    [130] M. Chen, Y. N. Kim, C. Li, et al., Preparation and characterization of magneticnanoparticles and their silica egg-yolk-like nanostructures: A prospectivemultifunctional nanostructure platform, J. Phys. Chem. C,2008,112,6710-6716.
    [131] C. K. Ong, H. C. Fang, Z. Yang, et al., Magnetic relaxation in Zn-Sn-dopedbarium ferrite nanoparticales for recording, J. Magn. Magn. Mater.,2000,213,413-417.
    [132] N. Wang, L. Zhu, D. Wang, et al., Sono-assisted preparation of highly efficientperoxidsae-like Fe3O4magnetic nanoparticles for catalytic removal of organicpollutants with H2O2, Ultrason. Sonochem.,2010,17,526-533.
    [133] T. A. Sorenson, S. A. Morton, G. D. Waddill, et al., Epitaxial electrodepositionof Fe3O4thin films on the low-index planes of gold, J. Am. Chem. Soc.,2002,124,7604-7609.
    [134] M. M. Benjamin, J. O. Leckie, Multiple-site adsorption of Cd, Cu, Zn and Pb onamorphous iron oxyhydroxide, J. Colloid Interface Sci.,1981,79,209-221.
    [135] P. Oswald, O. Clement, C. Chambon, Liver positive enhancement after injectionof superparamagnetic nanoparticles: Respective role of circulating and uptakenparticles, Magn. Reson. Imag.,1997,15,1025-1031.
    [136] J. Gong, Y. Liang, Y. Huang, et al., Ag/SiO2core-shell nanoparticle-basedsurface-enhanced Raman probes for immunoassay of cancer marker usingsilica-coated magnetic nanoparticles as separation tools, Biosens. Bioelectron.,2007,22,1501-1507.
    [137] J. Nam, C. S. Thaxton, C. A. Mirkin, et al., Nanoparticle-based biobar codes forthe ultrasensitive detection of proteins, Science,2003,301,1884-1886.
    [138] S. Chen, X. Zhang, S. Cheng, et al., Functionalied amphiphilic hyperbrancedpolymers for targeted drug delivery, Biomacromolecules,2008,9,2578-2585.
    [139] J. L. Corchero, A. Villaverde, Biomedical applications of distally controlledmagnetic nanoparticles, Trends Biotechnol.,2009,27,468-476.
    [140] J. Wan, W. Cai, X. Meng, et al., Monodisperse water-soluble magnetitenanoparticles prepared by polyol process for high-performance magneticresonance imaging, Chem. Commun.,2007,5004-5006.
    [141] S. Lee, H. Yoon, J. Suh, et al., Multifucntional magnetic gold nanocomposites:human epithelial cancer detection via magnetic resonance imaging and localizedsynchronous therapy, Adv. Funct. Mater.,2008,18,258-264.
    [142] J. Berret, N. Schonbeck, F. Gazeau, et al., Controlled clustering ofsuperparamagnetic nanoparticles using block copolymers: Design of newcontrast agents for magnetic resonance imaging, J. Am. Chem. Soc.,2006,128,1755-1761.
    [143] J. M. Perez, L. Josephson, T. O’oughlin, et al., Magnetic relaxation switchescapable of sensing molecular interactions, Nat. Biotechnol.,2002,20,816-820.
    [144] C. Chiang, C. Sung, T. Wu., Application of superparamagnetic nanoparticles inpurification of plasmid DNA from bacterial cells, J. Chromatogar B,2005,822,54-60.
    [145] I. J. Bruce, T. Sen, Surface modification of magnetic nanoparticles withalkoxysilanes and their application in magnetic bioseparation, Langmuir,2005,21,7029-7035.
    [146]陈克正,王丽平,刘兴斌,纳米微粒在生物医药领域中的应用研究,药学进展,2000,24,193-196.
    [147] M. H. Krause, K. K.Kwong, E. S. Gragoudas, et al., MRI of blood volume withsuperparamagnetic iron in choroidal melanoma treated with thermotherapy,Magn. Reson. Imag.,2004,22,779-787.
    [148] A. Mahapatra, N. Garg, B. P. Nayak, et al., Studies on the synthesis ofelectrospun PAN-Ag composite nanofibers for antibacterial application, J. Appl.Polym. Sci.,2012,124,1178-1185.
    [149] C. C. Trapalis, P. Keivanidis, G. Kordas, et al., TiO2(Fe3+) nanostructured thinfilm with antibacterial properties, Thin Solid Film,2003,433,86-190.
    [150] B. Mahltig, D. Fiedler, A. Fischer, et al., Antimicrobial coating ontextiles-modification of sol-gel layers with organic and inorganic biocides, J.So-Gel Sci. Technol.,2010,55,269-277.
    [151] T. Yang, C. Chou, C. Li, Antibacterial activity of N-alkylated disaccharidechitosan derivatives, Int. J. Food Microbiol.,2005,97,237-245.
    [152] N. Kawabata, M. Nishiguchi, Antibacterial activity of soluble pyridinium-typepolymers, Appl. Environ. Microb.,1988,54,2532-2535.
    [153] A. Kamazawa, T. Ikeda, T. Endo, Phosphonium salts as a novel class of cationicbiocides: Ⅷ. Synergistic effect on antibacterial activity of polymericphosphonium and ammonium salts, J. Appl. Polym. Sci.,1994,53,1245-1249.
    [154] P. Adriana, C. M. Davidescu, R. Trif, Study of quaternary ‘onium’ salts graftedcopolymers: antibacterial activity of quaternary salts grafted on ‘gel-type’styrene/divinylbenzend copolymers, React. Funct. Polym.,2003,55,151-158.
    [155] M. Ye, H. Neetoo, H. Chen, Control of Listeria monocytogenes on ham steaksby antimicrobials incorporated into chitosan-coated plastic films, FoodMicrobiol.,2008,25,260-268.
    [156] M. Niu, X. Liu, J. Dai, et al., Molecular structure and properties of wool fibersurface-grafted with nano-antibacterial materials, Spectrochim. Acta A,2012,86,283-293.
    [157] P. A. Fulmer, J. H. Wynne, Development of broad-spectrum antimicrobial latexpaint surfaces employing active amphiphilic compounds, ACS Appl. Mater.Interfaces,2011,3,2878-2884.
    [158] M. P. Cullinan, J. E. Palmer, A. D. Carle, et al., Long term use of triclosantoothpaste and thyroid function, Sci. Total Environ.,2012,416,75-79.
    [159] H. Bai, Z. Liu, D. D. Sun, A hierarchically structured and multifunctionalmembrane for water treatment, Appl. Catal. B,2012,111,571-577.
    [160] K. Hashimoto, Y. Toda, Evaluation method of antibacterial activity of ceramicsmaterials with antimicrobial characteristics and its application tophosphatecompounds, J. Inorg. Mater.,1996,3,452-459.
