根际来源铜绿假单胞菌生防株M18全基因组与温度依赖转录组的比较分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
假单胞菌M18是本实验室1996年在上海郊区甜瓜根际分离的高产两种抗生素吩嗪-1-羧酸和藤黄绿菌素的植物生防菌,其产品申嗪霉素已广泛应用于我国的植物保护工作中,对于我国粮食生产安全具有重要的保障作用。而本课题组前期研究发现M18菌株与条件性致病菌铜绿假单胞菌遗传背景最为接近,但该菌株又与铜绿假单胞菌在表型和基因调控方式上存在巨大差异,因此阐明假单胞菌M18的遗传组成,对研究其生防机理具有重要意义。
     本论文从基因组、表型、转录组和基因组岛功能等角度,分析了M18菌株特殊基因组的特点,对于环境响应的转录组变化和特定基因组岛的功能,以期发掘该菌株的优良生防功能和独特基因组结构产生的原因,主要结果如下:
     第一、利用下一代高通量测序技术,本文全基因组测序M18菌株基因组,发现M18基因组由一条长6327754bp的环状染色体构成,含有5684个编码基因和80个RNA基因。序列分析显示M18菌株基因组序列与已测序铜绿假单胞菌基因组同源性最高,达到90%以上,并且全基因组比对、进化树分析和COG基因分类比较均显示相同现象,因此将该生防菌株定名为Pseudomonas aeruginosa M18。基因组水平分析发现,相比其它人体分离的铜绿假单胞菌基因组,根际分离的M18菌株基因组具有多个特点,包括含有最多数量的CRISPR和最少的IS遗传元件,有助于维持其基因组稳定。此外,M18菌株附加基因组不含任何临床分离株的致病性基因组岛,由5个基因组岛和2个原噬菌体岛组成,其中含有限制性修饰系统、抗生素合成、糖基化修饰、营养物分解等功能基因,有助于M18菌株的根际环境适应。同时,M18菌株基因组携带5类次生生防相关代谢产物的合成基因簇,也对菌株的生防作用起到重要作用。
     第二、本文通过研究铜绿假单胞菌M18和近源高致病性菌株的致病性基因和耐药性基因,发现两个菌株存在致病基因上存在多处基因差异,在核心基因组中的耐药性基因上差异较小。之后,开展小鼠肺部急性感染竞争和抗菌剂抗性试验,结果显示M18菌株株易于清除,且对庆大霉素和卡那霉素等较为敏感。因此,本章结果显示和耐药性均弱于近源高致病性菌株,提示不同环境进化压力对于铜绿假单胞不同菌株遗传组成和表型的巨大作用。
     第三、采用定制DNA芯片技术,本文检测了根际分离株M18和模式临床分离株PAO1,在各自典型生境温度下(根际温度28℃、人体温度37℃)的转录组变化情况。比较分析发现不同环境条件对于铜绿假单胞菌转录组影响明显大于基因组,不同菌株在适应非原环境条件时,调动更多基因表达以适应新环境条件。此外,结果还显示,根际来源菌株M18在土壤温度下,22个基因组岛中基因表达上调,但在人体环境温度下,却没有发现任何基因组岛中基因被诱导表达,提示附加基因组的表达对于细菌的环境适应性具有重要影响。
     第四、序列分析发现,根际分离铜绿假单胞菌株M18附加基因组由5个基因岛和两个原噬菌体组成,缺少决定人体致病性辅基因岛和噬菌体。M18菌株特有基因组岛MGI-I和MGI-II分别含有一套含完整亚基的限制性修饰(RM)系统,在近源株没有发现完整RM系统,并且两个菌株的附加基因组具有明显差异。因此,本文首先试验发现两个基因组岛是可以环切出M18染色体,结合GC含量差异暗示这两个基因组岛为新近引入M18基因组中。随后,敲除基因岛上RM系统限制亚基基因后发现这些系统具有限制外源DNA通过转化和接合方式进入细胞的作用,证明这些RM系统具有限制外源遗传物质进入的功能。这些结果提示RM基因组岛对于M18菌株基因组结构形成的重要功能,提示基因组岛在M18菌株维持基因组稳定,以适应环境中各种压力胁迫的重要作用。
     综上所述,本文系统的研究了根际分离铜绿假单胞菌生防菌株的基因组、温控转录组和相关表型,并与其它临床菌株深入比较分析,进一步发现M18菌株特异性基因组岛在其基因组形成中起到的重要作用。结果表明,在根际环境中选择压力下,M18菌株进化出独特的基因组结构和基因表达模式以适应特定环境生存的需要。
Pseudomonas sp. M18was first isolated from sweet melon rhizosphere in Shanghaisuburb in1996, and has effective biocontrol ability with highly yield ofphenazine-1-carboxylic acid and pyoluteorin. Shengqin antibiotic produced by the strainM18has been applied in Chinese plant protection for helping to ensure the food safety ofChina. Previous works from our group found that the genetic background of strain M18ismost close to Pseudomonas aeruginosa, but also with several unique phenotype and generegulation pattern. Therefore, it is important to clarify the genetic composition thebiocontrol strain Pseudomoans sp. M18.
     Through the prospects of genome, phenotype, transcriptome and function of genomicisland, we analyzed the genomic features of strain M18, the modification of transcriptomein response to the environmental stress and the function of specific genomic island (GI), toexplore the reasons of the excellent biocontrol ability and unique genome structure of thestrain M18. The results are as follows:
     Firstly, the complete genome of strain M18was sequenced using next generationsequencing technology. The M18genome is composed of a single chromosome of6,327,754bp containing5684coding genes and80RNA genes. Based on the higher than90%of genome similarity with the available genomes of P. aeruginosa, the strain M18isnow designated as Pseudomonas aeruginosa strain M18. Compared with other P.aeruginosa strains, the fewest number (3) of insertion sequences and the most number (3) of clustered regularly interspaced short palindromic repeats in M18genome maycontribute to the relative genome stability. Furthermore, the accessory genome of strainM18including two novel prophages and five specific non-phage islands were identified. Itcontains genes responsible for restriction-modification systems, pyoluteorin biosynthesis,glycosylation modification and environmental substance degradation. The M18genomealso carries biosynthesis gene clusters of five types of biocontrol related secondarymetabolites.
