新型含氮、硫、磷壳聚糖衍生物的制备、抑菌活性与机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统化学农药的长期和不合理使用,给环境和人类健康带来了巨大的威胁。因此,开发新型生物杀菌剂的需求已越来越迫切。壳聚糖是一类有着广谱抑菌活性的天然多糖,其生物相容性好、易降解、无毒,因而作为一种可再生资源在农业领域受到了越来越多的关注。然而,壳聚糖的抑菌活性有限,这限制了其应用。而通过对壳聚糖进行化学改性是一种可以提高其抑菌活性的有效方法。
     本论文以壳聚糖为骨架,通过定位导入、接枝共聚技术接入高活性基团制备了9类共30个含氮、硫、磷壳聚糖衍生物,并对制备的壳聚糖衍生物采用红外光谱、核磁波谱、元素分析、X射线衍射、差示扫描量热、扫描电镜等分析手段对其理化性质进行全面解析,确定了其取代位置、取代度、热力学性质、晶体性质等。通过抑菌活性筛选,研究了壳聚糖衍生物的抑菌活性和杀菌谱,并筛选出2种壳聚糖衍生物进行抑菌机理探讨。主要研究结果如下:
     1.制备了3种壳聚糖1,2,4-三唑衍生物。壳聚糖1,2,4-三唑衍生物相比其合环前产物酰基硫脲壳聚糖,抑菌活性和溶解性明显提高。抑菌活性结果表明:三唑环上取代基的电负性和空间位阻对抑菌活性影响很大,甲基强于氯甲基,强于苯基。制备了2种新型壳聚糖1,2,3-三唑衍生物。抑菌结果表明:壳聚糖苯甲酸酯-1,2,3-三唑(PhTACS)活性强于壳聚糖烟酸酯-1,2,3-三唑(PyTACS)。
     2.制备了9种壳聚糖酰基卤代苯缩氨基硫脲衍生物。抑菌结果表明:壳聚糖酰基缩卤代苯氨基硫脲衍生物中,氯乙酰基缩卤代苯氨基硫脲强于乙酰基,强于苯甲酰基;卤代苯中氯原子强于氟原子,强于三氟甲基。卤代苯中氯原子强于氟原子,强于三氟甲基。制备了7种壳聚糖烷基(取代苯基)缩氨基硫脲衍生物。抑菌结果表明:壳聚糖烷基(取代苯基)缩氨基硫脲衍生物中,含取代苯基的衍生物抑菌活性要明显强于带烷基的衍生物;苯环上的取代基供电性越强,活性越高。制备了2种壳聚糖二硫代氨基甲酸酯衍生物并测定了其抑菌活性。结果表明壳聚糖二硫代氨基甲酸甲酯的抑菌活性要强于甲酸乙酯。制备了2种壳聚糖二硫代氨基甲酸盐衍生物并研究了其抑菌活性。结果表明:壳聚糖硫代氨基甲酸盐,其溶解性比壳聚糖显著提高,但抑菌活性却没有明显提高,说明溶解度不是影响壳聚糖及其衍生物的决定因素。此外,硫代氨基甲酸氨盐的活性要强于三乙烯二胺盐。
     3.制备了壳聚糖α-氨基丁基膦酸乙酯(α-APEPCS),抑菌结果表明:壳聚糖a-氨基苯氧基嘧啶膦酸酯衍生物具有很好的抑菌效果和杀菌谱。制备了2种壳聚糖a-氨基苯氧基嘧啶膦酸酯衍生物。抑菌结果表明:制备的壳聚糖a-氨基苯氧基嘧啶膦酸酯衍生物均具有很好的抑菌效果和杀菌谱,在250μg/mL下对黄瓜枯萎病原真菌、芦笋茎枯病原真菌、葱紫斑病原真菌的抑菌活性可达100%,明显强于阳性对照三唑酮和多抗霉素。制备了2种壳聚糖α-氨基呋喃基膦酸酯类衍生物,制备的衍生物的溶解性和抑菌性均有很大提升。构效关系表明壳聚糖α-氨基膦酸酯,膦酸乙酯活性稍好。
     4.通过对含氮、硫、磷壳聚糖衍生物的抑菌活性筛选,发现含磷壳聚糖衍生物的溶解性和抑菌活性均要强于含氮和硫的壳聚糖衍生物。由于壳聚糖α-氨基丁基膦酸乙酯(α-APEPCS)和壳聚糖α-氨基呋喃基膦酸乙酯(α-AFEPCS)合成更简便、所用原料成本更低,因此选择其进行抑菌机理的探讨。
     5.以α-APEPCS和α-AFEPCS为研究对象,探讨了其对黄瓜枯萎病原真菌和茶炭疽病原真菌细胞壁和细胞膜结构和功能的影响及对代谢中间产物丙酮酸合成的影响。主要结论如下:描电镜显示,100μg/mL下,α-APEPCS和α-AFEPCS就能对病菌菌丝造成严重破坏,使菌丝部分或全部破裂;而多抗霉素处理的菌丝只是发生变形,壳聚糖处理的菌丝超微结构变化不大;α-APEPCS、α-AFEPCS、壳聚糖、多抗霉素均能改变菌丝细胞膜的通透性,其中多抗霉素处理后的菌液电导率变化最快;用α-APEPCS、α-AFEPCS、壳聚糖、多抗霉素处理24小时后的菌液中可溶性蛋白量均有所增加,说明药液破坏了细胞膜的结构,使蛋白等大分子溢出,其中α-APEPCS处理的蛋白溢出量最大。用α-APEPCS、α-AFEPCS、壳聚糖、多抗霉素处理24小时后的菌液中丙酮酸含量均有降低,说明各药液均抑制了病菌重要的代谢中间产物丙酮酸的合成。
     本论文制备并筛选出了5种抑菌活性较好、有着潜在应用前景的壳聚糖衍生物,初步探讨了其作用机理。制备的壳聚糖衍生物保持了壳聚糖的基本骨架,因此可能会具有壳聚糖特有的生物相容性好、易于降解、毒性低的优点。此外,上述壳聚糖衍生物与市场上常用的杀菌剂三唑酮和多抗霉素相比,杀菌谱明显不同,这对研制新型低毒、无交互抗性的海洋生物农药进而代替部分高毒化学农药,实现海洋生物资源的高值化利用方面无疑有着十分重要的意义。
The frequent and wide application of traditional fungicides has caused serious problems such as environmental pollution and threats to human health. Therefore, it is critically necessary to discover new biofungicidal alternatives. Chitosan is one kind of natural polysaccharide and it is proved to have broad-spectrum antifungal activity. Chitosan possesses good biocompatibility, biodegradability, and non-toxicity. Hence, it has attracted much attention in the field of agriculture. However, chitosan can not be used directly as a fungicide due to its relatively low antifungal activity. Hence, many strategies were proposed to overcome these limitations. A widely used approach is the chemical modification of chitosan.