    [161] J. E. LaDow, D. C. Warnock, K. M. Hamill, et al., Bicephalic amphiphilearchitecture affects antibacterial acivity, Eur. J. Med. Chem.,2011,46,4219-4226.
    [162] X. Liang, M. Sun, L. Li, et al., Preparation and antibacterial activities ofpolyaniline/Cu0.05Zn0.95O nanocomposites, Dalton Trans.,2012,41,2804-2811.
    [163] T. Nagashima, A. Enoki, G. Fuse, Method for assay of antibacterial activity oftextile treated with antimicrobial and deodorant reagents, J. Antibact. Antifung.Agent,1997,15,325-332.
    [164]马铁成,刘敬肖,高文元等,抗菌陶瓷釉面砖的制备及其性能研究,中国陶瓷工业,2002,9,1-4.
    [165]李彦峰,汪斌华,黄婉霞等,纳米无机抗菌材料抗菌性能研究,化工新型材料,2002,30,44-46.
    [1] E. T. Urbansky, The fate of the haloacetates in drinking water-chemical kinetics inaqueous solution, Chem. Rev.,2001,101,3233-3243.
    [2] S. D. Richardson, Water analysis: Emerging contaminants and current issues, Anal.Chem.,2007,79,4295-4324.
    [3] G. Kleiser, F. H. Frimmel, Removal of precursors for disinfection by-products(DBPs)-differences between ozone-and OH-radical-induced oxidation, Sci. TotalEnviron.,2000,256,1-9.
    [4] C. Debiemme-Chouvy, S. Haskouri, G. Folcher, et al., An original route toimmobilize on organic biocide onto a transparent tin dioxide electrode, Langmuir,2007,23,3873-3879.
    [5] U. von Gunten, Ozonation of drinking water: Part Ⅰ. Oxidation kinetics andproduct formation, Water Res.,2003,37,1443-1467.
    [6] K. Biswas, S. Craik, D. W. Smith, et al., Synergistic inactivation ofCryptosporidium parvum using ozone followed by free chlorine in natural water,Water Res.,2003,37,4737-4747.
    [7] R. Flyunt, A. Leitzke, G. Mark, et al., Determination of˙OH, O2˙-, andhydroperoxide yields in ozone peactions in aqueous solution, J. Phys. Chem. B,2003,107,7242-7253.
    [8] M. Cho, H. Chung, J. Yoon, Quantitative evaluation of the synergistic sequentialinactivation of bacillus subtilis spores with ozone followed by chlorine, Environ.Sci. Technol.,2003,37,2134-2138.
    [9] Y. Li, W. K. Leung, K. L. Yeung, et al., A multilevel antimicrobial coating basedon polymer-encapsulated ClO2, Langmuir,2009,25,13472-13480.
    [10] E. Veschetti, B. Cittadini, D. Maresca, et al., Inorganic by-products in watersdisinfection with chlorine dioxide, Microchem. J.,2005,79,165-170.
    [11] T. Lim, T. Murakami, M. Tsuboi, et al., Preparation of a colored conductive paintelectrode for electrochemical inactivation of bacteria, Biotecnol. Bioeng.,2003,81,299-304.
    [12] N. Sinkaset, A. M. Nishimura, J. A. Pihl, et al., Slow heterogeneous chargetransfer kinetics for the Cl2-/ClO2redox couple at platinum, gold, and carbonelectrodes. Evidence for nonadiabatic electron transfer, J. Phys. Chem. A,1999,103,10461-10469.
    [13] E. C. Wert, F. L. Rosario-Ortiz, D. D. Drury, et al., Formation of oxidationbyproducts from ozonation of wastewater, Water Res.,2007,41,1481-1490.
    [14] K. Knapas, M. Ritala, In situ reaction mechanism studies on atomic layerdeposition of ZrO2from (CpMe)2Zr(OMe)Me and water or ozone, Chem. Mater.,2008,20,5698-5705.
    [15] G. Hua, D. A. Reckhow, Comparison of disinfection byproduct formation fromchlorine and alternative disinfections, Water Res.,2007,41,1667-1678.
    [16] G. Sauvet, W. Fortuniak, K. Kazmierski, et al., Amphiphilic block and statisticalsiloxane copolymers with antimicrobial activity, J. Polym. Sci. A,2003,41,2939-2948.
    [17] J. C. Tiller, C. Sprich, L. Hartmann, Amphiphilic conetworks as regenerativecontrolled releasing antimicrobial coatings, J. Control. Release,2005,103,355-367.
    [18] O. Bouloussa, F. Rondelez, V. Semetey, A new, simple approach to conferpermanent antimicrobial properties to hydroxylated surfaces by surfacefunctionalization, Chem. Commun.,2008,951-953.
    [19] C. J. Waschinski, J. Zimmermann, U. Salz, et al., Design of contact-activeantimicrobial acrylate-based materials using biocidal macromers, Adv. Mater.,2008,20,104-108.
    [20] E. Kenawy, F. I. Abdel-Hay, A. E. R. El-Shanshoury, et al., Biologically activepolymers. Ⅴ. Synthesis and antimicrobial activity of modified poly(glycidylmethacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternaryammonium and phosphonium salts, J. Polym. Sci. A,2002,40,2384-2393.
    [21] Z. Chen, Y. Sun, N-halamine-based antimicrobial addititives for polymers:preparation, characterization, and antimicrobial activity, Ind. Eng. Chem. Res.,2006,45,2634-2640.
    [22] Y. Sun, G. Sun, Novel regenerable N-halamine polymeric biocides. Ⅰ. Synthesis,characterization, and antibacterial activity of hydantoin-containing polymers, J.Appl. Polym. Sci.,2001,80,2460-2467.
    [23] Y. Sun, G. Sun, Synthesis, characterization, and antibacterial activities of novelN-halamine polymer beads prepared by suspension copolymerization,Macromolecules,2002,35,8909-8912.
    [24] G. Sun, W. B. Wheatley, S. D. Worley, A new cyclic N-halamine biocidalpolymer, Ind. Eng. Chem. Res.,1994,33,168-170.
    [25] Y. Chen, S. D. Worley, J. Kim, et al., Biocidal poly(styrenehydantoin) beads fordisinfection of water, Ind. Eng. Chem. Res.,2003,42,280-284.
    [26] A. D. Fuchs, J. C. Tiller, Contact-active antimicrobial coating derived fromaqueous suspension, Angew. Chem. Int. Ed.,2006,45,6759-6762.
    [27] C. Z. Chen, S. L. Cooper, Recent advances in antimicrobial dendrimers, Adv.Mater.,2000,12,843-846.
    [28] D. Liu, S. Choi, B Chen, et al., Nontoxic membrance-active antimicrobialarylamide oligomers, Angew. Chem. Int. Ed.,2004,43,1158-1162.
    [29] C. J. Waschinski, J. C. Tiller, Poly(oxazoline)s with telechelic antimicrobialfunctions, Biomacromolecules,2005,6,235-243.
