致病杆菌(Xenorhabdus ehlersii)XeGroEL蛋白对大蜡螟免疫反应影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
致病杆菌(Xenorhabdus)是昆虫病原斯氏线虫(Steinernema)的肠道共生菌,能够产生多种毒素物质干扰宿主昆虫的免疫反应,协助昆虫病原线虫的成功侵染。本研究从长尾斯氏线虫(S.longicaudum)的共生致病杆菌(X. ehlersii)中分离纯化出一种具有注射活性的毒蛋白,该蛋白能够干扰大蜡螟(Galleria mellonella)的细胞免疫和体液免疫反应;克隆得到了其编码基因并进行了原核表达,用差异双向电泳和荧光定量PCR技术检测了该蛋白对大蜡螟蛋白组和基因转录本水平的影响。本研究为进一步揭示昆虫病原线虫-细菌共生体与宿主昆虫的相互作用关系奠定了基础。主要研究成果如下:
     1.分离纯化并鉴定了一种具有注射活性的毒蛋白。
     利用硫酸铵沉淀、HiTrap Q HP阴离子交换层析、HiTrap Butyl FF疏水层析和RESOURCE Q阴离子交换层析,从X. ehlersii胞内组分中分离得到一种具有注射活性的毒蛋白,双向电泳显示该蛋白表观分子~58kDa,等电点~5.0。注射该蛋白10min后大蜡螟全身黑化,并在48h内死亡,致死中量为0.76±0.08μg/头。该毒性蛋白经离子淌度质谱(HDMS)鉴定为一种GroEL同源蛋白,与来自嗜线虫致病杆菌(X. nematophila)的一种GroEL蛋白(XnGroEL)匹配度最高,将其命名为XeGroEL。
     2.检测了XeGroEL蛋白对大蜡螟细胞免疫及多酚氧化酶(PO)活性的影响。
     注射XeGroEL蛋白后,大蜡螟血细胞尤其是浆血细胞的数量显著减少,体外孵育不会显著降低血细胞数量,但能够使浆血细胞显著减少;体内注射和体外孵育均能减弱大蜡螟血细胞对琼脂糖小球的包被能力,而且经XeGroEL体外孵育的大蜡螟血细胞对荧光微球的吞噬率有所提高。XeGroEL蛋白能够显著提高大蜡螟血淋巴中的PO活性,但体内注射活性是体外孵育的5倍。
     3.克隆得到XeGroEL基因、进行了原核表达及抗体的制备。
     根据质谱鉴定结果,设计兼并引物,利用PCR克隆得到了XeGroEL基因,该基因全长1647bp,编码548个氨基酸,是一种在细菌中广泛存在的高度保守的看家基因,系统发育树分析表明其可作为一种辅助的分子标记用于肠杆菌科细菌的进化分析;共生菌和非共生菌的GroEL氨基酸序列分析显示,共生菌的GroEL保守性比非共生菌的差,GroEL在共生菌中的功能多样性可能与某些位点的不保守性有关。XeGroEL和XnGroEL的序列比对分析显示,二者活性的差异可能与其序列中17个氨基酸的置换而造成的空间结构差异有关。此外,利用pET28a载体,我们将XeGroEL在大肠杆菌中成功表达,纯化了重组XeGroEL并制备了多克隆抗体。
     4.检测了XeGroEL蛋白对大蜡螟蛋白质组和基因转录本水平的影响。
     差异双向电泳和荧光定量PCR显示,XeGroEL蛋白能够作为一种有效的免疫原物质刺激大蜡螟免疫相关因子的表达,注射XeGroEL蛋白后,大蜡螟体内的PGRP蛋白(PGRP-LB,PGRP-A和PGRP-B)、抗菌肽(阳离子抗菌肽,gallerimycin,cecropin和gloverin)、解毒蛋白(铁蛋白和GST)、17kDa的血淋巴蛋白和载脂蛋白-3的表达量出现不同程度的上调。此外,免疫共沉淀实验显示,XeGroEL蛋白能够和大蜡螟血淋巴中的两种蛋白结合,这为进一步研究其互作分子提供了基础。
The bacteria Xenorhabdus spp. are entomopathogenic symbionts that can produce several toxicproteins that interfere the immune system of insects, which facilitate the successful infection ofentomopathogenic nematode Steinernema. We purified a toxic protein with injectable activity fromXenorhabdus ehlersii, and the toxic protein can interferet the cellular and humoral immune response inGalleria mellonella;we cloned the gene and expressed it in Escherichia coli. We determined the effectof XeGroEL on proteome and gene transcriptal level by comparative proteomic analyses andRealtime-qPCR. Our results help to understand anti-microbial immune responses in G. mellonella,providing a meaningful hypothesis for the interaction between nematode-symbiotic bacteria and host.The main results are as summarized as follows:
     1. A toxic protein with injectable activity was purified and identified.
     A toxic protein from X. ehlersii was purified by ammonium sulfate precipitation, sequential HiTrap QHP, HiTrap Butyl FF and RESOURCE Q chromatography, and identified as a GroEL homology with ahighest matching against a GroEL from X. nematophila by LC-MS/MS on HDMS High DefinitionMass Spectrometry system. The apparent molecular weight and isoelectric point were estimated as58kDa and5.0by2-D PAGE. G. mellonella larva injected with XeGroEL presented melanization after10min, and dead in48h. An LD50of0.76±0.08μg/larva was calculated.