     In this study, nine kinds of chitosan derivatives were designed via localization of import active group and strategy of graft copolymerization. Totally,30target derivatives were obtained. Their structures were confirmed by FT-IR, NMR, elemental analysis, XRD, DSC, and SEM to determine position and degree of substitution, crystal properties, and thermodynamic properties. Antifungal activity of them against R. solani, A. solani, P. piricola Nose, S. solani, P. asparagi, F. oxysporum, A. porri, G. theae-sinensis was tested. And two of the chitosan derivatives were selected to study mechanism of action. The major findings and results were listed as follows:
     1. Three new1,2,4-triazole chitosan derivatives were prepared via cyclization of acyl thiourea chitosan. Their solubility and antifungal activity improved after chemical modification chitosan. Antifungal results exhibited the activity was greatly influenced by electronegativity of substituents in triazole and steric effect. The inhibitory effect followed a sequence of methyl>methyl chloride>phenyl. Two new1,2,3-triazole chitosan derivatives were prepared via “Click Chemistry”. Antifungal results showed PhTACS had a better inhibitory effect than PyTACS.
     2. Nine acyl halogenated phenyl-thiosemicarbazone chitosan derivativess were prepared. The inhibitory effect followed a sequence of chloroacetyl thiosemicarbazone>acetyl thiosemicarbazone>benzoyl thiosemicarbazone. Various substituents of aromatic ring in chitosan derivatives had distinct impacts on antifungal activity: Cl>F>CF3. Seven alkyl(substituted phenyl) thiosemicarbazone were obtained and the antifungal activity was studied. It was found that the chitosan derivatives with substituted phenyl had stronger inhibitory effect than those with alkyl Strong electron contributing group at phenyl was helpful to enhance the antifungal properties. Two alkyl dithiocarbamates chitosan derivatives were prepared and their antifungal activity was evaluated. The results showed methyl dithiocarbamates chitosan was more effective than ethyl dithiocarbamates chitosan. Two dithiocarbamates chitosan salts were prepared and their antifungal activity was studied. Their solubility obviously improved after chemical modification but the antifungal activity enhanced slightly. It indicated that solubility was not a decisive factor for antifungal activity. Additionally, dithiocarbamate chitosan (ADTCCS) was more effective than triethylene diamine dithiocarbamate chitosan (TEDADTCCS).
     3. The derivative α-amino-n-propyl-o,o-diethyl phosphonate chitosan was obtained, antifungal results showed it had good activity. Two α-amino-2-(p-tolyloxy)pyrimidine phosphonate chitosan were prepared. All the chitosan derivatives had excellent and broad-spectrum antifungal activity. At250μg/mL, the derivatives inhibited growth of P. asparagi, F. oxysporum and A. porri at100%, and they were much stronger than triadimefon and polyoxin. Two α-amino-furanyl phosphonate chitosan derivatives were prepared via one pot synthesis under microwave assisted and solvent-free conditions. Their solubility and antifungal activity greatly enhanced after modification. The structure-activity relationship showed that α-amino-furanyl ethyl phosphonate chitosan was slightly effective than α-amino-furanyl methyl phosphonate chitosan.
     4. It was found that solubility and antifungal activity of phosphor-containing chitosan derivatives was much better than (nitrogen and sulfur)-containing chitosan based on the antifunal screening results. Considering the preparation of α-APEPCS and α-AFEPCS was simpler and their raw material was cheaper, they were selected to study the mechanism of action.