    [30] A. M. P. McDonnell, D. Beving, A. Wang, et al., Hydrophilic and antimicrobialzeolite coatings for gravity-independent water separation, Adv. Funct. Mater.,2005,15,336-340.
    [31] A. E. Madkour, G. N. Tew, Perspective towards self-sterilizing medical devices:Controlling infection, Polym. Int.,2008,57,6-10.
    [32] T. A. Ostomel, P. K. Stoimenov, P. A. Holden, et al., Host-guest composites forinduced hemostasis and therapeutic healing in traumatic injuries, J. Thromb.Thrombolysis.,2006,22,55-67.
    [33] J. K. Kumar, J. S. Oliver, Proximity effects in monolayer films: Kinetic analysisof amide bond formation at the air-water interface using1H NMR spectroscopy,J. Am. Chem. Soc.,2002,124,11307-11314.
    [34] J. Parrondo, F. Mijangos, B. Rambabu, Platinum/tin oxide/carbon cathodecatalyst for high temperature PEM fuel cell, J. Power Sources,2010,195,3977-3983.
    [35] M. Trépanier, A. K. Dalai, N. Abatzoglou, Synthesis of CNT-supported cobaltnanoparticle catalysts using a microemulsion technique: Role of nanoparticle sizeon reducibility, activity and selectivity in Fisher-Tropsch reactions, Appl. Catal.A: Gen.,2010,374,79-86.
    [36] S. Kumar, V. Singh, S. Aggarwal, et al., Influence of processing methodology onmagnetic behavior of multicomponent ferrite nanocrystals, J. Phys. Chem. C,2010,114,6272-6280.
    [37] A. Camenzind, T. Schweizer, M. Sztucki, et al., Structure&strength ofsilica-PDMS nanocomposites, Polymer,2010,51,1796-1804.
    [38] K. Gude, R. Narayanan, Synthesis and characterization of colloidal-supportedmetal nanoparticles as potential intermediate nanocatalysts, J. Phys. Chem. C,2010,114,6356-6362.
    [39] Z. Li, J. Zhang, J. Du, et al., Preparation of silica microrods with nano-sizedpores in ionic liquid microemulsions, Colloids Surf. A,2006,286,117-120.
    [40] T. K. Jain, I. Roy, T. K. De, et al., Nanometer silica particles encapsulating activecompounds: A novel cermic drug carrier, J. Am. Chem. Soc.,1998,120,11092-11095.
    [41] T. Zidki, H. Cohen, D. Meyerstein, et al., Effect of silica-supported silvernanoparticles on the dihydrogen yields from irradiated aqueous solutions, J. Phys.Chem. C,2007,111,10461-10466.
    [42] D. Gao, Z. Zhang, M. Wu, et al., A surface functional monomer-directingstrategy for highly dense imprinting of TNT at surface of silica nanoparticles, J.Am. Chem. Soc.,2007,129,7859-7866.
    [43] S. G. Lee, Y. S. Jang, S. S. Park, et al., Synthesis of fine sodium-free silicapowder from sodium silicate using w/o emulsion, Mater. Chem. Phys.,2006,100,503-506.
    [44] A. Letailleur, J. Teisseeire, N. Chemin, et al., Chemorheology of sol-gel silica forthe patterning of high aspect ratio structures by nanoimprint, Chem. Mater.,2010,22,3143-3151.
    [45] S. Tang, S. Vongehr, X. Meng, Carbon spheres with controllable silvernanoparticle doping, J. Phys. Chem. C,2010,114,977-982.
    [46] M. D. McConnell, M. J. Kraeutler, S. Yang, et al., Patchy and multiregion janusparticles with tunable optical properties, Nano Lett.,2010,10,603-609.
    [47] J. A. Snyder, J. D. Madura, Interaction of the phospholipid head group withrepresentative quartz and aluminosilicate structures: An ab initio study, J. Phys.Chem. B,2008,112,7095-7103.
    [48] V. Bolis, C. Busco, V. Aina, et al., Surface properties of silica-based biomaterials:Ca species at the surface of amorphous silica as model sites, J. Phys. Chem. C,2008,112,16879-16892.
    [49] X. Ding, W. Xue, Y. Ma, et al., Theoretical investigation of the selectiveoxidation of methanol to formaldehyde on vanadium oxide species supported onsilica: Umbrella model, J. Phys. Chem. C,2010,114,3161-3169.
    [50] G. Wang, Y. Weng, J. Zhao, et al., Preparation of a functional poly(ether imide)membrane for potential alkaline fuel cell applications: Chloromethylation, J.Appl. Polym. Sci.,2009,112,721-727.
    [51] G. Wang, Y. Weng, D. Chu, et al., Developing a polysulfone-based alkalineanion exchange membrane for improved ionic conductivity, J. Membrance Sci.,2009,332,63-68.
    [52] Q. Zhang, A. Dong, Y. Zhai, et al., Synthesis of1,4-bis(o-cyanostyryl)benzene-slica nanoparticles with core-shell structures and effects of reactionconditions, J. Phys. Chem. C,2009,113,12033-12039.
    [53] Q. Zhang, Y. Zhai, F. Liu, et al., Synthesis of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]-silica core-shell particles with aself-templating method and their fluorescent preperties, Eur. Polym. J.,2008,44,3957-3962.
    [54] P. Xu, H. Wang, R. Tong, et al., Preparation and morphology of SiO2/PMMAnanohybrids by microemulsion polymerization, Colloid Polym. Sci.,2006,284,755-762.
    [55] X. Cheng, M. Chen, L. Wu, et al., A novel and facile preparation method ofhollow silica spheres containing small SiO2cores, J. Polym. Sci. A,2007,45,3431-3439.
    [56] B. Gao, C. Qi, Q. Liu, Immobilization of quaternary ammonium salts on graftingparticle polystyrene/SiO2and preliminary study of application performance, Appl.Surf. Sci.,2008,254,4159-4165.
    [57] T. Yao, Q. Lin, K. Zhang, et al., Preparation of SiO2@polystyrene@polypyrrolesandwich composites and hollow polypyrrole capsules with movable SiO2spheres indise, J. Colloid Interface Sci.,2007,315,434-438.
    [58] X. Qiao, M. Chen, J. Zhou, et al., Synthesis of raspberry-likesilica/polystyrene/silica multilayer hybrid particles via miniemulsionpolymerization, J. Polym. Sci. A,2007,45,1028-1037.
    [59] P. Wilhelm, D. Stephan, On-line tracking of the coating of nanoscaled silica withtitania nanoparticles via zata-potential measurements, J. Colloid Interface Sci.,2006,293,88-92.
    [60] A. Schmid, S. P. Armes, C. A. P. Leite, et al., Efficient preparation ofpolystyrene/silica colloidal nanocomposite particles by emulsion polymerizationusing a glycerol-functionalized silica sol, Langmuir,2009,25,2486-2494.