     2. Effect of XeGroEL on hemocytes immune and PO activity in G. mellonella was determined.
     After injecting XeGroEL into the G. mellonella hemolymph, the total hemocyte number decreased,especially the number of plasmatocytes, and a minor reduction in hemocyte numbers was observed byincubation in vitro, however plasmatocytes were greatly diminished in both treatments. XeGroEL canweaken the encapsulation of G. mellonella hemocytes by injection or incubation in vitro, whilepromoted the phagocytosis of G. mellonella hemocytes in vitro. XeGroEL increased the PO activity inhemolymph,and the effect was more intensive in vivo.
     3. XeGroEL gene was cloned and then expressed in E. coli, and the polyclonal antibody againstrecombinant XeGroEL was prepared.
     According to the MS result, degenerate primers were designed for PCR, XeGroEL with1647bpencoding548amino acid residues is a ubiquitous house keeping geng in bacteria, phylogenetic analysisshowed that XeGroEL is a valuable molecular marker in evolution analysis of enterobacteriaceae;sequence anlignment showed that GroEL of symbiotics had lower conservation than that of free-livingbacteria, and the multifunctionality of GroEL in symbiotics may be related to several unconservativeposition. Alignment of XeGroEL and XnGroEL indicates that substitution at17positions may attributedto the different activity. In addition, we expressed the XeGroEL ligating to pET28a vector, andpolyclonal antibody was prepared using purified recombinant XeGroEL.
     4. The changes of proteome and transcriptal level in XeGroEL-challenged G. mellonella weredeteimined.
     we demonstrated that XeGroEL can promote the expression of some immune-related factors acting as an effective immunogen by comparative proteomic analyses and Realtime-qPCR. The expressionlevel of PGRPs (PGRP-LB, PGRP-A and PGRP-B), antimicrobial peptides (anionic antimicrobialpeptide2, gallerimycin, cecropin, gloverin), antidotic proteins (ferritin and GST),27kDa hemolymphprotein and apolipophorin-3in XeGroEL-challenged larvae were all increased. Additionally,co-immunoprecipitation presented2hemolymph proteins binding with XeGroEL, which provided thebasis for further interaction study.
引文
1. Agaisse H., An Adaptive Immune Response in Drosophila? Cell Host&Microbe2007,1(2):91-93.
    2. Agaisse H., Perrimon N., The roles of JAK/STAT signaling in Drosophila immune responses.Immunological Reviews2004,198(1):72-82.
    3. Aggarwal K., Silverman N. S., Positive and negative regulation of the Drosophila immuneresponse. BMB reports2008,41(4).
    4. Akhurst R., Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbioticallyassociated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal ofGeneral Microbiology1980,121(2):303.
    5. Akhurst R., Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbioticallyassociated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Journal ofGeneral Microbiology1983,121:303-309.
    6. Akhurst R.,1990. Safety to nontarget invertebrates of nematodes of economically important pests.In: Laird, M.L., L.A.Davidson, E.W.(Ed.), Safety of microbial insecticides. CRC Press, BocaRaton, Fla., pp.233–240.
    7. Akhurst R., Bedding R., Kaya H., Bacterial symbionts of entomopathogenic nematodes: The powerbehind the throne. Nematodes and biological control of insect pests1993:127-135.
    8. Akhurst R., Boemare N.,1990. Biology and taxonomy of Xenorhabdus. In: Gaugler, R., Kaya, H.(Eds.), Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL, pp.75-90.
    9. Altincicek B., Linder M., Linder D., Preissner K. T., Vilcinskas A., Microbial metalloproteinasesmediate sensing of invading pathogens and activate innate immune responses in the lepidopteranmodel host Galleria mellonella. Infection and Immunity2007,75(1):175-183.
    10. Askary T. H.,2010. Nematodes as Biocontrol Agents. In: Lichtfouse, E.(Ed.), Sociology, OrganicFarming, Climate Change and Soil Science. Springer Netherlands, pp.347-378.
    11. Balasubramanian N., Hao Y. J., Toubarro D., Nascimento G., Sim es N., Purification, biochemicaland molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activityfrom the entomopathogenic nematode Steinernema carpocapsae. International Journal forParasitology2009,39(9):975-984.