     5. In order to investigate the antifungal mechanisms of chitosan and its derivatives, we examined their effects on hyphal morphology, membrane permeability, pyruvate, chitosan, and soluble protein in F. oxysporum and G. theae-sinensis. SEM obversation showed that the hyphal treated with α-APEPCS and α-AFEPCS was serious damaged, part or all of the hyphal cracked at100μg/mL While the hyphal treated with polyoxin only had a slight deformation and the hyphal treated with chitosan had no obvious change. The relative permeability rates of the cell membrane treated with samples were all higher than that of blank control. The results showed that the cell membrane of fungi incubated with the samples was destroyed. And the relative permeability rates of the cell membrane treated with polyoxin changed fastest. The mycelial soluble protein content that was treated by the samples after24h was higher than the blank control, it also indicated the cell membrane of fungi was destroyed, and the mycelia soluble protein content for α-APEPCS was higher than the others. The mycelial pyruvate content of the fungi treated with the samples reduced after24h, it might be attributed to the fact that the derivatives can inhibit the activity of lactate dehydrogenase (LDH), thereby inducing the decrease of the pyruvate content.
     In the study, five chitosan derivatives with greatly enhanced activity were selected via antifungal screening. Their mechanism of action was preliminary studied. The new obtained chitosan derivatives may have a good biocompatibility, biodegradability, and non-toxicity because they retained the skeleton structure of chitosan. Moreover, the derivatives had a different antifungal spectrum compared with triadimefon and polyoxin. All the above results described here lend themselves to find novel low-toxicity and no-cross-resistance marine fungicides. And it is important to explore marine biological resources technology of high-value line.
引文
[1]王爱勤.甲壳素化学[M].第一版.北京:科学出版社,2008:9-10.
    [2] Shahidi F, Synowiecki J. Isolation and characterization of nutrients and value-added productsfrom snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards.Journal of Agricultural and Food Chemistry[J],1991,39(8):1527-1532.
    [3] Yen M T, Yang J H,&Mau J-L. Physicochemical characterization of chitin and chitosanfrom crab shells. Carbohydrate Polymers[J],2009,75(1):15-21.
    [4] Kurita K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. MarineBiotechnology[J],2006,8(3):203-226.
    [5] Pochanavanich P, Suntornsuk W. Fungal chitosan production and its characterization. Lettersin Applied Microbiology[J],2002,35(1):17-21.
    [6] No H K, Meyers S P. Preparation and Characterization of Chitin and Chitosan-A Review.Journal of Aquatic Food Product Technology[J],1995,4(2):27-52.
    [7] enel S, McClure S J. Potential applications of chitosan in veterinary medicine. AdvancedDrug Delivery Reviews[J],2004,56(10):1467-1480.
    [8] Ilium L. Chitosan and Its Use as a Pharmaceutical Excipient. Pharmaceutical Research[J],1998,15(9):1326-1331.
    [9] Singla A K, Chawla M. Chitosan: some pharmaceutical and biological aspects-an update.Journal of Pharmacy and Pharmacology[J],2001,53(8):1047-1067.
    [10] Jiang Y, Li Y. Effects of chitosan coating on postharvest life and quality of longan fruit.Food Chemistry[J],2001,73(2):139-143.
    [11] Bautista-Ba os S, Hernández-Lauzardo A N, Velázquez-del Valle M G, et al. Chitosan as apotential natural compound to control pre and postharvest diseases of horticulturalcommodities. Crop Protection[J],2006,25(2):108-118.
    [12] Shahidi F, Arachchi J K V,&Jeon Y-J. Food applications of chitin and chitosans. Trends inFood Science& Technology[J],1999,10(2):37-51.
    [13] Dutta P K, Tripathi S, Mehrotra G K, et al. Perspectives for chitosan based antimicrobialfilms in food applications. Food Chemistry[J],2009,114(4):1173-1182.
    [14] Coma V, Martial-Gros A, Mehrotra G K, et al. Edible Antimicrobial Films Based onChitosan Matrix. Journal of Food Science[J],2002,67(3):1162-1169.
    [15] Agulló E, Rodríguez M S, Ramos V, et al. Present and Future Role of Chitin and Chitosanin Food. Macromolecular Bioscience[J],2003,3(10):521-530.
    [16] Fernandez-Saiz P, Lagaron J M,&Ocio M J. Optimization of the biocide properties ofchitosan for its application in the design of active films of interest in the food area. FoodHydrocolloids[J],2009,23(3):913-921.
    [17] Ham-Pichavant F, Sèbe G, Pardon P, et al. Fat resistance properties of chitosan-based paperpackaging for food applications. Carbohydrate Polymers[J],2005,61(3):259-265.
    [18] Salmon S, Hudson S M. Shear-precipitated chitosan powders, fibrids, and fibrid papers:Observations on their formation and characterization. Journal of Polymer Science Part B:Polymer Physics[J],1995,33(7):1007-1014.
    [19] Kjellgren H, G llstedt M, Engstr m G, et al. Barrier and surface properties ofchitosan-coated greaseproof paper. Carbohydrate Polymers[J],2006,65(4):453-460.
    [20] Selmer-Olsen E, Ratnaweera H C,&Pehrson R."A novel treatment process for dairywastewater with chitosan produced from shrimp-shell waste." Water Science andTechnology[J],1996,34(11):33-40.
    [21] Lalov I G, Guerginov I I, Krysteva M A, et al. Treatment of waste water from distillerieswith chitosan. Water Research[J],2000,34(5):1503-1506.
    [22] Maruca R, Suder B J,&Wightman J P. Interaction of heavy metals with chitin and chitosan.III. Chromium. Journal of Applied Polymer Science[J],1982,27(12):4827-4837.
    [23] Francis Suh J K, Matthew H W T. Application of chitosan-based polysaccharidebiomaterials in cartilage tissue engineering: a review. Biomaterials[J],2000,21(24):2589-2598.