    [61] Z. Cai, Z. Song, C. Yang, et al., Synthesis of2-hydroxypropyldimethylbenzylammonium N,O-(2-carboxyethyl) chitosan chloride and itsantibacterial activity, J. Appl. Polym. Sci.,2009,111,3010-3015.
    [62] J. Jang, Y. Kim, Fabrication of monodisperse silica-polymer core-shellnanoparticles with excellent antimicrobial efficacy, Chem. Commun.,2008,4016-4018.
    [63] K. Barnes, J. Liang, R. Wu, et al., Synthesis and antimicrobial applications of5,5’-ethylenebis[5-methyl-3-(3-triethoxysilylpropyl)hydantoin], Biomaterials,2006,27,4825-4830.
    [64] K. J. Smith, C. M. Petit, K. Aubart, et al., Structural variation and inhibitorbinding in polypeptide deformylase from four different bacterial species,Protein Sci.,2003,12,349-360.
    [65] A. Becker, I. Schlichting, W. Kabsch, et al., Structure of peptide deformylase andidentification of the substrate binding site, J. Bio. Chem.,1998,273,11413-11416.
    [66] J. Guilloteau, M. Mathieu, C. Giglione, et al., The crystal structure of fourpeptide deformylases bound to the antibiotic actinonin reveal two distinct types:A platform for the structure-based design of antibacterial agents, J. Mol. Bio.,2002,320,951-962.
    [1] H. Zou, S. Wu, J. Shen, Polymer/silica nanocomposites: Preparation,characteriazation, properties, and applications, Chem. Rev.,2008,108,3893-3957.
    [2] M. Gelbrich, M. Feyen, A. M. Schmidt, Magnetic thermoresponsive core-shellnanoparticles, Macromolecules,2006,39,3469-3472.
    [3] H. Xiong, Y. Xu, Q. Ren, et al., Stable aqueous ZnO@polymer core-shellnanoparticles with tunable photoluminescence and their application in cellimaging, J. Am. Chem. Soc.,2008,130,7522-7523.
    [4] H. Guo, Y. Chen, X. Chen, et al., Facile synthesis of near-monodisperse Ag@Nicore-shell nanoparticles and their application for catalytic generation ofhydeogen, Nanotechnology,2011,22,195604.
    [5] H. Dong, M. Zhu, J. Yoon, et al., One-pot synthesis of robust core/shell goldnanoparticles, J. Am. Chem. Soc.,2008,130,12852-12853.
    [6] K. Somaskandan, T. Veres, M. Niewczas, et al., Surface protect and modified ironoxide based core-shell nanoparticles foe biological applications, New J. Chem.,2008,32,201-209.
    [7] B. S. Inbaraj, T. H. Kao, T. Y. Tsai, et al., The synthesis and characterization ofpoly(γ-glutamic acid)-coated magnetite nanoparticles and their effects onantibacterial activity and cytotoxicity, Nanotechnology,2011,22,075101.
    [8] D. P. Wang, H. C. Zeng, Multifunctional roles of TiO2nanoparticles forarchitecture of complex core-shells and hollow spheres of SiO2-TiO2-polyanilinesystem, Chem. Mater.,2009,21,4811-4823.
    [9] G. Liu, H. Wang, X. Yang, Synthesis of pH-sensitive hollow polymer microsphereswith movable magnetic core, Polymer,2009,50,2578-2586.
    [10] V. A. Bershtein, V. M. Gun’ko, L. M. Egorova, et al., Well-defined oxidecore-polymer shell nanoparticles: Interfacial interactions, peculiar dynamics, andtransitions in polymer nanolayers, Langmuir,2010,26,10968-10979.
    [11] S. Masse, G. Laurent, F. Chuburu, et al., Modification of the st ber process by apolyazamacrocycle leading to unusual core-shell silica nanoparticles, Langmuir,2008,24,4026-4023.
    [12] M. Karg, T. Hellweg, Smart inorganic/organic hybrid microgels: Synthesis andcharacterization, J. Mater. Chem.,2009,19,8714-8727.
    [13] J. L. Arias, V. Gallardo, F. Linares-Molinero, et al., Preparation andcharacterization of carbonyl iron/poly(butylcyanoacrylate) core/shellnanoparticles, J. Colloid Interface Sci.,2006,299,599-607.
    [14] K. Shin, J. Kim, K. Suh, A facile process for generating monolithic-structurednano-silica/polystyrene multi-core/shell microspheres by a seeded sol-gel processmethod, J. Colloid Interface Sci.,2010,350,581-585.
    [15] N. Yeole, D. Hundiwale, T. Jana, Synthesis of core-shell polystyrenenanoparticles by surfactant free emulsion polymerization using macro-RAFTagent, J. Colloid Interface Sci.,2011,354,506-510.
    [16] Y. Wang, Y. Yan, J. Cui, et al., Encapsulation of water-insoluble drugs in polymercapsules prepared using mesoporous silica templates for intracellular drugdelivery, Adv. Mater.,2010,22,4293-4297
    [17] E. Tang, S. Dong, Preparation of styrene polymer/ZnO nanocomposite latex viaminiemulsion polymerization and its antibacterial property, Colloid Polym. Sci.,2009,287,1025-1032.
    [18] G. Liu, H. Wang, X. Yang, et al., Synthesis of tri-layer hybrid microspheres withmagnetic core and functional polymer shell, Eur. Polym. J.,2009,45,2023-2032.
    [19] K. Landfester, Miniemulsion polymerization and the structure of polymer andhybrid nanoparticles, Angew. Chem. Int. Ed.,2009,48,4488-4507.
    [20] G. Sun, X. Xu, J. R. Bickett, et al., Durable and regenerable antibacterialfinishing of fabrics with a new hydantoin derivative, Ind. Eng. Chem. Res.,2001,40,1016-1021.
    [21] Z. Chen, Y. Sun, N-halamine-based antimicrobial additives for polymers:Preparation, characterization, and antimicrobial activity, Ind. Eng. Chem. Res.,2006,45,2634-2640.
    [22] X. Sun, Z. Cao, Y. Sun, N-chloro-alkoxy-s-triazine-based antimicrobial additives:Preparation, characterization, and antimicrobial and biofilm-controlling functions,Ind. Eng. Chem. Res.,2009,48,607-612.
    [23] S. Liu, G. Sun, New refreshable N-halamine polymeric biocides: N-chlorinationof acyclic amide grafted cellulose, Ind. Eng. Chem. Res.,2009,48,613-618.
    [24] M. R. Badrossamay, G. Sun, A study on melt grafting of N-halamine moietiesonto polyethylene and their antibacterial activities, Macromolecules,2009,42,1948-1954.
    [25] Z. Cao, Y. Sun, N-halamine-based chitosan: Preparation, characterization, andantimicrobial function, J. Biomed. Mater. Res. A,2008,85,99-107.
    [26] Z. Cao, Y. Sun, Polymeric N-halamine latex emulsions for use in antimicrobialpaints, ACS Appl. Mater. Interface,2009,1,494-504.