     Secondly, comparing the sequence of virulence gene and antibiotic resistance gene inP. aeruginosa M18and its close related hyper virulence strain LESB58, we found that thedifference in several virulence genes between two strains, but less difference in theantibiotic resistance genes located in core genome between two strains. After competitiveactivity in mouse lung model and MIC tests, we found that the strain M18is moresusceptible to several antimicrobial agents and easier to be erased in a mouse acute lunginfection model than the strain LESB58. The results suggested that environmental selectivepressure has a huge influence on the genotype and phenotype of different P. aeruginosastrains.
     Thirdly, using customer-desigened DNA chip technology, this study measured thetranscriptome modifactions of rhizosphere strain M18and model clinical isolate PAO1atdifferent typical niche temperatures (28℃for rhizosphere,37℃for human body). Thecomparative results showed that the transcriptome at two typical temperatures showed thesignificant temperature-dependent differences compared with that of the genome structure.The specific induced genes at non-originating growth temperature of the each strain areevidently more than those of the induced genes at originating growth temperature.Furthermore, we found that22genes up-regulated at28°C in three GIs and one prophagebut none at37°C of rhizosphere strain M18, suggesting that the expression of accessorygenome is important in environmental adaption of bacteria.
     Fourthly, rhizosphere originated P. aeruginosa strain M18carries two full subunitrestriction and modification system located in two specific genomic island MGI-I andMGI-II. But, there is no complete RM system in close related strain. Therefore, this studyfirstly demonstrated that the two GI are newly introduced in M18genome. Then, after geneknock out experiment, the results showed that RM system can restrict exogenous DNAentering host cell via transformation and conjunction to prevent the foreign geneticmaterial enter bacteria cell. The results indicted the important function of RM genomicisland in shaping the genome structure of strain M18to stable the genome under theenvironmental selective pressure.
     In conclusion, this study systematically analyzed the genome, temperature-dependenttranscriptome, related phenotype, and further investigated the important role of M18strainspecific GI in shaping the genome structure. The results indicated that the P. aeruginosastrain M18has evolved its specific genomic structures and temperature dependentexpression patterns to meet the requirement of fitness and competitiveness under selectivepressures imposed on the strain in rhizosphere niche.
引文
[1] Migula W (1894) Uber ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe1:235-328.
    [2] Migula W (1900) System der Bakterien: Germany Gustav Fischer.
    [3] George MG, Julia AB, Timothy GL (2004) Bergey's manual of system bacteriology: Springer.
    [4] http://www.ncbi.nlm.nih.gov/taxonomy/.
    [5] Silby MW, Winstanley C, Godfrey SA, et al.(2011) Pseudomonas genomes: diverse and adaptable.FEMS Microbiol Rev35:652-680.
    [6] Kersters K, Ludwig W, Vancanneyt M, et al.(1996) Recent changes in the classification of thepseudomonads: An overview. Sys Appl Microbiol19:465-477.
    [7] Mendes R, Kruijt M, de Bruijn I, et al.(2010) Deciphering the rhizosphere microbiome fordisease-suppressive bacteria. Science332:1097-1100.
    [8] Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. SoilMicrobial Ecol31:255-274.
    [9] Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil255:571-586.
    [10] Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads.Nat Rev Microbiol3:307-319.
    [11] Compant S, Duffy B, Nowak J, et al.(2005) Use of plant growth-promoting bacteria for biocontrolof plant diseases: principles, mechanisms of action, and future prospects. Appl EnvironMicrobiol71:4951-4959.
    [12] Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. NatProd Rep26:1408-1446.
    [13] Hu HB, Yu QX, Feng C, et al.(2005) Isolation and characterization of a new fluorescentPseudomonas strain that produces both phenazine1-carboxylic acid and pyoluteorin. JMicrobiol Biotechnol15:86-90.
    [14] Palleroni NJ (2011) The Pseudomonas story. Environ Microbiol12:1377-1383.
    [15] Kato J, Kim HE, Takiguchi N, et al.(2008) Pseudomonas aeruginosa as a model microorganismfor investigation of chemotactic behaviors in ecosystem. J Biosci Bioeng106:1-7.
    [16] Breidenstein EB, de la Fuente-Nunez C, Hancock RE (2011) Pseudomonas aeruginosa: all roadslead to resistance. Trends Microbiol19:419-426.
    [17] Price-Whelan A, Dietrich LE, Newman DK (2007) Pyocyanin alters redox homeostasis and carbonflux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol189:6372-6381.
    [18] Laursen JB, Nielsen J (2004) Phenazine natural products: biosynthesis, synthetic analogues, andbiological activity. Chem Rev104:1663-1686.
    [19] Buysens S, Heungens K, Poppe J, et al.(1996) Involvement of pyochelin and pyoverdin insuppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa7NSK2.Appl Environ Microbiol62:865-871.
    [20] Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biologicalcontrol of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can JMicrobiol49:85-91.
    [21] Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15as apotential biocontrol agent. Curr Microbiol46:324-328.
    [22] Kumar RS, Ayyadurai N, Pandiaraja P, et al.(2005) Characterization of antifungal metaboliteproduced by a new strain Pseudomonas aeruginosa PUPa3that exhibits broad-spectrumantifungal activity and biofertilizing traits. J Appl Microbiol98:145-154.
    [23] http://www.wikipedia.org/.
    [24] Hauser; A, Ozer EA (2011) Pseudomonas aeruginosa (Poster). Nat Rev Microbiol9.
    [25] Ramos JL (2004) Pseudomonas. Volume1: Genomics, Life Style and Molecular Architecture.Kluwer Academics, New York.
    [26] Klockgether J, Cramer N, Wiehlmann L, et al.(2011) Pseudomonas aeruginosa Genomic Structureand Diversity. Front Microbiol2:150.
    [27] Stover CK, Pham XQ, Erwin AL, et al.(2000) Complete genome sequence of Pseudomonasaeruginosa PAO1, an opportunistic pathogen. Nature406:959-964.
    [28] Mathee K, Narasimhan G, Valdes C, et al.(2008) Dynamics of Pseudomonas aeruginosa genomeevolution. Proc Natl Acad Sci U S A105:3100-3105.
    [29] Romling U, Greipel J, Tummler B (1995) Gradient of genomic diversity in the Pseudomonasaeruginosa chromosome. Mol Microbiol17:323-332.