    [24] Di Martino A, Sittinger M,&Risbud M V et al. Chitosan: A versatile biopolymer fororthopaedic tissue-engineering. Biomaterials[J],2005,26(30):5983-5990.
    [25] Rao S B, Sharma C P. Use of chitosan as a biomaterial: Studies on its safety and hemostaticpotential. Journal of Biomedical Materials Research[J],1997,34(1):21-28.
    [26] Yamane S, Iwasaki N, Majima T, et al. Feasibility of chitosan-based hyaluronic acid hybridbiomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials[J],2005,26(6):611-619.
    [27] Molinaro G, Leroux J C, Damas J, et al. Biocompatibility of thermosensitive chitosan-basedhydrogels: an in vivo experimental approach to injectable biomaterials. Biomaterials[J],2002,23(13):2717-2722.
    [28] Muzzarelli R A A, Biagini G, Bellardini M, et al. Osteoconduction exerted bymethylpyrrolidinone chitosan used in dental surgery. Biomaterials[J],1993,14(1):39-43.
    [29] Zhang L, Ao Q, Wang A, et al. A sandwich tubular scaffold derived from chitosan for bloodvessel tissue engineering. Journal of Biomedical Materials Research Part A[J],2006,77A(2):277-284.
    [30] Mao J, Zhao L, Yao K, et al. Study of novel chitosan-gelatin artificial skin in vitro. Journalof Biomedical Materials Research Part A[J],2003,64A(2):301-308.
    [31] Qi L, Xu Z. In vivo antitumor activity of chitosan nanoparticles. Bioorganic&Medicinal Chemistry Letters[J],2006,16(16):4243-4245.
    [32] Dufes C, Muller J M, Couet M, et al. Anticancer Drug Delivery with Transferrin TargetedPolymeric Chitosan Vesicles. Pharmaceutical Research[J],2004,21(1):101-107.
    [33] Zhao Z, He M, Yin L, et al. Biodegradable Nanoparticles Based on Linoleic Acid andPoly(β-malic acid) Double Grafted Chitosan Derivatives as Carriers of Anticancer Drugs.Biomacromolecules[J],2009,10(3):565-572.
    [34] Jeon T I, Hwang S G, Park N G, et al. Antioxidative effect of chitosan on chronic carbontetrachloride induced hepatic injury in rats. Toxicology[J],2003,187(1):67-73.
    [35] Ueno H, Yamada H, Tanaka I, et al. Accelerating effects of chitosan for healing at earlyphase of experimental open wound in dogs. Biomaterials[J],1999,20(15):1407-1414.
    [36] Ueno H, Mori T,&Fujinaga T. Topical formulations and wound healing applications ofchitosan. Advanced Drug Delivery Reviews[J],2001,52(2):105-115.
    [37] Ishihara M, Nakanishi K, Ono K, et al. Photocrosslinkable chitosan as a dressing for woundocclusion and accelerator in healing process. Biomaterials[J],2002,23(3):833-840.
    [38] Cho Y W, Cho Y N, Chung S H, et al. Water-soluble chitin as a wound healing accelerator.Biomaterials[J],1999,20(22):2139-2145.
    [39] Thanoo B C, Sunny M C,&Jayakrishnan A. Cross-linked Chitosan Microspheres:Preparation and Evaluation as a Matrix for the Controlled Release of Pharmaceuticals.Journal of Pharmacy and Pharmacology[J],1992,44(4):283-286.
    [40] Liu L S, Liu S Q, Ng S Y, et al. Controlled release of interleukin-2for tumourimmunotherapy using alginate/chitosan porous microspheres. Journal of ControlledRelease[J],1997,43(1):65-74.
    [41] Anal A K, Stevens W F. Chitosan–alginate multilayer beads for controlled release ofampicillin. International Journal of Pharmaceutics[J],2005,290(1–2):45-54.
    [42] Bhaskara Reddy M V, Arul J, Angers P, et al. Chitosan Treatment of Wheat Seeds InducesResistance to Fusarium graminearum and Improves Seed Quality. Journal of Agricultural andFood Chemistry[J],1999,47(3):1208-1216.
    [43] St ssel P, Leuba J L. Effect of Chitosan, Chitin and some Aminosugars on Growth ofVarious Soilborne Phytopathogenic Fungi. Journal of Phytopathology[J],1984,111(1):82-90.
    [44] Ziani K, Ursúa B,&Mate J I. Application of bioactive coatings based on chitosan forartichoke seed protection. Crop Protection[J],2010,29(8):853-859.
    [45] Jiang Y, Li Y. Effects of chitosan coating on postharvest life and quality of longan fruit.Food Chemistry[J],2001,73(2):139-143.
    [46] Bhaskara Reddy M V, Belkacemi K, Corcuff R, et al. Effect of pre-harvest chitosan sprayson post-harvest infection by Botrytis cinerea and quality of strawberry fruit. PostharvestBiology and Technology[J],2000,20(1):39-51.
    [47] Nge K L, New N, Chandrkrachang S, et al. Chitosan as a growth stimulator in orchid tissueculture. Plant Science[J],2006,170(6):1185-1190.
    [48] Lafontaine P J, Benhamou N. Chitosan Treatment: An Emerging Strategy for EnhancingResistance of Greenhouse Tomato Plants to Infection by Fusarium oxysporum f.sp.radicis-lycopersici. Biocontrol Science and Technology[J],1996,6(1):111-124.