    [27] H. B. Kocer, A. Akdag, S. D. Worley, et al., Mechanism of photolyticdecomposition of N-halamine antimicrobial siloxane coatings, ACS Appl. Mater.Interface,2010,2,2456-2464.
    [28] X. Ren, H. B. Kocer, S. D. Worley, et al., Rechargeable biocidal cellulose:Synthesis and characterization of3-(2,3-dihydroxypropyl)-5,5-dimethylimidazolidine-2,4-dione, Carbohyd. Polym.,2009,75,683-687.
    [29] A. Akdag, M. L. McKee, S. D. Worley, Mechanism of formation of biocidalimidazolidin-4-one derivatives: An ab initio desnsity-functional theory study, J.Phys. Chem. A,2006,110,7621-7627.
    [30] Y. Sun, G. Sun, Novel refreshable N-halamine polymeric biocides: N-chlorinationof aromatic polyamides, Ind. Eng. Chem. Res.,2004,43,5015-5020.
    [31] Y. Sun, G. Sun, Synthesis, characterization, and antibacterial activities of novelN-halamine polymer beads prepared by suspension copolymerization,Macromolecules,2002,35,8909-8912.
    [32] Y. Sun, G. Sun, Novel regenerable N-halamine polymeric biocides. Ⅰ. Synthesis,characterization, and antibacterial activity of hydantoin-containing polymers, J.Appl. Polym. Sci.,2001,80,2460-2467.
    [33] A. Akdag, H. B. Kocer, S. D. Worley S D, et al., Why does Kevlar decompose,while nomex does not, when yteated with aqueous chlorine solutions?, J. Phys.Chem. B,2007,111,5581-5586.
    [34] E. Kenawy, S. D. Worley, R. Broughton, The chemistry and applications ofantimicrobial polymers: A state-of-the-art review, Biomacromolecules,2007,8,1359-1384.
    [35] M. Trépanier, A. K. Dalai, N. Abatzoglou, Synthesis of CNT-supported cobaltnanoparticle catalysts using a microemulsion technique: Role of nanoparticle sizeon reducibility, activity and selectivity in Fisher-Tropsch reactions, Appl. Catal.A: Gen.,2010,374,79-86.
    [36] S. Kumar, V. Singh, S. Aggarwal, et al., Influence of processing methodology onmagnetic behavior of multicomponent ferrite nanocrystals, J. Phys. Chem. C,2010,114,6272-6280.
    [37] K. Gude, R. Narayanan, Synthesis and characterization of colloidal-supportedmetal nanoparticles as potential intermediate nanocatalysts, J. Phys. Chem. C,2010,114,6356-6362.
    [38] A. Dong, Q. Zhang, T. Wang, et al., Immobilization of cyclic N-halamine onpolystyrene-functionalized silica nanoparticles: Synthesis, characterization, andbiocidal activity, J. Phys. Chem. C,2010,114,17298-17303.
    [39] F. Yang, Y. Chu, S. Ma, et al., Preparation of uniform silica/polypyrrole core/shellmicrospheres and polypyrrole hollow microspheres by the template of modifiedsilica particles using different modified agents, J. Colloid Interface Sci.,2006,301,470-478.
    [40] Q. Zhang, A. Dong, Y. Zhai, et al., Synthesis of1,4-bis(o-cyanostyryl)benzene-silica nanoparticles with core-shell structures and effects of reaction conditions, J.Phys. Chem. C,2009,113,12033-12039.
    [41] T. Yao, Q. Lin, K. Zhang, et al., Preparation of SiO2@polystyrene@polypyrrolesandwich composites and hollow polypyrrole capsules with movable SiO2spheres inside, J. Colloid Interface Sci.,2007,315,434-438.
    [42] P. Xu, H. Wang, R. Tong, et al., Preparation and morphology of SiO2/PMMAnanohybrids by microemulsion polymerization, Colloid Polym. Sci.,2006,284,755-762.
    [43] B. Gao, C. Qi, Q. Liu, Immobilization of quaternary ammonium salts on graftingparticle polystyrene/SiO2and preliminary study of application performance, Appl.Surf. Sci.,2008,254,4159-4165.
    [44] S. Fu, X. Wang, G. Guo, et al., Preparation and characterization ofnano-hydroxyapatite/poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) composite fibers for tissue, J. Phys. Chem. C,2010,114,18372-18378.
    [45] Z. Chen, Y. Sun, N-chloro-hindered amines as multifunctional polymer additives,Macromolecules,2005,38,8116-8119.
    [46] X. Ren, L. Kou, J. Liang, et al., Antimicrobial efficacy and light stability ofN-halamine siloxanes bound to cotton, Cellulose,2008,15,593-598.
    [47] J. Jang, Y. Kim, Fabrication of monodisperse silica-polymer core-shellnanoparticles with excellent antimicrobial efficacy, Chem. Commun.,2008,4016-4018.
    [48] Y. Chen, S. D. Worley, J. Kim, et al., Biocidal poly(styrenehydantoin) beads fordisinfection of water, Ind. Eng. Chem. Res.,2003,42,280-284.
    [1] Y. Sun, G. Sun, Synthesis, characterization, and antibacterial activity of novelN-halamine polymer beads prepared by suspension copolymerization,Macromolecules,2002,35,8909-8912.
    [2] J. Liang, R. Wu, J. W. Wang, et al., N-halamine biocidal coating, J. Ind. Microbiol.Biotechnol.,2007,34,157-163.
    [3] H. B. Kocer, A. Akdag, S. D. Worley, et al., Mechanism of photolyticdecomposition of N-halamine antimicrobial siloxane coating, ACS Appl. Mater.Interfaces,2010,2,2456-2464.
    [4] S. Liu, G. Sun, Durable and regenerable biocidal polymers: Acyclic N-halaminecotton cellulose, Ind. Eng. Chem. Res.,2006,45,6477-6482.
    [5] E. Kenaway, S. D. Worley, R. Broughton, The chemistry and applications ofantimicrobial polymers: A state-of-the-art review, Biomacromolecules,2007,8,1359-1384.
    [6] A. Akdag, H. B. Kocer, S. D. Worley, et al., Why does Kevlar decompose, whilenomex does not, when treated with aqueous chlorine solution?, J. Phys. Chem. B,2007,111,5581-5586.
    [7] A. Akdag, M. L. McKee, S. D. Worley, Mechanism of formation of biocidalimidazolidin-4-one derivatives: An ab initio density-functional theory study, J.Phys. Chem. A,2006,110,7621-7627.
    [8] J. Gnichwitz, R. Marczak, F. Werner, et al., Efficient synthetic access to cationicdendrons and their application for ZnO nanoparticles surface functionalization:New building blocks for dye-sensitized solar cells, J. Am. Chem. Soc.,2010,132,17910-17920.