    [30] Spencer DH, Kas A, Smith EE, et al.(2003) Whole-genome sequence variation among multipleisolates of Pseudomonas aeruginosa. J Bacteriol185:1316-1325.
    [31] Klockgether J, Wurdemann D, Reva O, et al.(2007) Diversity of the abundant pKLC102/PAGI-2family of genomic islands in Pseudomonas aeruginosa. J Bacteriol189:2443-2459.
    [32] Romling U, Schmidt KD, Tummler B (1997) Large genome rearrangements discovered by thedetailed analysis of21Pseudomonas aeruginosa clone C isolates found in environment anddisease habitats. J Mol Biol271:386-404.
    [33] Ernst RK, D'Argenio DA, Ichikawa JK, et al.(2003) Genome mosaicism is conserved but notunique in Pseudomonas aeruginosa isolates from the airways of young children with cysticfibrosis. Environ Microbiol5:1341-1349.
    [34] Klockgether J, Munder A, Neugebauer J, et al. Genome diversity of Pseudomonas aeruginosaPAO1laboratory strains. J Bacteriol192:1113-1121.
    [35] Cramer N, Klockgether J, Wrasman K, et al.(2011) Microevolution of the major commonPseudomonas aeruginosa clones C and PA14in cystic fibrosis lungs. Environ Microbiol13:1690-1704.
    [36] Winsor GL, Van Rossum T, Lo R, et al.(2009) Pseudomonas Genome Database: facilitatinguser-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res37:D483-488.
    [37] Lee DG, Urbach JM, Wu G, et al.(2006) Genomic analysis reveals that Pseudomonas aeruginosavirulence is combinatorial. Genome Biol7: R90.
    [38] Winstanley C, Langille MG, Fothergill JL, et al.(2009) Newly introduced genomic prophageislands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain ofPseudomonas aeruginosa. Genome Res19:12-23.
    [39] Roy PH, Tetu SG, Larouche A, et al.(2011) Complete genome sequence of the multiresistanttaxonomic outlier Pseudomonas aeruginosa PA7. PLoS One5: e8842.
    [40] Stewart RM, Wiehlmann L, Ashelford KE, et al.(2011) Genetic characterization indicates that aspecific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. JClin Microbiol49:993-1003.
    [41] Moya B, Dotsch A, Juan C, et al.(2009) Beta-lactam resistance response triggered by inactivationof a nonessential penicillin-binding protein. PLoS Pathog5: e1000353.
    [42] Dotsch A, Klawonn F, Jarek M, et al.(2011) Evolutionary conservation of essential and highlyexpressed genes in Pseudomonas aeruginosa. BMC Genomics11:234.
    [43] Kung VL, Ozer EA, Hauser AR The accessory genome of Pseudomonas aeruginosa. MicrobiolMol Biol Rev74:621-641.
    [44] Aguilar-Barajas E, Ramírez-Díaz MI, Riveros-Rosas H (2010) Pseudomonas: molecularmicrobiology, infection and biodiversity. New York: Springer.
    [45] He J, Baldini RL, Deziel E, et al.(2004) The broad host range pathogen Pseudomonas aeruginosastrain PA14carries two pathogenicity islands harboring plant and animal virulence genes. ProcNatl Acad Sci U S A101:2530-2535.
    [46] Mesaros N, Nordmann P, Plesiat P, et al.(2007) Pseudomonas aeruginosa: resistance andtherapeutic options at the turn of the new millennium. Clin Microbiol Infect13:560-578.
    [47] Talbot GH, Bradley J, Edwards JE, Jr., et al.(2006) Bad bugs need drugs: an update on thedevelopment pipeline from the antimicrobial availability task force of the infectious diseasessociety of America. Clin Infect Dis42:657-668.
    [48] Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements.Res Microbiol155:376-386.
    [49] Burrus V, Pavlovic G, Decaris B, et al.(2002) Conjugative transposons: the tip of the iceberg. MolMicrobiol46:601-610.
    [50] Klockgether J, Reva O, Larbig K, et al.(2004) Sequence analysis of the mobile genome islandpKLC102of Pseudomonas aeruginosa C. J Bacteriol186:518-534.
    [51] Wurdemann D, Tummler B (2007) In silico comparison of pKLC102-like genomic islands ofPseudomonas aeruginosa. FEMS Microbiol Lett275:244-249.
    [52] Inon de Iannino N, Briones G, Tolmasky M, et al.(1998) Molecular cloning and characterization ofcgs, the Brucella abortus cyclic beta(1-2) glucan synthetase gene: genetic complementation ofRhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants. J Bacteriol180:4392-4400.
    [53] Carter MQ, Chen J, Lory S (2011) The Pseudomonas aeruginosa pathogenicity island PAPI-1istransferred via a novel type IV pilus. J Bacteriol192:3249-3258.
    [54] Qiu X, Gurkar AU, Lory S (2006) Interstrain transfer of the large pathogenicity island (PAPI-1) ofPseudomonas aeruginosa. Proc Natl Acad Sci U S A103:19830-19835.
    [55] Kulasekara BR, Kulasekara HD, Wolfgang MC, et al.(2006) Acquisition and evolution of the exoUlocus in Pseudomonas aeruginosa. J Bacteriol188:4037-4050.
    [56] Dorn E, Hellwig M, Reineke W, et al.(1974) Isolation and characterization of a3-chlorobenzoatedegrading pseudomonad. Arch Microbiol99:61-70.
    [57] Ravatn R, Studer S, Springael D, et al.(1998) Chromosomal integration, tandem amplification, anddeamplification in Pseudomonas putida F1of a105-kilobase genetic element containing thechlorocatechol degradative genes from Pseudomonas sp. Strain B13. J Bacteriol180:4360-4369.
    [58] Larbig KD, Christmann A, Johann A, et al.(2002) Gene islands integrated into tRNA(Gly) genesconfer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol184:6665-6680.
    [59] Chibeu A, Ceyssens PJ, Hertveldt K, et al.(2009) The adsorption of Pseudomonas aeruginosabacteriophage phiKMV is dependent on expression regulation of type IV pili genes. FEMSMicrobiol Lett296:210-218.
    [60] Croft L, Beatson SA, Whitchurch CB, et al.(2000) An interactive web-based Pseudomonasaeruginosa genome database: discovery of new genes, pathways and structures. Microbiology146(Pt10):2351-2364.