    [49] Benhamou N, Thériault G. Treatment with chitosan enhances resistance of tomato plants tothe crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. Physiologicaland Molecular Plant Pathology[J],1992,41(1):33-52.
    [50] Pospieszny H, Chirkov S,&Atabekov J. Induction of antiviral resistance in plants bychitosan. Plant Science[J],1991,79(1):63-68.
    [51] Brodelius P, Funk C, H ner A, et al. A procedure for the determination of optimal chitosanconcentrations for elicitation of cultured plant cells. Phytochemistry[J],1989,28(10):2651-2654.
    [52] Rabea E I, Badawy M E T, Stevens C V, et al. Chitosan as Antimicrobial Agent:Applications and Mode of Action. Biomacromolecules[J],2003,4(6):1457-1465.
    [53] Palma-Guerrero J, Jansson H B, Salinas J, et al. Effect of chitosan on hyphal growth andspore germination of plant pathogenic and biocontrol fungi. Journal of AppliedMicrobiology[J],2008,104(2):541-553.
    [54] Bautista-Ba os S, Hernández-López M, Bosquez-Molina E, et al. Effects of chitosan andplant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality ofpapaya fruit. Crop Protection[J],2003,22(9):1087-1092.
    [55] El Ghaouth A, Arul J, Ponnampalam R, et al. Use of chitosan coating to reduce water lossandmaintain quality of cucumber and bell pepper fruits. Journal of Food Processing andPreservation[J],1991,15(5):359-368.
    [56]张云展,班卫平,高学明等.制浆废液中溶解木素的壳多糖可絮凝性.大连轻工业学院学报[J],2003,22(1):1-4.
    [57] Nakatsuka S, Andrady A L. Permeability of vitamin B-12in chitosan membranes. Effect ofcrosslinking and blending with poly(vinyl alcohol) on permeability. Journal of AppliedPolymer Science[J],1992,44(1):17-28.
    [58] Jiang H L, Kim Y K, Arote R, et al. Chitosan-graft-polyethylenimine as a gene carrier.Journal of Controlled Release[J],2007,117(2):273-280.
    [59] Hirano S, Mizutani C, Yamaguchi R, et al. Formatoin of the polyelectrolyte complexes ofsome acidic glycosaminoglycans with partially N-acylated chitosans. Biopolymers[J],1978,17(3):805-810.
    [60] Hirano S, Hasegawa M,&Kinugawa J.13C-n.m.r. analysis of some sulphate derivatives ofchitosan. International Journal of Biological Macromolecules[J],1991,13(5):316-317.
    [61] Muzzarelli R A A, Tanfani F,&Emanuelli M. Sulfated N-(carboxymethyl)chitosans: Novelblood anticoagulants. Carbohydrate Research[J],1984,126(2):225-231.
    [62] Ramos V M, Rodriguez N M, Rodriguez M S, et al. Modified chitosan carrying phosphonicand alkyl groups. Carbohydrate Polymers[J],2003,51(4):425-429.
    [63] Wolfrom M L, Maher G G,&Chaney A. Chitosan Nitrate1. The Journal of OrganicChemistry[J],1958,23(12):1990-1991.
    [64] Matevosyan G L, Yukha Y S,&Zavlin P M. Phosphorylation of Chitosan. Russian Journalof General Chemistry[J],2003,73(11):1725-1728.
    [65] Ogawa K, Inukai S. X-Ray diffraction study of sulfuric, nitric, and halogen acid salts ofchitosan. Carbohydrate Research[J],1987,160(0):425-433.
    [66] Lee S T, Mi F L, Shen Y J, et al. Equilibrium and kinetic studies of copper(II) ion uptake bychitosan-tripolyphosphate chelating resin. Polymer[J],2001,42(5):1879-1892.
    [67] Harish Prashanth K V, Tharanathan R N. Chitin/chitosan: modifications and their unlimitedapplication potential—an overview. Trends in Food Science& Technology[J],2007,18(3):117-131.
    [68] Mourya V, Inamdar N. Chitosan-modifications and applications: Opportunities galore.Reactive and Functional Polymers[J],2008,68(6):1013-1051.
    [69]鲍雨林,金国强,朱敏华,等.化学农药与农产品质量安全的思考.浙江柑橘[J],2010,27(1):12-16.
    [70]王勇,贺秉军.理性认识化学农药和生物农药.农药科学与管理[J],2006,27(2):45-49.
    [71]杨光富.绿色化学农药的生物合理设计.湖北植保[J],2009,31-32.
    [72]李敏连,程建国.正确认识和对待化学农药.陕西农业科学[J],2004,(5):58-60.
    [73]卢维海,韦王莹军,谭道朝,等.毒豇豆事件对农药管理的启示.中国农药[J],2010.29-32.
    [74]陈宗懋.农药残留问题的过去、现在和将来.科技导报[J],2011,29(32):76-79.
    [75]刘兆国,张秀霞.浅谈我国食品安全问题与解决措施.食品研究与开发[J],2011,32(12):208-212.
    [76]倪艳华,李忠阳.食品农药污染现状及监督管理对策[J].2005,12(1):58-60.
    [77]中华人民共和国农业部公告(第194号).2002.4.12.
    [78]中华人民共和国农业部公告(第199号).2002.7.04.