    12. Banerjee J., Singh J., Joshi M. C., Ghosh S., Banerjee N., The cytotoxic fimbrial structural subunitof Xenorhabdus nematophila is a pore-forming toxin. Journal of Bacteriology2006,188(22):7957-7962.
    13. Beckage N. E.,2008. Insect immunology. Academic Pr.
    14. Bennett H., Clarke D., The pbgPE operon in Photorhabdus luminescens is required forpathogenicity and symbiosis. Journal of Bacteriology2005,187(1):77-84.
    15. Bergin D., Murphy L., Keenan J., Clynes M., Kavanagh K., Pre-exposure to yeast protects larvaeof Galleria mellonella from a subsequent lethal infection by Candida albicans and is mediated bythe increased expression of antimicrobial peptides. Microbes and Infection2006,8(8):2105-2112.
    16. Bird A., Akhurst R., The nature of the intestinal vesicle in nematodes of the familySteinernematidae. International Journal for Parasitology1983,13(6):599-606.
    17. Bischoff V., Vignal C., Duvic B., Boneca I. G., Hoffmann J. A., Royet J., Downregulation of theDrosophila immune response by peptidoglycan-recognition proteins SC1and SC2. PLoSPathogens2006,2(2): e14.
    18. Blackburn M., Golubeva E., Bowen D., Ffrench-Constant R. H., A novel insecticidal toxin fromPhotorhabdus luminescens, Toxin Complex a (Tca), and its histopathological effects on the midgutof Manduca sexta. Applied and Environmental Microbiology1998,64(8):3036-3041.
    19. Bleakley B., Nealson K. H., Characterization of primary and secondary forms of Xenorhabdusluminescens strain Hm. FEMS Microbiology Letters1988,53(5):241-249.
    20. Boemare N., Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus.Entomopathogenic nematology2002:35-56.
    21. Boemare N., Akhurst R., Biochemical and physiological characterization of colony form variants inXenorhabdus spp.(Enterobacteriaceae). Journal of General Microbiology1988,134(3):751.
    22. Boemare N., Laumond C., Mauleon H., The entomopathogenic nematode-bacterium complex:biology, life cycle and vertebrate safety. Biocontrol Science and Technology1996,6(3):333-346.
    23. Bogdan C., R llinghoff M., Diefenbach A., Reactive oxygen and reactive nitrogen intermediates ininnate and specific immunity. Current Opinion in Immunology2000,12(1):64-76.
    24. Bouvaine S., Boonham N., Douglas A. E., Interactions between a luteovirus and the GroELchaperonin protein of the symbiotic bacterium Buchnera aphidicola of aphids. Journal of GeneralVirology2011: vir.0.029355-029350.
    25. Bowen D., Rocheleau T. A., Blackburn M., Andreev O., Golubeva E., Bhartia R., ffrench-ConstantR. H., Insecticidal toxins from the bacterium Photorhabdus luminescens. Science1998,280(5372):2129-2132.
    26. Bowen D. J., Ensign J. C., Purification and Characterization of a high-molecular-weightinsecticidal protein complex produced by the entomopathogenic bacterium Photorhabdusluminescens. Applied and Environmental Microbiology1998,64(8):3029-3035.
    27. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B.,The crystal structure of the bacterial chaperonln GroEL at2.8. Nature1994,371(13):578-586.
    28. Brennan C. A., Anderson K. V., Drosophila: the genetics of innate immune recognition andresponse. Annual Review of Immunology2004,22:457-483.
    29. Brillard J., Duchaud E., Boemare N., Kunst F., Givaudan A., The PhlA hemolysin from theentomopathogenic bacterium Photorhabdus luminescens belongs to the two-partner secretionfamily of hemolysins. Journal of Bacteriology2002,184(14):3871-3878.
    30. Brillard J., Ribeiro C., Boemare N., Brehélin M., Givaudan A., Two dstinct hemolytic ativities inXenorhabdus nematophila are active against immunocompetent insect cells. Applied andEnvironmental Microbiology2001,67(6):2515-2525.
    31. Brivio M. F., Pagani M., Restelli S., Immune suppression of Galleria mellonella (Insecta,Lepidoptera) humoral defenses induced by Steinernema feltiae (Nematoda, Rhabditida):involvement of the parasite cuticle. Experimental Parasitology2002,101(2-3):149-156.
    32. Brown S., Cao A., Dobson P., Hines E., Akhurst R., East P., Txp40, a ubiquitous insecticidal toxinprotein from Xenorhabdus and Photorhabdus bacteria. Applied and Environmental Microbiology2006,72(2):1653.
    33. Brown S. E., Cao A. T., Hines E. R., Akhurst R. J., East P. D., A novel secreted protein toxin fromthe insect pathogenic bacterium Xenorhabdus nematophila. Journal of Biological Chemistry2004,279(15):14595.