    [9] A. Dong, Q. Zhang, T. Wang, et al., Immobilization of cyclic N-halamine onpolystyrene-functionalized silica nanoparticles: Synthesis, characterization, andbiocidal activity, J. Phys. Chem. C,2010,114,17298-17303.
    [10] Y. Wang, S. Maksimuk, R. Shen, et al., Synthesis of iron oxide nanoparticlesusing a freshly-made or recycled imidazolium-based ionic liquid, Green Chem.,2007,9,1051-1056.
    [11] M. I. Shukoor, F. Natalio, M. N. Tahir, et al., Superparamagnetic γ-Fe2O3nanoparticles with tailored functionality for protein separation, Chem. Commun.,2007,4677-4679.
    [12] C. H. Yu, C. C. H. Lo, K. Tam, et al., Monodisperse binary nanocomposite insilica with enhanced magnetization for magnetic separation, J. Phys. Chem. C,2007,111,7879-7882.
    [13] W. Zhou, N. Yao, G. Yao, et al., Facile synthesis of aminophenylboronicacid-functionalized magnetic nanoparticles for selective separation ofglycopeptides and glycoproteins, Chem. Commun.,2008,5577-5579.
    [14] C. Wang, L. Yin, L. Zhang, et al., Magnetic (γ-Fe2O3@SiO2)n@TiO2functionalhybrid nanoparticles with actived photocatalytic ability, J. Phys. Chem. C,2009,113,4008-4011.
    [15] D. R. Kattnig, A. Rosspeintner, G. Grampp, Fully reversible interconversionbetween locally excited fluorophore, exciplex, and radical lon pair demonstratedby a new magnetic field effect, Angew. Chem. Int. Ed.,2008,47,960-962.
    [16] H. Qian, Y. Hu, Z. Li, et al., ZnO/ZnFe2O4magnetic fluorescent bifunctionalhollow nanoparticles: Synthesis, characteriazation, and their optical/magneticproperties, J. Phys. Chem. C,2010,114,17455-17459.
    [17] P. Wang, Q. Shi, Y. Shi, et al., Magnetic permanently confined micelle arrays fortreating hydrophobic organic compound contamination, J. Am. Chem. Soc.,2009,131,182-188.
    [18] J. Jiang, H. Gu, H. Shao, et al., Bifunctional Fe3O4-Ag heterodimer nanoparticlesfor two-photon fluorescence imaging and magnetic manipulation, Adv. Mater.,2008,20,4403-4407.
    [19] Y. Sun, G. Sun, Novel regenerable N-halamine polymeric biocides. Ⅰ. Synthesis,characteriazation, and antibacterial activity of hydantoin-containing polymers, J.Appl. Polym. Sci.,2001,80,2460-2467.
    [20] Z. Lu, Y. Qin, J. Fang, et al., Monodisperse magnetizable silica compositeparticles from heteroaggregate of carboxylic polystyrene latex and Fe3O4nanoparticles, Nanotechnology,2008,19,055602.
    [21] W. St ber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres inthe micro size range, J. Colloid Interface Sci.,1968,26,62-69.
    [22] J. Jang, Y. Kim, Fabrication of monodisperse silica-polymer core-shellnanoparticles with excellent antimicrobial efficacy, Chem. Commun.,2008,4016-4018.
    [23] P. Sun, H. Zhang, C. Liu, et al., Preparation and characterization of Fe3O4/CdTemagnetic/fluorescent nanocomposites and their applications in immuno-labelingand fluorescent imaging of cancer cells, Langmuir,2010,26,1278-1284.
    [24] Z. Chen, Y. Sun, N-halamine-based antimicrobial additives for polymers:Preparation, characterization, and antimicrobial activity, Ind. Eng. Chem. Res.,2006,45,2634-3640.
    [25] C. Lai, Y. Wang, B. P. Uttam, et al., One-pot solvothermal synthesis ofFePt/Fe3O4core-shell nanoparticles, Chem. Commun.,2008,5342-5344.
    [26] J. Liu, L. Zhang, S. Shi, et al., A novel and universal route to SiO2-supportedorganic/inorganic hybrid noble metal nanomaterials via surface RAFTpolymerization, Langmuir,2010,26,14806-14813.
    [27] X. Liu, H. Cao, J. Yin, Generation and photocatalytic activities of Bi@Bi2O3microspheres, Nano Res.,2011,4,470-482.
    [28] Y. Tian, B. Yu, X. Li, et al., Facile solvothermal synthesis of monodisperse Fe3O4nanocrystals with precise size control of one nanometre as potential MRI contrastagents, J. Mater. Chem.,2011,21,2476-2481.
    [29] Z. Deng, M. Chen, L. Wu, Novel method to fabricate SiO2/Ag composite spheresand their catalytic, surface-enhanced raman scattering properties, J. Phys. Chem.C,2007,111,11692-11698.
    [30] T. Yao, Q. Lin, K. Zhang, et al., Preparation of SiO2@polystyrene@polypyrrolesandwich composites and hollow polypyrrole capsules with movable SiO2spheres inside, J. Colloid Interface Sci.,2007,315,434-438.
    [31] L. Zhou, C. Gao, W. Xu, Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalystswith multifunctional hyperbranched polyglycerol amplifers, Langmuir,2010,26,11217-11225.
    [32] J. Song, H. Kong, J. Jang, Enhanced antibacterial performance of cationicpolymer modified silica nanoparticles, Chem. Commun.,2009,5418-5420.
    [33] J. Guo, W. Yang, C. Wang, et al., Poly(N-isopropylacryamide)-coatedluminescent/amgnetic silica microspheres: Preparation, characterization, andbiomedical applications, Chem. Mater.,2006,18,5554-5562.
    [1] K. Barnes, J. Liang, R. Wu, et al., Synthesis and antimicrobial applications of5,5’-ethylenebis[5-methyl-3-(3-trithoxysilylpropyl)hydantoin], Biomaterials,2006,27,4825-4830.
    [2] E. T. Urbansky, The fate of the haloacetates in drinking water-chemical kinetics inaqueous solution, Chem. Rev.,2001,101,3233-3243.
    [3] S. D. Richardson, Water analysis: Emerging contaminants and current issues, Anal.Chem.,2007,79,4295-4323.
    [4] C. Debiemme-Chouvy, S. Haskouri, G. Folcher, et al., An original route toimmobilize an organic biocide onto a transparent tin dioxide electrode, Langmuir,2007,23,3873-3879.
    [5] K. Biswas, S. Craik, D. W. Smith, et al., Synergistic inactivation ofcryptosporidium parvum using ozone followed by free chlorine in natural water,Water Res.,2003,37,4737-4747.
    [6] R. Flyunt, A. Leitzke, G. Mark, et al., Determination of (OH)-O-center dot,O-2(canter dot), and hydroperoxide yields in ozone reactions in aqueous solution,J. Phys. Chem. B,2003,107,7242-7253.