    [61] Kuzio J, Kropinski AM (1983) O-antigen conversion in Pseudomonas aeruginosa PAO1bybacteriophage D3. J Bacteriol155:203-212.
    [62] Pier GB (2007) Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator ofinflammation and target for effective immunity. Int J Med Microbiol297:277-295.
    [63] Smith EE, Sims EH, Spencer DH, et al.(2005) Evidence for diversifying selection at thepyoverdine locus of Pseudomonas aeruginosa. J Bacteriol187:2138-2147.
    [64] Liu PV, Wang S (1990) Three new major somatic antigens of Pseudomonas aeruginosa. J ClinMicrobiol28:922-925.
    [65] Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers offluorescent Pseudomonas species. Arch Microbiol174:135-142.
    [66] Hahn HP (1997) The type-4pilus is the major virulence-associated adhesin of Pseudomonasaeruginosa--a review. Gene192:99-108.
    [67] Sriramulu DD, Lunsdorf H, Lam JS, et al.(2005) Microcolony formation: a novel biofilm model ofPseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol54:667-676.
    [68] Prince A (2006) Flagellar activation of epithelial signaling. Am J Respir Cell Mol Biol34:548-551.
    [69] Schirm M, Arora SK, Verma A, et al.(2004) Structural and genetic characterization ofglycosylation of type a flagellin in Pseudomonas aeruginosa. J Bacteriol186:2523-2531.
    [70] Krupovic M, Prangishvili D, Hendrix RW, et al. Genomics of bacterial and archaeal viruses:dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev75:610-635.
    [71] Bertin A, de Frutos M, Letellier L (2011) Bacteriophage-host interactions leading to genomeinternalization. Curr Opin Microbiol14:492-496.
    [72] Ceyssens PJ (2010) Lavigne R Bacteriophages of Pseudomonas. Future Microbiol5:1041-1055.
    [73] Sepulveda-Robles O, Kameyama L, Guarneros G (2011) High diversity and novel species ofPseudomonas aeruginosa bacteriophages. Appl Environ Microbiol.
    [74] Kwan T, Liu J, Dubow M, et al.(2006) Comparative genomic analysis of18Pseudomonasaeruginosa bacteriophages. J Bacteriol188:1184-1187.
    [75] Baltch AL, Smith RP, Franke M, et al.(1994) Pseudomonas aeruginosa cytotoxin as apathogenicity factor in a systemic infection of leukopenic mice. Toxicon32:27-34.
    [76] Nakayama K, Kanaya S, Ohnishi M, et al.(1999) The complete nucleotide sequence of phi CTX, acytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution andhorizontal gene transfer via bacteriophages. Mol Microbiol31:399-419.
    [77] O'Callaghan RJ, Engel LS, Hobden JA, et al.(1996) Pseudomonas keratitis The role of anuncharacterized exoprotein, protease IV, in corneal virulence. Invest Ophthalmol Vis Sci37:534-543.
    [78] Kropinski AM (2000) Sequence of the genome of the temperate, serotype-converting,Pseudomonas aeruginosa bacteriophage D3. J Bacteriol182:6066-6074.
    [79] Glonti T, Chanishvili N, Taylor PW (2010) Bacteriophage-derived enzyme that depolymerizes thealginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J ApplMicrobiol108:695-702.
    [80] Hanlon GW, Denyer SP, Olliff CJ, et al.(2001) Reduction in exopolysaccharide viscosity as an aidto bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl EnvironMicrobiol67:2746-2753.
    [81] Bennett PM (2004) Genome plasticity: insertion sequence elements, transposons and integrons, andDNA rearrangement. Methods Mol Biol266:71-113.
    [82] Peters JE, Craig NL (2001) Tn7: smarter than we thought. Nat Rev Mol Cell Biol2:806-814.
    [83] Coyne S, Courvalin P, Galimand M (2011) Acquisition of multidrug resistance transposon Tn6061and IS6100-mediated large chromosomal inversions in Pseudomonas aeruginosa clinicalisolates. Microbiology156:1448-1458.
    [84] Jeong JH, Shin KS, Lee JW, et al.(2009) Analysis of a novel class1integron containingmetallo-beta-lactamase gene VIM-2in Pseudomonas aeruginosa. J Microbiol47:753-759.
    [85] Libisch B, Poirel L, Lepsanovic Z, et al.(2008) Identification of PER-1extended-spectrumbeta-lactamase producing Pseudomonas aeruginosa clinical isolates of the international clonalcomplex CC11from Hungary and Serbia. FEMS Immunol Med Microbiol54:330-338.
    [86] Naas T, Cuzon G, Villegas MV, et al.(2008) Genetic structures at the origin of acquisition of thebeta-lactamase blaKPCgene. Antimicrob Agents Chemother52:1257-1263.
    [87] Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniaecarbapenemase-producing bacteria. Lancet Infect Dis9:228-236.
    [88] Lolans K, Queenan AM, Bush K, et al.(2005) First nosocomial outbreak of Pseudomonasaeruginosa producing an integron-borne metallo-beta-lactamase (VIM-2) in the United States.Antimicrob Agents Chemother49:3538-3540.
    [89] Bush K (2001) New beta-lactamases in gram-negative bacteria: diversity and impact on theselection of antimicrobial therapy. Clin Infect Dis32:1085-1089.
    [90] Nordmann P, Poirel L (2002) Emerging carbapenemases in Gram-negative aerobes. Clin MicrobiolInfect8:321-331.
    [91] Walsh TR, Toleman MA, Poirel L, et al.(2005) Metallo-beta-lactamases: the quiet before the storm?Clin Microbiol Rev18:306-325.
    [92] Kellam P (2000) Host-pathogen studies in the post-genomic era. Genome Biol1: REVIEWS1009.
    [93] Fleischmann RD, Adams MD, White O, et al.(1995) Whole-genome random sequencing andassembly of Haemophilus influenzae Rd. Science269:496-512.
    [94] Goodman AL, Lory S (2004) Analysis of regulatory networks in Pseudomonas aeruginosa bygenomewide transcriptional profiling. Curr Opin Microbiol7:39-44.
    [95] Wolfgang MC, Lee VT, Gilmore ME, et al.(2003) Coordinate regulation of bacterial virulencegenes by a novel adenylate cyclase-dependent signaling pathway. Dev Cell4:253-263.