    34. Brown S. E., Howard A., Kasprzak A. B., Gordon K. H., East P. D., A peptidomics study revealsthe impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. InsectBiochemistry and Molecular Biology2009,39(11):792-800.
    35. Brugirard-Ricaud K., Duchaud E., Givaudan A., Girard P. A., Kunst F., Boemare N., Brehélin M.,Zumbihl R., Site‐specific antiphagocytic function of the Photorhabdus luminescens type IIIsecretion system during insect colonization. Cellular Microbiology2005,7(3):363-371.
    36. Brugirard-Ricaud K., Givaudan A., Parkhill J., Boemare N., Kunst F., Zumbihl R., Duchaud E.,Variation in the effectors of the type III secretion system among Photorhabdus species as revealedby genomic analysis. Journal of Bacteriology2004,186(13):4376-4381.
    37. Burman M., Neoaplectana carpocapsae: toxin production by axenic insect parasitic nematodes.Nematologica1982,28(1):62-70.
    38. Cabral C. M., Cherqui A., Pereira A., Simoes N., Purification and Characterization of Two DistinctMetalloproteases Secreted by the Entomopathogenic Bacterium Photorhabdus sp. Strain Az29.Applied and Environmental Microbiology2004,70(7):3831-3838.
    39. Cagnolo S. R., Donari Y. M., Di Rienzo J. A., Existence of infective juveniles in the offspring offirst-and second-generation adults of Steinernema rarum (OLI strain): evaluation of their virulence.Journal of Invertebrate Pathology2004,85(1):33-39.
    40. Calderwood S. K., Mambula S. S., Gray P. J., Extracellular Heat Shock Proteins in Cell Signalingand Immunity. Annals of the New York Academy of Sciences2007,1113(1):28-39.
    41. Casiraghi M., Bordenstein S., Baldo L., Lo N., Beninati T., Wernegreen J., Werren J., Bandi C.,Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering ofarthropod and nematode symbionts in the F supergroup, and evidence for further diversity in theWolbachia tree. Microbiology2005,151(12):4015-4022.
    42. Cerenius L., Lee B. L., Soderhall K., The proPO-system: pros and cons for its role in invertebrateimmunity. Trends in Immunology2008,29(6):263-271.
    43. Cerenius L., S derh ll K., The prophenoloxidase‐activating system in invertebrates.Immunological Reviews2004,198(1):116-126.
    44. Charalambidis N., Zervas C., Lambropoulou M., Katsoris P., Marmaras V.,Lipopolysaccharide-stimulated exocytosis of nonself recognition protein from insect hemocytesdepend on protein tyrosine phosphorylation. European Journal of Cell Biology1995,67(1):32.
    45. Choo Y. M., Lee K. S., Yoon H. J., Kim B. Y., Sohn M. R., Roh J. Y., Je Y. H., Kim N. J., Kim I.,Woo S. D., Sohn H. D., Jin B. R., Dual function of a bee venom serine protease:prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. PLoSONE2010,5(5): e10393.
    46. Ciche T. A., Darby C., Ehlers R. U., Forst S., Goodrich-Blair H., Dangerous liaisons: the symbiosisof entomopathogenic nematodes and bacteria. Biological Control2006,38(1):22-46.
    47. Clark K., Witherell A., Strand M., Plasmatocyte Spreading Peptide Is Encoded by an mRNADifferentially expressed in tissues of the moth Pseudoplusia includens. Biochemical andBiophysical Research Communications1998,250(2):479-485.
    48. Cowles K. N., Cowles C. E., Richards G. R., Martens E. C., Goodrich‐Blair H., The globalregulator Lrp contributes to mutualism, pathogenesis and phenotypic variation in the bacteriumXenorhabdus nematophila. Cellular Microbiology2007,9(5):1311-1323.
    49. Cowles K. N., Goodrich-Blair H., Expression and activity of a Xenorhabdus nematophilahaemolysin required for full virulence towards Manduca sexta insects. Cellular Microbiology2005,7(2):209-219.
    50. Cytrynska M., Mak P., Zdybicka-Barabas A., Suder P., Jakubowicz T., Purification andcharacterization of eight peptides from Galleria mellonella immune hemolymph. Peptides2007,28(3):533-546.
    51. Daborn P. J., Waterfield N., Silva C. P., Au C. P. Y., Sharma S., ffrench-Constant R. H., A singlePhotorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within andkill insects. Proceedings of the National Academy of Sciences of the United States of America2002,99(16):10742-10747.
    52. Derzelle S., Turlin E., Duchaud E., Pages S., Kunst F., Givaudan A., Danchin A., The PhoP-PhoQtwo-component regulatory system of Photorhabdus luminescens is essential for virulence in insects.Journal of Bacteriology2004,186(5):1270-1279.
    53. Dowling A., Daborn P., Waterfield N., Wang P., Streuli C., Ffrench‐Constant R., The insecticidaltoxin Makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. CellularMicrobiology2004,6(4):345-353.