    [79]中华人民共和国农业部公告(第274号).2003.4.30.
    [80]姚晗珺,刘欣,董国堃,等.两岸禁用农药比较研究.农药科学与管理[J],2011,32(7):7-10.
    [81]刘建超,贺红武,冯新民.化学农药的发展方向—绿色化学农药.农药[J],2005,44(1):1-3转39.
    [82]纪明山,谷祖敏,张杨.生物农药研究与应用现状及发展前景.沈阳农业大学学报[J],2006-08,37(4):545-550.
    [83]韩永奇,谢平.我国生物农药产业生机何在—关于推动生物农药发展的系列思考.中国农药[J],2010,8,18-23.
    [84]仲维科,郝戬.我国食品的农药污染问题.农药[J],2000,39(7):1-4.
    [85]黄艳君,浦冠勤.昆虫对农药抗性的研究进展.长江蔬菜[J],2011,(06):7-9.
    [86]张大弟.我国农用农药环境影响评价.上海交通大学学报(农业科学版)[J],2002,20:1-5.
    [87]马俊义,李尽哲,叶兆伟.生物农药的应用现状及前景展望.江苏农业科学[J],2011,39(4):15-17.
    [88]程贤亮,刘翠君,姚经武.我国生物农药产业发展的现状、趋势与对策.湖北农业科学[J],2010,49(9):2687-2689.
    [89]邵杰.生物农药研究进展.安徽科技学院学报[J],2008,22(5):10-14.
    [90]郭荣.我国生物农药的推广应用现状及发展策略.中国生物防治学报[J],2011,27(1):124-127.
    [91]刘琴.新规或将精简生物农药登记程序.农药市场信息[J],2011,12:7.
    [92]巨修练.化学农药与生物农药的内涵与外延.农药[J],2011,50(2):153-154.
    [93]刘长令,李正名.以天然产物为先导化合物开发的农药品种(Ⅰ)—杀菌剂.农药[J],2003,42(11):1-4.
    [94]刘长令,钟滨,李正名.以天然产物为先导化合物开发的农药品种(Ⅱ)—杀虫杀螨剂.农药[J],2003,42(12):1-8.
    [95] Allan C R, Hadwiger L A. The fungicidal effect of chitosan on fungi of varying cell wallcomposition. Experimental Mycology[J],1979,3(3):285-287.
    [96] Bautista-Ba os S, Hernández-López M,&Bosquez-Molina E. Growth inhibition of selectedfungi by chitosan and plant extracts. Mexican J. Phytopathol[J],2004,22,178-186.
    [97] Bautista-Ba os S, Hernández-López M, Bosquez-Molina E, et al. Effects of chitosan andplant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality ofpapaya fruit. Crop Protection[J],2003,22(9):1087-1092.
    [98] Benhamou N, G. Thériault G. Treatment with chitosan enhances resistance of tomato plantsto the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici.Physiological and Molecular Plant Pathology[J],1992,41(1):33-52.
    [99] Hassni M, Hadrami A, Daayf F, et al. Chitosan, antifungal product against Fusariumoxysporum f. sp. albedinis and elicitor of defence reactions in date palm roots. PhytopatholMediterr[J],2004,43:195–204.
    [100]董秋洪,张样喜.壳聚糖对辣椒疫霉病菌和水稻恶苗病菌的抑制作用.江西农业学报[J],2003,15(2):58-61.
    [101]苏村水,陈卫东,卓海浪.壳聚糖对苗木立枯病的防治作用及机理初探.福建林业科技[J],2008,28(1):40-43.
    [102]赵蕾,梁元存,刘延荣.壳聚糖对烟草抗黑胫病的作用.应用与环境生物学报[J],2000,6(5):436-439.
    [103] Hai L, Bang Diep T, Nagasawa N, et al. Radiation depolymerization of chitosan to prepareoligomers. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms[J],2003,208(0):466-470.
    [104] Ben-Shalom N, Ardi R, Pinto R, et al. Controlling gray mould caused by Botrytis cinereain cucumber plants by means of chitosan. Crop Protection[J],2003,22(2):285-290
    [105] Badawy M E I, Rabea E I. Potential of the biopolymer chitosan with different molecularweights to control postharvest gray mold of tomato fruit. Postharvest Biology andTechnology[J],2009,51(1):110-117.
    [106]覃彩芹,龙晶,李会荣,等.壳聚糖抗庭院植物病原真菌的活性.武汉大学学报(理学版)[J],2005,51(4):489-492.
    [107]李宝英.壳聚糖对蔬菜土传病原菌的拮抗作用.中国农学通报[J],2004,20(6):265-267.
    [108]李美芹,肖慧,孟祥红,等.壳聚糖对番茄叶霉病菌的抑制作用.武汉大学学报(理学版)[J],2007,53(2):244-248.
    [109] El Ghaouth A, Arul J, Asselin A, et al. Antifungal activity of chitosan on post-harvestpathogens: induction of morphological and cytological alterations in Rhizopus stolonifer.Mycological Research[J],1992,96(9):769-779.
    [110] Cheah L H, Page B B C,&Shepherd R. Chitosan coating for inhibition of sclerotinia rot ofcarrots. New Zealand Journal of Crop and Horticultural Science[J],1997,25(1):89-92.
    [111] Wade H E, Lamondia J A. Chitosan inhibits Rhizoctonia fragariae but not strawberryblack root rot. Adv. Strawberry Res[J],1994,13,26-31.