    [96] Wu DQ, Ye J, Ou HY, et al.(2011) Genomic analysis and temperature-dependent transcriptomeprofiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genomics12:438.
    [97] Termine E, Michel GP (2009) Transcriptome and secretome analyses of the adaptive response ofPseudomonas aeruginosa to suboptimal growth temperature. Int Microbiol12:7-12.
    [98] Briat JF (1992) Iron assimilation and storage in prokaryotes. J Gen Microbiol138:2475-2483.
    [99] Ochsner UA, Vasil AI, Vasil ML (1995) Role of the ferric uptake regulator of Pseudomonasaeruginosa in the regulation of siderophores and exotoxin A expression: purification andactivity on iron-regulated promoters. J Bacteriol177:7194-7201.
    [100] Ochsner UA, Wilderman PJ, Vasil AI, et al.(2002) GeneChip expression analysis of the ironstarvation response in Pseudomonas aeruginosa: identification of novel pyoverdinebiosynthesis genes. Mol Microbiol45:1277-1287.
    [101] Palma M, Worgall S, Quadri LE (2003) Transcriptome analysis of the Pseudomonas aeruginosaresponse to iron. Arch Microbiol180:374-379.
    [102] Zheng P, Sun J, Geffers R, et al.(2007) Functional characterization of the gene PA2384inlarge-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa. JBiotechnol132:342-352.
    [103] Palma M, DeLuca D, Worgall S, et al.(2004) Transcriptome analysis of the response ofPseudomonas aeruginosa to hydrogen peroxide. J Bacteriol186:248-252.
    [104] Salunkhe P, Topfer T, Buer J, et al.(2005) Genome-wide transcriptional profiling of thesteady-state response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol187:2565-2572.
    [105] Small DA, Chang W, Toghrol F, et al.(2007) Toxicogenomic analysis of sodium hypochloriteantimicrobial mechanisms in Pseudomonas aeruginosa. Appl Microbiol Biotechnol74:176-185.
    [106] Small DA, Chang W, Toghrol F, et al.(2007) Comparative global transcription analysis of sodiumhypochlorite, peracetic acid, and hydrogen peroxide on Pseudomonas aeruginosa. ApplMicrobiol Biotechnol76:1093-1105.
    [107] Teitzel GM, Geddie A, De Long SK, et al.(2006) Survival and growth in the presence of elevatedcopper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol188:7242-7256.
    [108] Frangipani E, Slaveykova VI, Reimmann C, et al.(2008) Adaptation of aerobically growingPseudomonas aeruginosa to copper starvation. J Bacteriol190:6706-6717.
    [109] Aspedon A, Palmer K, Whiteley M (2006) Microarray analysis of the osmotic stress response inPseudomonas aeruginosa. J Bacteriol188:2721-2725.
    [110] Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. AnnuRev Cell Dev Biol21:319-346.
    [111] Wagner VE, Bushnell D, Passador L, et al.(2003) Microarray analysis of Pseudomonasaeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol185:2080-2095.
    [112] Schuster M, Lostroh CP, Ogi T, et al.(2003) Identification, timing, and signal specificity ofPseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066-2079.
    [113] Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation inPseudomonas aeruginosa. Int J Med Microbiol296:73-81.
    [114] Whiteley M, Bangera MG, Bumgarner RE, et al.(2001) Gene expression in Pseudomonasaeruginosa biofilms. Nature413:860-864.
    [115] Bagge N, Schuster M, Hentzer M, et al.(2004) Pseudomonas aeruginosa biofilms exposed toimipenem exhibit changes in global gene expression and beta-lactamase and alginateproduction. Antimicrob Agents Chemother48:1175-1187.
    [116] Burrowes E, Baysse C, Adams C, et al.(2006) Influence of the regulatory protein RsmA oncellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis.Microbiology152:405-418.
    [117] Brencic A, McFarland KA, McManus HR, et al.(2009) The GacS/GacA signal transductionsystem of Pseudomonas aeruginosa acts exclusively through its control over the transcriptionof the RsmY and RsmZ regulatory small RNAs. Mol Microbiol73:434-445.
    [118] Ichikawa JK, Norris A, Bangera MG, et al.(2000) Interaction of Pseudomonas aeruginosa withepithelial cells: identification of differentially regulated genes by expression microarrayanalysis of human cDNAs. Proc Natl Acad Sci U S A97:9659-9664.
    [119] Frisk A, Schurr JR, Wang G, et al.(2004) Transcriptome analysis of Pseudomonas aeruginosaafter interaction with human airway epithelial cells. Infect Immun72:5433-5438.
    [120] Tralau T, Vuilleumier S, Thibault C, et al.(2007) Transcriptomic analysis of the sulfate starvationresponse of Pseudomonas aeruginosa. J Bacteriol189:6743-6750.
    [121] Firoved AM, Deretic V (2003) Microarray analysis of global gene expression in mucoidPseudomonas aeruginosa. J Bacteriol185:1071-1081.
    [122] Tremblay J, Deziel E (2010) Gene expression in Pseudomonas aeruginosa swarming motility.BMC Genomics11:587.
    [123] Balasubramanian D, Mathee K (2009) Comparative transcriptome analyses of Pseudomonasaeruginosa. Hum Genomics3:349-361.
    [124] Lander ES, Linton LM, Birren B, et al.(2001) Initial sequencing and analysis of the humangenome. Nature409:860-921.
    [125] Pennisi E (2002) Genomics. Sequence tells mouse, human genome secrets. Science298:1863-1865.
    [126] Olivier M, Aggarwal A, Allen J, et al.(2001) A high-resolution radiation hybrid map of the humangenome draft sequence. Science291:1298-1302.
    [127] Marshall E (2000) Human genome. Storm erupts over terms for publishing Celera's sequence.Science290:2042-2043.
    [128] Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res15:1767-1776.
    [129] Margulies M, Egholm M, Altman WE, et al.(2005) Genome sequencing in microfabricatedhigh-density picolitre reactors. Nature437:376-380.
    [130] Metzker ML Sequencing technologies-the next generation. Nat Rev Genet11:31-46.
    [131] Ondov BD, Varadarajan A, Passalacqua KD, et al.(2008) Efficient mapping of AppliedBiosystems SOLiD sequence data to a reference genome for functional genomic applications.Bioinformatics24:2776-2777.