    54. Duchaud E., Rusniok C., Frangeul L., Buchrieser C., Givaudan A., Taourit S., Bocs S.,Boursaux-Eude C., Chandler M., Charles J. F., The genome sequence of the entomopathogenicbacterium Photorhabdus luminescens. Nature Biotechnology2003,21(11):1307-1313.
    55. Dunphy G. B., Webster J. M., Partially characterized components of the epicuticle of dauerjuvenile Steinernema feltiae and their influence on hemocyte activity in Galleria mellonella. TheJournal of parasitology1987:584-588.
    56. Dziarski R., Gupta D., The peptidoglycan recognition proteins (PGRPs). Genome Biology2006,7(8):232.
    57. Ehlers R. U., Mass production of entomopathogenic nematodes for plant protection. AppliedMicrobiology and Biotechnology2001,56(5):623-633.
    58. Ehlers R. U., Wulff A., Peters A., Pathogenicity of axenic Steinernema feltiae, Xenorhabdusbovienii, and the bacto-helminthic complex to larvae of Tipula oleracea (diptera) and Galleriamellonella (lepidoptera). Journal of Invertebrate Pathology1997,69(3):212-217.
    59. Eleftherianos I., Boundy S., Joyce S. A., Aslam S., Marshall J. W., Cox R. J., Simpson T. J., ClarkeD. J., An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses throughphenoloxidase inhibition. Proceedings of the National Academy of Sciences2007,104(7):2419.
    60. Eleftherianos I., Marokhazi J., Millichap P. J., Hodgkinson A. J., Sriboonlert A., Reynolds S. E.,Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity topathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNAinterference. Insect Biochemistry and Molecular Biology2006,36(6):517-525.
    61. Elrod-Erickson M., Mishra S., Schneider D., Interactions between the cellular and humoral immuneresponses in Drosophila. Current Biology2000,10(13):781-784.
    62. Emelianoff V., Sicard M., Le Brun N., Moulia C., Ferdy J. B., Effect of bacterial symbiontsXenorhabdus on mortality of infective juveniles of two Steinernema species. ParasitologyResearch2007,100(3):657-659.
    63. Engstrom Y.,1998. Insect immune gene regulation. In: P, B., D, H.(Eds.), Molecular mechanismsof immune responses in insects. Chapman and Hall Ltd, London, UK, pp.211-244.
    64. Ernst R. K., Guina T., Miller S. I., Salmonella typhimurium outer membrane remodeling: role inresistance to host innate immunity. Microbes and Infection2001,3(14-15):1327-1334.
    65. Ertürk-Hasdemir D., Paquette N., Aggarwal K., Silverman N.,2008. Bug versus bug: humoralimmune responses in Drosophila melanogaster. In: H, H.(Ed.), Innate Immunity of Plants, Animals,and Humans. Springer, pp.43-72.
    66. Feldhaar H., Gross R., Immune reactions of insects on bacterial pathogens and mutualists.Microbes and Infection2008,10(9):1082-1088.
    67. Fenton W. A., Kashi Y., Furtak K., Norwich A. L., Residues in chaperonin GroEL required forpolypeptide binding and release.1994.
    68. ffrench-Constant R., Bowent D., Photorhabdus toxins: novel biological insecticides. CurrentOpinion in Microbiology1999,2(3):284-288.
    69. ffrench-Constant R. H., Dowling A., Waterfield N. R., Insecticidal toxins from Photorhabdusbacteria and their potential use in agriculture. Toxicon2007,49(4):436-451.
    70. Fischer-Le Saux M., Viallard V., Brunel B., Normand P., Boemare N. E., Polyphasic classificationof the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp.nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P.temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov.International Journal of Systematic and Evolutionary Microbiology1999,49(4):1645-1656.
    71. Forst S., Dowds B., Boemare N., Stackebrandt E., Xenorhabdus and Photorhabdus spp.: bugs thatkill bugs. Annu. Rev. Microbiol1997,51(1):47-72.
    72. Forsti S., Clarke D.,2002. Bacteria-nematode symbiosis. In: R, G.(Ed.), Entomopathogenicnematology. CABI, New York,NY, pp.57-77.
    73. Galko M. J., Krasnow M. A., Cellular and genetic analysis of wound healing in Drosophila larvae.PLoS Biology2004,2(8): e239.
    74. Ganguly S., Recent taxonomic status of entomopathogenic nematodes: a review. Indian Journal ofNematology2006,36(2):158–176.
    75. Gaston J. S. H., Life P., Bailey L., Bacon P., In vitro responses to a65-kilodalton mycobacterialprotein by synovial T cells from inflammatory arthritis patients. The Journal of Immunology1989,143(8):2494-2500.