    [112]赖凡,雷朝亮,钟昌珍.蝇蛆几丁糖对几种植物病原真菌的抑制作用.华中农业大学学报[J],1998,17(2):122-125.
    [113]赵进成,后家衡,杨宝峰,蒋冬花.壳聚糖对8种植物病原真菌的抑制活性探讨.浙江农业学报[J],2007,19(6):449-453.
    [114]田春莲,陈阳波,刘亮,等.壳聚糖对柑橘青、绿霉病病原菌的抑菌效果研究.食品科学[J],2007,29(12):110-112.
    [115]刘昌燕,金铃,刘颖颖,等.壳聚糖对6株植物枯萎病菌的室内抑菌活性测定.热带生物学报[J],2010,1(2):125-129.
    [116]严钦,沈月新,王慥.壳寡糖的制备及其抑菌性能研究.食品研究与开发[J],2003,24(2):26-29.
    [117]钟秋平,夏文水.壳聚糖对芒果炭疽病菌、蒂腐病菌的拮抗作用.食品与机械[J],2005,21(1):25-27.
    [118] Rabea E I, Badawy M E T, Rogge T M, et al. Enhancement of fungicidal and insecticidalactivity by reductive alkylation of chitosan. Pest Management Science[J],2006,62(9):890-897.
    [119] Rabea E I, Badawy M E T, Steurbaut W, et al. In vitro assessment of N-(benzyl)chitosanderivatives against some plant pathogenic bacteria and fungi. European Polymer Journal[J],2009,45(1):237-245.
    [120] Eweis M, Elkholy S S, et al. Antifungal efficacy of chitosan and its thiourea derivativesupon the growth of some sugar-beet pathogens. International Journal of BiologicalMacromolecules[J],2006,38(1):1-8.
    [121] Tikhonov V E, Stepnova E A, Babak V G, et al. Bactericidal and antifungal activities of alow molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/-derivatives.Carbohydrate Polymers[J],2006,64(1):66-72.
    [122]胡瑛,林建国,胡振,等.不同乙酰度壳聚糖的制备及抗菌活性的测定.湖北农业科学[J],2009,48(8):1894-1896.
    [123]朱晓红,桑青,倪付花,等.壳聚糖及壳聚糖铜对6种植物病原真菌的抑菌活性.安徽农业科学[J],2010,38(18):9577-9579.
    [124]冯小强,李小芳,杨声,等.壳聚糖金属配合物对黑曲霉的抑制活性研究.食品科学[J],2011,32(3):152-155.
    [125]毛胜凤,孙芳利,段新芳,等.壳聚糖金属盐抑菌效果研究.浙江林学院学报[J],2006,23(1):89-93.
    [126]徐俊光.壳寡糖对植物病原真菌的抑制活性及其机理的初步研究[D].博士学位论文,中国科学院研究生院,2007:25-27.
    [127] El Ghaouth A, Arul J, Asselin A, et al. Antifungal activity of chitosan on post-harvestpathogens: induction of morphological and cytological alterations in Rhizopus stolonifer.Mycological Research[J],1992,96(9):769-779.
    [128] Benhamou N. Ultrastructural and cytochemical aspects of chitosan on Fusariumoxysporum f. sp. radicis-lycopersici, agent of tomato crown and root rot. Phytopathology[J],1992,82(10):1185-1193.
    [129]黎军英,李红叶.壳聚糖对桃褐腐病菌的抑菌作用.电子显微学报[J],2002,21(2):138-140.
    [130]廖春燕,马国瑞,洪文英.壳聚糖对番茄枯萎病菌的拮抗作用.浙江大学学报(农业与生命科学版)[J],2001,27(6):619-623.
    [131] Skjak-Braek G, Anthonsen T, Sandford P. Chitin and Chitosan. London: Elsever AppliedScience[J],1989. P50.
    [132]张进,肖国民.含氮杂环化合物的研究进展.石油化工[J],2011,40(6):579-584.
    [133]刘红英,华玉山.含氮杂环化合物作为农用杀菌剂的开发应用.德州学院学报[J],2006,22(6):93-96.
    [134]周子燕,李昌春,高同春,檀根甲.三唑类杀菌剂的研究进展.安徽农业科学[J],2008,36(27):11842-11844.
    [135] Zhong Z, Xing R, Liu S, et al.. Synthesis of acyl thiourea derivatives of chitosan and theirantimicrobial activities in vitro. Carbohydrate Research[J],2008,343(3):566-570.
    [136]雷茂义,姜文清,邹建平.1-苯甲酰基-3-芳基硫脲与肼的成环反应研究.苏州大学学报(自然科学版)[J],2006,22(1):78-80.
    [137]钟志梅.含硫、磷壳聚糖新衍生物的制备、结构与抑菌活性关系研究[D].博士学位论文,中国科学院研究生院,2007:56-58.
    [138] Wu Y, Zheng Y, Yang W, et al. Synthesis and characterization of a novel amphiphilicchitosan-polylactide graft copolymer. Carbohydrate Polymers[J],2005,59(2):165-171.
    [139] Phillips G O, Takigami S T M. Hydration characteristics of the gum exudate from Acaciasenegal. Food Hydrocolloids[J],1996,10(1):11-19.
    [140] Kittur F S, Harish Prashanth K V, Udaya Sankar K, et al. Characterization of chitin,chitosan and their carboxymethyl derivatives by differential scanning calorimetry.Carbohydrate Polymers[J],2002,49(2):185-193.