    [132] Fox S, Filichkin S, Mockler TC (2009) Applications of ultra-high-throughput sequencing.Methods Mol Biol553:79-108.
    [133] Chan EY (2005) Advances in sequencing technology. Mutat Res573:13-40.
    [134] Deamer DW, Akeson M (2000) Nanopores and nucleic acids: prospects for ultrarapid sequencing.Trends Biotechnol18:147-151.
    [135] Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore.Phys Rev Lett86:3435-3438.
    [136] Ashkenasy N, Sanchez-Quesada J, Bayley H, et al.(2005) Recognizing a single base in anindividual DNA strand: a step toward DNA sequencing in nanopores. Angew Chem Int Ed Engl44:1401-1404.
    [137] Astier Y, Braha O, Bayley H (2006) Toward single molecule DNA sequencing: directidentification of ribonucleoside and deoxyribonucleoside5'-monophosphates by using anengineered protein nanopore equipped with a molecular adapter. J Am Chem Soc128:1705-1710.
    [138] Rhee M, Burns MA (2006) Nanopore sequencing technology: research trends and applications.Trends Biotechnol24:580-586.
    [139] Schneider GF, Dekker C (2010) DNA sequencing with nanopores. Nat Biotechnol30:326-328.
    [140] Wold B, Myers RM (2008) Sequence census methods for functional genomics. Nat Methods5:19-21.
    [141] Bennett ST, Barnes C, Cox A, et al.(2005) Toward the1,000dollars human genome.Pharmacogenomics6:373-382.
    [142] Arber W (1965) Host-controlled modification of bacteriophage. Annu Rev Microbiol19:365-378.
    [143] Murray NE (2002)2001Fred Griffith review lecture. Immigration control of DNA in bacteria:self versus non-self. Microbiology148:3-20.
    [144] Wilson GG, Murray NE (1991) Restriction and modification systems. Annu Rev Genet25:585-627.
    [145] Kobayashi I, Nobusato A, Kobayashi-Takahashi N, et al.(1999) Shaping thegenome--restriction-modification systems as mobile genetic elements. Curr Opin Genet Dev9:649-656.
    [146] Murray NE (2000) Type I restriction systems: sophisticated molecular machines (a legacy ofBertani and Weigle). Microbiol Mol Biol Rev64:412-434.
    [147] Pingoud A, Fuxreiter M, Pingoud V, et al.(2005) Type II restriction endonucleases: structure andmechanism. Cell Mol Life Sci62:685-707.
    [148] Srikhanta YN, Fox KL, Jennings MP (2010) The phasevarion: phase variation of type III DNAmethyltransferases controls coordinated switching in multiple genes. Nat Rev Microbiol8:196-206.
    [149] Ishikawa K, Fukuda E, Kobayashi I (2010) Conflicts targeting epigenetic systems and theirresolution by cell death: novel concepts for methyl-specific and other restriction systems. DNARes17:325-342.
    [150] Roberts RJ, Vincze T, Posfai J, et al.(2010) REBASE--a database for DNA restriction andmodification: enzymes, genes and genomes. Nucleic Acids Res38: D234-236.
    [151] Kobayashi I (2004) Restrrication Endonuclease. Berlin: Springer.
    [152] Stiens M, Becker A, Bekel T, et al.(2008) Comparative genomic hybridisation and ultrafastpyrosequencing revealed remarkable differences between the Sinorhizobium meliloti genomesof the model strain Rm1021and the field isolate SM11. J Biotechnol136:31-37.
    [153] Furuta Y, Abe K, Kobayashi I (2010) Genome comparison and context analysis reveals putativemobile forms of restriction-modification systems and related rearrangements. Nucleic AcidsRes38:2428-2443.
    [154] Nobusato A, Uchiyama I, Ohashi S, et al.(2000) Insertion with long target duplication: amechanism for gene mobility suggested from comparison of two related bacterial genomes.Gene259:99-108.
    [155] Nakayama Y, Kobayashi I (1998) Restriction-modification gene complexes as selfish gene entities:roles of a regulatory system in their establishment, maintenance, and apoptotic mutualexclusion. Proc Natl Acad Sci U S A95:6442-6447.
    [156] Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements andtheir impact on genome evolution. Nucleic Acids Res29:3742-3756.
    [157] Takahashi N, Ohashi S, Sadykov MR, et al.(2011) IS-linked movement of arestriction-modification system. PLoS One6: e16554.
    [158] Dharni S, Alam M, Kalani K, et al.(2010) Production, purification, and characterization ofantifungal metabolite from Pseudomonas aeruginosa SD12, a new strain obtained from tannerywaste polluted soil. J Microbiol Biotechnol22:674-683.
    [159] Minaxi, Saxena J (2011) Characterization of Pseudomonas aeruginosa RM-3as a potentialbiocontrol agent. Mycopathologia170:181-193.
    [160] Ge Y, Huang X, Wang S, et al.(2004) Phenazine-1-carboxylic acid is negatively regulated andpyoluteorin positively regulated by gacA in Pseudomonas sp. M18. FEMS Microbiol Lett237:41-47.
    [161] Huang X, Zhu D, Ge Y, et al.(2004) Identification and characterization of pltZ, a gene involved inthe repression of pyoluteorin biosynthesis in Pseudomonas sp. M18. FEMS Microbiol Lett232:197-202.
    [162] Zhang X, Wang S, Geng H, et al.(2005) Differential regulation of rsmA gene on biosynthesis ofpyoluteorin and phenazine-1-carboxylic acid in Pseudomonas sp. M18. W J MicrobiolBiotechnol21:883-889.
    [163] Ge YH, Pei DL, Feng PY, et al.(2007) Autoinduction of RpoS biosynthesis in the biocontrolstrain Pseudomonas sp. M18. Curr Microbiol54:97-101.
    [164] Yan A, Huang X, Liu H, et al.(2007) An rhl-like quorum-sensing system negatively regulatespyoluteorin production in Pseudomonas sp. M18. Microbiology153:16-28.
    [165] Chen Y, Wang X, Huang X, et al.(2008) Las-like quorum-sensing system negatively regulatesboth pyoluteorin and phenazine-1-carboxylic acid production in Pseudomonas sp. M18. SciChina C Life Sci51:174-181.