    76. Gaugler R., Kaya H. K.,1990. Entomopathogenic nematodes in biological control. CRC Press.
    77. Gaugler R., Lewis E., Stuart R. J., Ecology in the service of biological control: the case ofentomopathogenic nematodes. Oecologia1997,109(4):483-489.
    78. Georgis R., Present and future prospects for entomopathogenic nematode products. BiocontrolScience and Technology1992,2(2):83-99.
    79. Georgis R., Koppenh fer A., Lacey L., Bélair G., Duncan L., Grewal P., Samish M., Tan L., TorrP., Van Tol R., Successes and failures in the use of parasitic nematodes for pest control. BiologicalControl2006,38(1):103-123.
    80. Gillespie and J. P., Kanost M. R., Trenczek T., Biological mediators of insect immunity. AnnualReview of Entomology1997,42(1):611-643.
    81. Goodrich-Blair H., Clarke D. J., Mutualism and pathogenesis in Xenorhabdus and Photorhabdus:two roads to the same destination. Molecular Microbiology2007,64(2):260-268.
    82. Gotz P., Boman A., Boman H., Interactions between insect immunity and an insect-pathogenicnematode with symbiotic bacteria. Proceedings of the Royal Society of London. Series B.Biological Sciences1981,212(1188):333-350.
    83. Goulhen F., Grenier D., Mayrand D., Oral microbial heat-shock proteins and their potentialcontributions to infections. Critical Reviews in Oral Biology&Medicine2003,14(6):399-412.
    84. Goulhen F., Hafezi A., Uitto V.-J., Hinode D., Nakamura R., Grenier D., Mayrand D., Subcellularlocalization and cytotoxic activity of the GroEL-Like protein isolated from Actinobacillusactinomycetemcomitans. Infection and Immunity1998,66(11):5307-5313.
    85. Grant J. A., Villani M. G., Soil moisture effects on entomopathogenic nematodes. EnvironmentalEntomology2003,32(1):80-87.
    86. Griffin C., Boemare N., Lewis E.,2005. Biology and Behaviour. In: Grewal, P., Ehlers, R.-U.,Shapiro-Ilan, D.(Eds.), Nematodes as biocontrol agents. CABI, pp.47-64.
    87. Gunn J. S., Lim K. B., Krueger J., Kim K., Guo L., Hackett M., Miller S. I.,PmrA–PmrB‐regulated genes necessary for4‐aminoarabinose lipid A modification andpolymyxin resistance. Molecular Microbiology1998,27(6):1171-1182.
    88. Guo L., Fatig R. O., Orr G. L., Schafer B. W., Strickland J. A., Sukhapinda K., Woodsworth A. T.,Petell J. K., Photorhabdus luminescens W-14insecticidal activity consists of at least two similarbut distinct proteins. Journal of Biological Chemistry1999,274(14):9836-9842.
    89. Han R., Ehlers R. U., Cultivation of axenic Heterorhabditis spp. dauer juveniles and their responseto non-specific Photorhabdus luminescens food signals. Nematologica1998,44(4):425-435.
    90. Han R., Ehlers R. U., Pathogenicity, development, and reproduction of Heterorhabditisbacteriophora and Steinernema carpocapsae under axenic in vivo conditions. Journal ofInvertebrate Pathology2000,75(1):55-58.
    91. Hansen K., Bangsborg J., Fjordvang H., Pedersen N. S., Hindersson P., Immunochemicalcharacterization of and isolation of the gene for a Borrelia burgdorferi immunodominant60-kilodalton antigen common to a wide range of bacteria. Infection and Immunity1988,56(8):2047-2053.
    92. Hazir S., Stock S. P., Kaya H. K., Koppenh fer A. M., Keskin N., Developmental temperatureeffects on five geographic isolates of the entomopathogenic nematode Steinernema feltiae(Nematoda: Steinernematidae). Journal of Invertebrate Pathology2001,77(4):243-250.
    93. He H., Snyder H. A., Forst S., Unique organization and regulation of the mrx fimbrial operon inXenorhabdus nematophila. Microbiology2004,150(5):1439-1446.
    94. Herbert E. E., Goodrich-Blair H., Friend and foe: the two faces of Xenorhabdus nematophila.Nature Reviews Microbiology2007,5(8):634-646.
    95. Hoffmann J. A., Innate immunity of insects. Current Opinion in Immunology1995,7(1):4-10.
    96. Hoffmann J. A., The immune response of Drosophila. Nature2003,426(6962):33-38.
    97. Hu C., Aksoy S., Innate immune responses regulate trypanosome parasite infection of the tsetse flyGlossina morsitans morsitans. Molecular Microbiology2006,60(5):1194-1204.
    98. Hultmark D., Drosophila immunity: paths and patterns. Current Opinion in Immunology2003,15(1):12-19.
    99. Hurlbert R. E., Xu J., Small C. L., Colonial and cellular polymorphism in Xenorhabdusluminescens. Applied and Environmental Microbiology1989,55(5):1136-1143.