    [7] N. Sinkaset, A. M. Nishimura, J. A. Pihl, et al., Slow heterogeneous chargetransfer kinetics for the Cl2-/ClO2redox couple at platinum, gold, and carbonelectrodes. Evidence for nonadiabatic electron transfer, J. Phys. Chem. A,1999,103,10461-10469.
    [8] Y. Li, W. K. Leung, K. L. Yeung, et al., A multilevel antimicrobial coating basedon polymer-encapsulated ClO2, Langmuir,2009,25,13472-13480.
    [9] X. Ran, L. Wang, D. Cao, et al., Synthesis, characterization, and in vitro biologicalactivity of cobalt (Ⅱ), copper (Ⅱ) and zinc (Ⅱ) schiff base complexes derivedfrom salicylaldehyde and D,L-selenomethionine, Appl. Organomet. Chem.,2011,25,9-15.
    [10] C. J. Waschinski, J. Zimmermann, U. Salz, et al., Design of contact-activeantimicrobial acrylate-based materials using biocidal macromers, Adv. Mater.,2008,20,104-108.
    [11] J. Song, H. Kong, J. Jang, Bacterial adhesion inhibition of the quaternaryammonium functionalized silica nanoparticles, Colloids Surf. B,2011,82,651-656.
    [12] E. Kenawy, F. I. Abdel-Hay, A. E. R. El-Shanshoury, et al., Biologically activepolymers. Ⅴ. Synthesis and antimicrobial activity of modified poly(glycidylmethacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternaryammonium and phosphonium salts, J. Polym. Sci. A,2002,40,2384-2393.
    [13] X. Shen, G. Ye, X. Cheng, et al., Novel antimicrobial peptides identified from anendoparasitic wasp cDNA library, J. Pept. Sci.,2010,16,58-64.
    [14] L. Bromberg, E. P. Chang, C. Alvarez-Lorenzo, et al., Binding of functionalizedparamagnetic nanoparticles to bacterial lipopolysaccharides and DNA, Langmuir,2010,26,8829-8835.
    [15] L. Bromberg, E. P. Chang, T. A. Hatton, et al., Bactericidal core-shellparamagnetic nanoparticles functionalized with poly(hexamethylene biguanide),Langmuir,2011,27,420-429.
    [16] D. W. Emerson, Polymer-bound active chlorine: Disinfection of water in a flowsystem. Polymer supported reagents, Ind. Eng. Chem. Res.,1990,29,448-450.
    [17] A. E. I. Ahmed, J. N. Hay, M. E. Bushell, et al., Biocidal polymers (Ⅱ):Determination of biological activity of novel N-halamine biocidal polymers andevaluation for use in water filters, React. Funct. Polym.,2008,68,1448-1458.
    [18] J. Jang, Y. Kim, Fabrication of monodisperse silica-polymer core-shellnanoparticles with excellent antimicrobial efficacy, Chem. Commun.,2008,4016-4018.
    [19] K. Kenawy, S. D. Worley, R. Broughton, The chemistry and applications ofantimicrobial polymers: A state-of-the-art review, Biomacromolecules,2007,8,1359-1384.
    [20] H. B. Kocer, A. Akdag, S. D. Worley, et al., Mechanism of photolyticdecomposition of N-halamine antimicrobial siloxane coating, ACS Appl. Mater.Interfaces,2010,2,2456-2464.
    [21] Y. Sun, G. Sun, Synthesis, characterization, and antibacterial activities of novelN-halamine polymer beads prepared by suspension copolymerization,Macromolecules,2002,35,8909-8912.
    [22] X. Ren, L. Kou, J. Liang, et al., Antimicrobial efficacy and light stability ofN-halamine siloxanes bound to cotton, Cellulose,2008,15,593-598.
    [23] K. Barnes, J. Liang, S. D. Worley, et al., Modification of silicagel, cellulose, andpolyurethane with a sterically hindered N-halamine moiety to produceantimicrobial activity, J. Appl. Polym. Sci.,2007,105,2306-2313.
    [24] A. Akdag, H. B. Kocer, S. D. Worley, et al., Why does Kevlar decompose, whilenomex does not, when treated with aqueous chlorine solutions?, J. Phys. Chem.B,2007111,5581-5586.
    [25] J. Liang, R. Wu, J. W. Wang, et al., N-halamine biocidal coatings, J. Ind.Microbiol. Biotechnol.,2007,34,157-163.
    [26] U. Makal, L. Wood, D. E. Ohman, et al., Polyurethane biocidal polymericsurface modifiers, Biomaterials,2006,27,1316-1326.
    [27] A. D. Coulliette, L. A. Peterson, J. A. Mosberg, et al., Evaluation of a newdisinfection approach: Efficacy of chlorine and bromine halogenated contactdisinfection for reduction of viruses and microcystin toxin, Am. J. Trop. Med.Hva.,2010,82,279-288.
    [28] Y. Sun, G. Sun, Novel refreshable N-halamine polymeric biocides:N-chlorination of aromatic polyamides, Ind. Eng. Chem. Res.,2004,43,5015-5020.
    [29] M. Chen, L. Xie, F. Li, et al., Capillary-force-induced formation of luminescentpolystyrene/(rare-earth-doped nanoparticle) hybrid hollow sphers, ACS Appl.Mater. Interfaces,2010,2,2733-2737.
    [30] J. S. Mohammed, M. McShane, Polyme/colloid surface micromachining:Micropatterning of hybrid multilayers, Langmuir,2008,24,13796-13803.
    [31] R. Costi, A. E. Saunders, U. Banin, Colloidal hybrid nanostructures: A new typeof functional materials, Angew. Chem. Int. Ed.,2010,49,4878-4897.
    [32] J. Y. Lek, L. Xi, B. E. Kardynal, et al., Understanding the Effect of SurfaceChemistry on Charge Generation and Transport in Poly(3-hexylthiophene)/CdSeHybrid Solar Cells, ACS Appl. Mater. Interfaces,2011,3,287-292.
    [33] S. Xiao, S. Wu, M. Shen, et al., Polyelectrolyte multilayer-assistedimmobilization of zero-valent iron nanoparticles onto polymer nanofibers forpotential environmental applications, ACS Appl. Mater. Interfaces,2009,1,2848-2855.
    [34] H. Zeng, S. Sun, Synthesis, properties and potential applications ofmulticomponent magnetic nanoparticles, Adv. Funct. Mater.,2008,18,391-400.
    [35] D. Nykypanchuk, M. M. Maye, D. V. D. Lelie, et al., DNA-guided crystallizationof colloidal nanoparticles, Nature,2008,451,549-552.
    [36] J. Fang, H. Wang, Y. Xue, et al., Magnet-induced temporary superhydrophobiccoatings from one-pot synthesized hydrophobic magnetic nanoparticles, ACSAppl. Mater. Interfaces,2010,2,1449-1455.
    [37] G. Zhao, J. Wang, Y. Li, et al., Enzymes immobilized on superparamagneticFe3O4@clays nanocomposites: Preparation, characterization, and a new strategyfor the regeneration of supports, J. Phys. Chem. C,2011,115,6350-6359.