    [166] Huang X, Zhang X, Xu Y (2008) PltR expression modulated by the global regulators GacA,RsmA, LasI and RhlI in Pseudomonas sp. M18. Res Microbiol159:128-136.
    [167] Wang Y, Huang X, Hu H, et al.(2008) QscR acts as an intermediate in gacA-dependent regulationof PCA biosynthesis in Pseudomonas sp. M18. Curr Microbiol56:339-345.
    [168] Huang J, Xu Y, Zhang H, et al.(2009) Temperature-dependent expression of phzM and itsregulatory genes lasI and ptsP in rhizosphere isolate Pseudomonas sp. strain M18. ApplEnviron Microbiol75:6568-6580.
    [169] Cheng K, Smyth RL, Govan JR, et al.(1996) Spread of beta-lactam-resistant Pseudomonasaeruginosa in a cystic fibrosis clinic. Lancet348:639-642.
    [170] Smith DJ, Park J, Tiedje JM, et al.(2007) A large gene cluster in Burkholderia xenovoransencoding abietane diterpenoid catabolism. J Bacteriol189:6195-6204.
    [171] Moore NM, Flaws ML (1983) Epidemiology and pathogenesis of Pseudomonas aeruginosainfections. Clin Lab Sci24:43-46.
    [172] Zhang ZY, Liu C, Zhu YZ, et al.(2009) Complete genome sequence of Lactobacillus plantarumJDM1. J Bacteriol191:5020-5021.
    [173] Delcher AL, Harmon D, Kasif S, et al.(1999) Improved microbial gene identification withGLIMMER. Nucleic Acids Res27:4636-4641.
    [174] Marchler-Bauer A, Panchenko AR, Shoemaker BA, et al.(2002) CDD: a database of conserveddomain alignments with links to domain three-dimensional structure. Nucleic Acids Res30:281-283.
    [175] Gardy JL, Laird MR, Chen F, et al.(2005) PSORTb v.2.0: expanded prediction of bacterialprotein subcellular localization and insights gained from comparative proteome analysis.Bioinformatics21:617-623.
    [176] Juncker AS, Willenbrock H, Von Heijne G, et al.(2003) Prediction of lipoprotein signal peptidesin Gram-negative bacteria. Protein Sci12:1652-1662.
    [177] Kanehisa M, Goto S, Sato Y, et al.(2010) KEGG for integration and interpretation of large-scalemolecular data sets. Nucleic Acids Res40: D109-114.
    [178] Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNAgenes in genomic sequence. Nucleic Acids Res25:955-964.
    [179] Altschul SF, Madden TL, Schaffer AA, et al.(1997) Gapped BLAST and PSI-BLAST: a newgeneration of protein database search programs. Nucleic Acids Res25:3389-3402.
    [180] http://www-isbiotoul.fr/.
    [181] Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularlyinterspaced short palindromic repeats. Nucleic Acids Res35: W52-57.
    [182] Delcher AL, Phillippy A, Carlton J, et al.(2002) Fast algorithms for large-scale genome alignmentand comparison. Nucleic Acids Res30:2478-2483.
    [183] Shao Y, He X, Harrison EM, et al.(2010) mGenomeSubtractor: a web-based tool for parallel insilico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Res38Suppl: W194-200.
    [184] Tamura K, Dudley J, Nei M, et al.(2007) MEGA4: Molecular Evolutionary Genetics Analysis(MEGA) software version4.0. Mol Biol Evol24:1596-1599.
    [185] Ou HY, He X, Harrison EM, et al.(2007) MobilomeFINDER: web-based tools for in silico andexperimental discovery of bacterial genomic islands. Nucleic Acids Res35: W97-W104.
    [186] Ghai R, Hain T, Chakraborty T (2004) GenomeViz: visualizing microbial genomes. BMCBioinformatics5:198.
    [187] Raymond CK, Sims EH, Kas A, et al.(2002) Genetic variation at the O-antigen biosynthetic locusin Pseudomonas aeruginosa. J Bacteriol184:3614-3622.
    [188] Larkin MA, Blackshields G, Brown NP, et al.(2007) Clustal W and Clustal X version2.0.Bioinformatics23:2947-2948.
    [189] Harrison EM, Carter ME, Luck S, et al. Pathogenicity islands PAPI-1and PAPI-2contributeindividually and synergistically to the virulence of Pseudomonas aeruginosa strain PA14.Infect Immun78:1437-1446.
    [190] Battle SE, Meyer F, Rello J, et al.(2008) Hybrid pathogenicity island PAGI-5contributes to thehighly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol190:7130-7140.
    [191] Juhas M, van der Meer JR, Gaillard M, et al.(2009) Genomic islands: tools of bacterial horizontalgene transfer and evolution. FEMS Microbiol Rev33:376-393.
    [192] Huang X, Yan A, Zhang X, et al.(2006) Identification and characterization of a putative ABCtransporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene376:68-78.
    [193] Nowak-Thompson B, Chaney N, Wing JS, et al.(1999) Characterization of the pyoluteorinbiosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol181:2166-2174.
    [194] Arora SK, Bangera M, Lory S, et al.(2001) A genomic island in Pseudomonas aeruginosa carriesthe determinants of flagellin glycosylation. Proc Natl Acad Sci U S A98:9342-9347.
    [195] Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol1:REVIEWS3003.
    [196] Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. CritRev Biotechnol27:21-28.
    [197] Schindelin H, Jiang W, Inouye M, et al.(1994) Crystal structure of CspA, the major cold shockprotein of Escherichia coli. Proc Natl Acad Sci U S A91:5119-5123.
    [198] Monteiro-Vitorello CB, de Oliveira MC, Zerillo MM, et al.(2005) Xylella and XanthomonasMobil'omics. OMICS9:146-159.
    [199] Gupta RS (2004) The phylogeny and signature sequences characteristics of Fibrobacteres,Chlorobi, and Bacteroidetes. Crit Rev Microbiol30:123-143.
    [200] Brouns SJ, Jore MM, Lundgren M, et al.(2008) Small CRISPR RNAs guide antiviral defense inprokaryotes. Science321:960-964.
    [201] Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer instaphylococci by targeting DNA. Science322:1843-1845.
    [202] Li Y, Du X, Lu ZJ, et al.(2011) Regulatory feedback loop of two phz gene clusters through5'-untranslated regions in Pseudomonas sp. M18. PLoS One6: e19413.