    100. Jarosz J., Active resistance of entomophagous rhabditid Heterorhabditis bacteriophora to insectimmunity. Parasitology1998,117(3):201-208.
    101. Jiang H., The biochemical basis of antimicrobial responses in Manduca sexta. Insect Science2008,15(1):53-66.
    102. Jiravanichpaisal P., Lee B. L., S derh ll K., Cell-mediated immunity in arthropods: hematopoiesis,coagulation, melanization and opsonization. Immunobiology2006,211(4):213-236.
    103. Joshi M. C., Sharma A., Kant S., Birah A., Gupta G. P., Khan S. R., Bhatnagar R., Banerjee N., Aninsecticidal GroEL Protein with chitin binding activity from Xenorhabdus nematophila. Journal ofBiological Chemistry2008,283(42):28287-28296.
    104. Jothi B., Mehta U., Impact of different temperatures on the infectivity and productivity ofentomopathogenic nematodes on Galleria mellonella. International Journal of Nematology2007,17(2):158.
    105. Kaneko T., Yano T., Aggarwal K., Lim J. H., Ueda K., Oshima Y., Peach C., Erturk-Hasdemir D.,Goldman W. E., Oh B. H., PGRP-LC and PGRP-LE have essential yet distinct functions in theDrosophila immune response to monomeric DAP-type peptidoglycan. Nature Immunology2006,7(7):715-723.
    106. Kanost M. R., Jiang H., Yu X. Q., Innate immune responses of a lepidopteran insect, Manducasexta. Immunological Reviews2004,198(1):97-105.
    107. Kaya H. K., Aguillera M., Alumai A., Choo H. Y., De la Torre M., Fodor A., Ganguly S., HazIr S.,Lakatos T., Pye A., Status of entomopathogenic nematodes and their symbiotic bacteria fromselected countries or regions of the world. Biological Control2006,38(1):134-155.
    108. Kaya H. K., Gaugler R., Entomopathogenic nematodes. Annual Review of Entomology1993,38(1):181-206.
    109. Kaya H. K., Stock S., Techniques in insect nematology. Manual of techniques in insect pathology1997,1:281-324.
    110. Khandelwal P., Banerjee-Bhatnagar N., Insecticidal activity associated with the outer membranevesicles of Xenorhabdus nematophilus. Applied and Environmental Microbiology2003,69(4):2032-2037.
    111. Khandelwal P., Bhatnagar R., Choudhury D., Banerjee N., Characterization of a cytotoxic pilinsubunit of Xenorhabdus nematophila. Biochemical and Biophysical Research Communications2004a,314(4):943-949.
    112. Khandelwal P., Choudhury D., Birah A., Reddy M., Gupta G. P., Banerjee N., Insecticidal pilinsubunit from the insect pathogen Xenorhabdus nematophila. Journal of Bacteriology2004b,186(19):6465-6476.
    113. Kim B. S., Lee C. S., Seol J. Y., Yun C. Y., Kim H. R., Cloning and expression of32kDa ferritinfrom Galleria mellonella. Archives of Insect Biochemistry and Physiology2002,51(2):80-90.
    114. Krin E., Chakroun N., Turlin E., Givaudan A., Gaboriau F., Bonne I., Rousselle J. C., Frangeul L.,Lacroix C., Hullo M. F., Pleiotropic role of quorum-sensing autoinducer2in Photorhabdusluminescens. Applied and Environmental Microbiology2006,72(10):6439.
    115. Lacey L., Frutos R., Kaya H., Vail P., Insect pathogens as biological control agents: do they have afuture? Biological Control2001,21(3):230-248.
    116. Lavine M., Strand M., Surface characteristics of foreign targets that elicit an encapsulationresponse by the moth Pseudoplusia includens. Journal of Insect Physiology2001,47(9):965-974.
    117. Lavine M., Strand M., Insect hemocytes and their role in immunity. Insect Biochemistry andMolecular Biology2002,32(10):1295-1309.
    118. Lee S. C., Stoilova-Mcphie S., Baxter L., Fulop V., Henderson J., Rodger A., Roper D. I., Scott D.J., Smith C. J., Morgan J. A. W., Structural characterisation of the insecticidal toxin XptA1, revealsa1.15MDa tetramer with a cage-like structure. Journal of Molecular Biology2007,366(5):1558-1568.
    119. Lemaitre B., Hoffmann J., The host defense of Drosophila melanogaster. Annual Review ofImmunology2007,25:697-743.
    120. Lemaitre B., Reichhart J. M., Hoffmann J. A., Drosophila host defense: differential induction ofantimicrobial peptide genes after infection by various classes of microorganisms. Proceedings ofthe National Academy of Sciences1997,94(26):14614.