    [38] M. Lee, J. L. Thomas, M. Ho, et al., Synthesis of magnetic molecularly imprintedpoly(ethylene-co-vinyl alcohol) nasoparticles and their uses in the extraction andsensing of target molecules in urine, ACS Appl. Mater. Interfaces,2010,2,1729-1736.
    [39] B. Jun, G. Kim, J. Baek, et al., Magnetic field induced aggregation ofnanoparticles for sensitive molecular detection, Phys. Chem. Chem. Phys.,2011,13,7298-7303.
    [40] R. F. Fakhrullin, A. G. Bikmullin, D. K. Nurgaliev, Magnetically responsivecalcium carbonate microcrystals, ACS Appl. Mater. Interfaces,2009,1,1847-1851.
    [41] R. Massart, IEE Trans. Magn.,1981,17,1247-1248.
    [42] K. D. G. I. Jayawardena, J. Fryar, S. R. P. Silva, et al., Morphology control ofzinc oxide nanocrystals via hybrid laser/hydrothermal synthesis, J. Phys. Chem.C,2010,114,12931-12937.
    [43] Q. Dong, Q.;Y. Wang, L. Peng, et al., Controllable morphology and highphotoluminescence of (Y, Gd)(V, P)O4:Eu3+nanophosphors synthesized by twostep reactions, Nanotechnology,2011,22,215604.
    [44] Z. Meng, C. Xue, L. Lu, et al., Synthesis of dissymmetrical nanoparticles with anew hybrid silica template, J. Colloid Interface Sci.,2011,356,429-433.
    [45] J. Li, W. Ma, C. Wei, et al., Poly(styrene-co-acrylic acid) core and silvernanoparticle/silica shell composite microspheres as high performancesurface-enhanced Raman spectroscopy (SERS) substrate and molecular barcodelabel, J. Mater. Chem.,2011,21,5992-5998.
    [46] S. Xuan, W. Jiang, X. Gong, et al., Magnetically separable Fe3O4/TiO2hollowspheres: Fabrication and photocatalytic activity, J. Phys. Chem. C,2009,113,553-558.
    [47] X. Fu, L. Lin, D. Wang, et al., Preparation of CdS hollow spheres usingpoly(styrene-acrylic acid) latex particles as template, Colloids Surf. A,2005,262,216-219.
    [48] Z. Lu, Y. Qin, J. Fang, et al., Monodisperse magnetizable silica compositeparticles from heteroaggregate of carboxylic polystyrene latex and Fe3O4nanoparticles, Nanotechnology,2008,19,055602.
    [49] Z. Y. Ma, D. Dosev, M. Nichkova, et al., Synthesis and bio-functionalization ofmultifunctional magnetic Fe3O4@Y2O3:Eu nanocomposites, J. Mater. Chem.,2009,19,4695-4700.
    [50] W. St ber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheresin the micro size range, J. Colloid Interface Sci.,1968,26,62-69.
    [51] Z. Teng, J. Li, F. Yan, et al., Highly magnetizable superparamagnetic iron oxidenanoparticles embedded mesoporous silica spheres and their application forefficient recovery of DNA from agarose gel, J. Mater. Chem.,2009,19,1811-1815.
    [52] Y. Sun, G. Sun, Novel regenerable N-halamine polymeric biocides. Ⅰ. Synthesis,characterization, and antibacterial activity of hydantoin-containing polymers, J.Appl. Polym. Sci.,2001,80,2460-2467.
    [53] A. Dong, Q. Zhang, T. Wang, et al., Immobilization of cyclic N-halamine onpolystyrene-functionalized silica nanoparticles: Synthesis, characterization, andbiocidal activity, J. Phys. Chem. C,2010,114,17298-17303.
    [54] T. Yao, Q. Lin, K. Zhang, et al., Preparation of SiO2@polystyrene@polypyrrolesandwich composites and hollow polypyrrole capsules with movable SiO2spheres inside, J. Colloid Interface Sci.,2007,315,434-438.
    [55] L. Zhao, C. Gao, W. Xu, Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalystswith multifunctional hyperbranched polyglycerol amplifiers, Langmuir,2010,26,11217-11225.
    [56] Z. Xu, C. Li, X. Kang, et al., Synthesis of a multifunctional nanocomposite withmagnetic, mesoporous, and near-IR absorption properties, J. Phys. Chem. C,2010,114,16343-16350.
    [57] Y. Tian, B. Yu, X. Li, et al., Facile solvothermal synthesis of monodisperseFe3O4nanocrystals with precise size control of one nanometre as potential MRIcontrast agents, J. Mater. Chem.,2011,21,2476-2481.
    [58] Z. Deng, M. Chen, L.Wu, Novel method to fabricate SiO2/Ag composite spheresand their catalytic, surface-enhanced raman scattering propertie, J. Phys. Chem.C,2007,111,11692-11698.
    [59] S. Xuan, Y. J. Wang, K. C. Leung, et al., Synthesis of Fe3O4@polyanilinecore/shell microspheres with well-defined blackberry-like morphology, J. Phys.Chem. C,2008,112,18804-18809.
    [60] B. Gao, C. Qi, Q. Liu, Immobilization of quaternary ammonium salts on graftingparticle polystyrene/SiO2and preliminary study of application performance, Appl.Surface Sci.,2008,254,4159-4165.
    [61] Y. Sun, B. Wang, H. Wang, et al., Controllable preparation of magnetic polymermicrospheres with different morphologies by miniemulsion polymerization, J.Colloid Interface Sci.,2007,308,332-336.
    [62] P. Sun, H. Zhang, C. Liu, et al., Preparation and characterization of Fe3O4/CdTemagnetic/fluorescent nanocomposites and their applications in immuno-labelingand fluorescent imaging of cancer cells, Langmuir,2010,26,1278-1284.
    [63] P. Xu, H. Wang, R. Tong, et al., Preparation and morphology of SiO2/PMMAnanohybrids by microemulsion polymerization, Colloid Polym. Sci.,2006,284,755-762.
    [64] A. Dong, J. Huang, S. Lan, et al., Synthesis of N-halamine-functionalizedsilica–polymer core–shell nanoparticles and their enhanced antibacterial activity,Nanotechnology,2011,22,295602.
    [65] J. Guo, W. Yang, J. He, et al., Poly(N-isopropylacrylamide)-coatedluminescent/magnetic silica microspheres: Preparation, characterization, andbiomedical applications, Chem. Mater.,2006,18,5554-5562.
    [66] J. Song, H. Kong, J. Jang, Enhanced antibacterial performance of cationicpolymer modified silica nanoparticles, Chem. Commun.,2009,5418-5420.
    [67] L. Qi, Z. Xu, X. Jiang, et al., Preparation and antibacterial activity of chitosannanoparticles, Carbohyd. Res.,2004,339,2693-2700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700