    [141]邱素艳,高森林,振宇,等.点击化学最新进展.化学进展[J],2011,23(4):637-648.
    [142]陈晓勇.点击化学在高分子研究中的进展.化学推进剂与高分子材料[J],2010,8(1):17-20.
    [143] Bertoldo M, Nazzi S, Zampano G, et al. Synthesis and photochromic response of a newprecisely functionalized chitosan with “clicked” spiropyran. Carbohydrate Polymers[J],2011,85(2):401-407.
    [144] Morimoto M, Nakao M, Ishibashi N, et al. Synthesis of novel chitosan with chitosan sidechains. Carbohydrate Polymers[J],2011,84(2):727-731.
    [145] de Britto D, Assis O B G. A novel method for obtaining a quaternary salt of chitosan.Carbohydrate Polymers[J],2007,69(2):305-310.
    [146]刘长令主编.世界农药大全-杀菌剂卷[M].北京:化学工业出版社,2005:297-300.
    [147] Caldas E. D, Concei o M H, Miranda M C C, et al. Determination of DithiocarbamateFungicide Residues in Food by a Spectrophotometric Method Using a Vertical DisulfideReaction System. Journal of Agricultural and Food Chemistry[J],2001,49(10):4521-4525.
    [148] Ghosh S, Misra A K, Bhatia G, et al. Syntheses and evaluation of glucosyl arylthiosemicarbazide and glucosyl thiosemicarbazone derivatives as antioxidant andanti-dyslipidemic agents. Bioorganic&Medicinal Chemistry Letters[J],2009,9,386-389.
    [149] Krishnan K, Prathiba K, Jayaprakash V, et al. Synthesis and Ribonucleotide reductaseinhibitory activity of thiosemicarbazones. Bioorganic&Medicinal Chemistry Letters[J],2008,18(23):6248-6250.
    [150] Muzzarelli R A A, Tanfani F, Mariotti S, et al. Preparation and characteristic properties ofdithiocarbamate chitosan, a chelating polymer. Carbohydrate Research[J],1982,104(2),235-243.
    [151]唐除痴,王有名.有机磷杀菌剂的研究进展.农药译丛[J],1995,17(5):13-17.
    [152]邓继勇,袁涌,林友君.亚磷酸二乙酯的合成研究.精细化工中间体[J],2002,32(1):32-34.
    [153]李雅,王爱兵,申利红,等. a-氨基膦酸酯的合成及生物活性研究进展.河北师范大学学报(自然科学版)[J],2010,34(2):210-215转220.
    [154]张国平,訾言勤,王永秋,等. a-氨基膦酸酯的合成方法研究进展.合成化学[J],2008,16(3):247-251.
    [155] Mu X J, Lei M Y, Zhou J P, et al. Microwave-assisted solvent-free and catalyst-freeKabachnik–Fields reactions for α-amino phosphonates. Tetrahedron Letters[J],2006,47(7):1125-1127.
    [156] Zhong Z, Li P, Xing R, et al. Preparation, characterization and antifungal properties of2-(α-arylamino phosphonate)-chitosan. International Journal of BiologicalMacromolecules[J],2009,45(3):255-259.
    [157] Zhong Z, Aotegen B,&Xu H. The influence of the different inductivity of acetylphenyl–thiosemicarbazone–chitosan on antimicrobial activities. International Journal ofBiological Macromolecules[J],2011,48(5):713-719.
    [158] Tokura S, Ueno K, Miyazaki S, et al. Molecular weight dependent antimicrobial activityby Chitosan. Macromolecular Symposia[J],1997,120(1):1-9.
    [159]杨冬芝,刘晓飞,李治.壳聚糖抗菌活性的影响因素.应用化学[J],2000, l7(6):598-602.
    [160] Liu H, Du Y, Wang X, et al. Chitosan kills bacteria through cell membrane damage.International Journal of Food Microbiology[J],2004,95(2):147-155.
    [161] Helander I M, Nurmiaho-Lassila E L, Ahvenainen R, et al. Chitosan disrupts the barrierproperties of the outer membrane of Gram-negative bacteria. International Journal of FoodMicrobiology[J],2001,71(2–3):235-244.
    [162] Je J Y, Kim S K. Chitosan Derivatives Killed Bacteria by Disrupting the Outer and InnerMembrane. Journal of Agricultural and Food Chemistry[J],2006,54(18):6629-6633.
    [163]王鸿,沈月新.不同脱乙酰度壳聚糖的抑菌性.上海水产大学学报[J],2001,10(4):380-382.
    [164]李建武,肖能赓,余瑞元,等.生物化学实验原理和方法[M].北京:北京大学出版社,1994:174.
    [165] Liu F, Huang Y. Antifungal bioactivity of6-bromo-4-ethoxyethylthio quinazoline.Pesticide Biochemistry and Physiology[J],2011,101(3):248-255.
    [166]陈红军.杂环类杀菌剂作用机理的研究进展.现代农业科学[J],2009,16(11):4-5.
    [167]赖以飞.综论最近开发杀菌剂的作用方式.农药译丛[J],1997,19(1):14-20.
    [168] Cabib E. Differential inhibition of chitin synthetases1and2from Saccharomycescerevisiae by Polyoxin D and nikkomycins. Antimicrob Agents Chemother[J],1991,35(1):170-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700