    [203] Silby MW, Cerdeno-Tarraga AM, Vernikos GS, et al.(2009) Genomic and genetic analyses ofdiversity and plant interactions of Pseudomonas fluorescens. Genome Biol10: R51.
    [204] Wolfgang MC, Kulasekara BR, Liang X, et al.(2003) Conservation of genome content andvirulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa.Proc Natl Acad Sci U S A100:8484-8489.
    [205] Yang J, Chen L, Sun L, et al.(2008) VFDB2008release: an enhanced web-based resource forcomparative pathogenomics. Nucleic Acids Res36: D539-542.
    [206] Kukavica-Ibrulj I, Bragonzi A, Paroni M, et al.(2008) In vivo growth of Pseudomonas aeruginosastrains PAO1and PA14and the hypervirulent strain LESB58in a rat model of chronic lunginfection. J Bacteriol190:2804-2813.
    [207] Feldman M, Bryan R, Rajan S, et al.(1998) Role of flagella in pathogenesis of Pseudomonasaeruginosa pulmonary infection. Infect Immun66:43-51.
    [208] Meyer JM, Neely A, Stintzi A, et al.(1996) Pyoverdin is essential for virulence of Pseudomonasaeruginosa. Infect Immun64:518-523.
    [209] Mougous JD, Gifford CA, Ramsdell TL, et al.(2007) Threonine phosphorylationpost-translationally regulates protein secretion in Pseudomonas aeruginosa. Nat Cell Biol9:797-803.
    [210] Diggle SP, Stacey RE, Dodd C, et al.(2006) The galactophilic lectin, LecA, contributes to biofilmdevelopment in Pseudomonas aeruginosa. Environ Microbiol8:1095-1104.
    [211] Zavascki AP, Carvalhaes CG, Picao RC, et al.(2010) Multidrug-resistant Pseudomonasaeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy.Expert Rev Anti Infect Ther8:71-93.
    [212] Livermore DM, Woodford N (2006) The beta-lactamase threat in Enterobacteriaceae,Pseudomonas and Acinetobacter. Trends Microbiol14:413-420.
    [213] Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev22:161-182, Table of Contents.
    [214] Li XZ, Nikaido H, Poole K (1995) Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonasaeruginosa. Antimicrob Agents Chemother39:1948-1953.
    [215] Poole K, Gotoh N, Tsujimoto H, et al.(1996) Overexpression of the mexC-mexD-oprJ effluxoperon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol21:713-724.
    [216] Kohler T, Michea-Hamzehpour M, Henze U, et al.(1997) Characterization of MexE-MexF-OprN,a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol23:345-354.
    [217] Jalal S, Wretlind B (1998) Mechanisms of quinolone resistance in clinical strains of Pseudomonasaeruginosa. Microb Drug Resist4:257-261.
    [218] Hardalo C, Edberg SC (1997) Pseudomonas aeruginosa: assessment of risk from drinking water.Crit Rev Microbiol23:47-75.
    [219] Bodey GP, Bolivar R, Fainstein V, et al.(1983) Infections caused by Pseudomonas aeruginosa.Rev Infect Dis5:279-313.
    [220] Holloway BW (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol13:572-581.
    [221] Nouaille S, Even S, Charlier C, et al.(2009) Transcriptomic response of Lactococcus lactis inmixed culture with Staphylococcus aureus. Appl Environ Microbiol75:4473-4482.
    [222] Cao YR, Wang Q, Jin RX, et al.(2011) Planosporangium mesophilum sp. nov., isolated fromrhizosphere soil of Bletilla striata. Int J Syst Evol Microbiol61:1330-1333.
    [223] Duzan HM, Mabood F, Souleimanov A, et al.(2006) Nod Bj-V (C18:1, MeFuc) production byBradyrhizobium japonicum (USDA110,532C) at suboptimal growth temperatures. J PlantPhysiol163:107-111.
    [224] Smillie CS, Smith MB, Friedman J, et al.(2011) Ecology drives a global network of geneexchange connecting the human microbiome. Nature480:241-244.
    [225] Hoboth C, Hoffmann R, Eichner A, et al.(2009) Dynamics of adaptive microevolution ofhypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients withcystic fibrosis. J Infect Dis200:118-130.
    [226] Hoffman LR, Richardson AR, Houston LS, et al.(2010) Nutrient availability as a mechanism forselection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog6:e1000712.
    [227] Mira NP, Madeira A, Moreira AS, et al.(2012) Genomic expression analysis reveals strategies ofBurkholderia cenocepacia to adapt to cystic fibrosis patients' airways and antimicrobial therapy.PLoS One6: e28831.
    [228] Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comp Graph Stat5:299-314.
    [229] http://sas.ebioservice.com/
    [230] Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-timequantitative PCR and the2(-Delta Delta C(T)) Method. Methods25:402-408.
    [231] Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. TrendsMicrobiol13:581-588.
    [232] Soderberg MA, Rossier O, Cianciotto NP (2004) The type II protein secretion system ofLegionella pneumophila promotes growth at low temperatures. J Bacteriol186:3712-3720.
    [233] Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: manyroads lead to Rome. Front Biosci8: d661-686.
    [234] Dubern JF, Diggle SP (2008) Quorum sensing by2-alkyl-4-quinolones in Pseudomonasaeruginosa and other bacterial species. Mol Biosyst4:882-888.
    [235] Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection byinjection. Nat Rev Microbiol7:654-665.
    [236] Wang L, Chen S, Vergin KL, et al.(2011) DNA phosphorothioation is widespread and quantizedin bacterial genomes. Proc Natl Acad Sci U S A108:2963-2968.
    [237] Schafer A, Kalinowski J, Simon R, et al.(1990) High-frequency conjugal plasmid transfer fromgram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol172:1663-1666.
    [238] Schafer A, Tauch A, Jager W, et al.(1994) Small mobilizable multi-purpose cloning vectorsderived from the Escherichia coli plasmids pK18and pK19: selection of defined deletions inthe chromosome of Corynebacterium glutamicum. Gene145:69-73.
    [239] Carver TJ, Rutherford KM, Berriman M, et al.(2005) ACT: the Artemis Comparison Tool.Bioinformatics21:3422-3423.
    [240] Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domainfamilies based on seed alignments. Proteins28:405-420.
    [241] Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A Laboratory Manual. New York:Cold Spring Harbor Laboratory Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700