    121. Leulier F., Rodriguez A., Khush R. S., Abrams J. M., Lemaitre B., The Drosophila caspase Dreddis required to resist gram-negative bacterial infection. EMBO Reports2000,1(4):353-358.
    122. Levy F., Bulet P., Ehret-Sabatier L., Proteomic Analysis of the Systemic Immune Response ofDrosophila. Molecular&Cellular Proteomics2004,3(2):156-166.
    123. Li M., Wu G., Liu C., Chen Y., Qiu L., Pang Y., Expression and activity of a probable toxin fromPhotorhabdus luminescens. Molecular Biology Reports2009,36(4):785-790.
    124. Li X. Y., Cowles R., Cowles E., Gaugler R., Cox-Foster D., Relationship between the successfulinfection by entomopathogenic nematodes and the host immune response. International Journal forParasitology2007,37(3-4):365-374.
    125. Liu C., Hou R., Chen C., Formation of basement membrane-like structure terminates the cellularencapsulation of microfilariae in the haemocoel of Anopheles quadrimaculatus. Parasitology1998,116(6):511-518.
    126. Liu W., Qian D., Yan X., Proteomic analysis of differentially expressed proteins in hemolymph ofScylla serrata response to white spot syndrome virus infection. Aquaculture2011,314:53-57.
    127. Ludwig W., Schleifer K. H., Phylogeny of bacteria beyond the16S rRNA standard: Despiteexpanding data sets and alternative markers for inferring phylogenetic relationships, nothing beatsthe16S rRNA gene. ASM News-American Society for Microbiology1999,65:752-757.
    128. Maizels R. M., Balic A., Gomez‐Escobar N., Nair M., Taylor M. D., Allen J. E., Helminthparasites–masters of regulation. Immunological Reviews2004,201(1):89-116.
    129. Mavrouli M. D., Tsakas S., Theodorou G. L., Lampropoulou M., Marmaras V. J., MAP kinasesmediate phagocytosis and melanization via prophenoloxidase activation in medfly hemocytes.Biochimica et Biophysica Acta (BBA)-Molecular Cell Research2005,1744(2):145-156.
    130. Mayhew P. J., Why are there so many insect species? Perspectives from fossils and phylogenies.Biological Reviews2007,82(3):425-454.
    131. Medzhitov R., Janeway C. A., Innate immunity: impact on the adaptive immune response. CurrentOpinion in Immunology1997,9(1):4-9.
    132. Meister M., Lagueux M., Drosophila blood cells. Cellular Microbiology2003,5(9):573-580.
    133. Memmel N. A., Trewitt P. M., Silhacek D. L., Krishna Kumaran A., Nucleotide sequence andstructure of the arylphorin gene from Galleria mellonella. Insect Biochemistry and MolecularBiology1992,22(4):333-342.
    134. Morgan J. A. W., Sergeant M., Ellis D., Ousley M., Jarrett P., Sequence analysis of insecticidalgenes from Xenorhabdus nematophilus PMFI296. Applied and Environmental Microbiology2001,67(5):2062.
    135. Moureaux N., Karjalainen T., Givaudan A., Bourlioux P., Boemare N., BiochemicalCharacterization and Agglutinating Properties of Xenorhabdus nematophilus F1Fimbriae. Appliedand Environmental Microbiology1995,61(7):2707-2712.
    136. Nappi A., Vass E., Frey F., Carton Y., Superoxide anion generation in Drosophila duringmelanotic encapsulation of parasites. European Journal of Cell Biology1995,68(4):450.
    137. Nappi A. J., Ottaviani E., Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays2000,22(5):469-480.
    138. Owuama C., Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes.World Journal of Microbiology and Biotechnology2001,17(5):505-515.
    139. Park J. M., Kim M., Min J., Lee S. M., Shin K. S., Oh S. D., Oh S. J., Kim Y. H., Proteomicidentification of a novel toxin protein (Txp40) from Xenorhabdus nematophila and its insecticidalactivity against larvae of Plutella xylostella. Journal of Agricultural and Food Chemistry2012.
    140. Park J. W., Kim C. H., Kim J. H., Je B. R., Roh K. B., Kim S. J., Lee H. H., Ryu J. H., Lim J. H.,Oh B. H., Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-typepeptidoglycan in insects. Proceedings of the National Academy of Sciences2007a,104(16):6602.
    141. Park S. Y., Kim C. H., Jeong W. H., Lee J. H., Seo S. J., Han Y. S., Lee I. H., Effects of twohemolymph proteins on humoral defense reactions in the wax moth, Galleria mellonella.Developmental&Comparative Immunology2005,29(1):43-51.
    142. Park Y., Herbert E. E., Cowles C. E., Cowles K. N., Menard M. L., Orchard S. S., Goodrich‐BlairH., Clonal variation in Xenorhabdus nematophila virulence and suppression of Manduca sextaimmunity. Cellular Microbiology2007b,9(3):645-656.
    143. Park Y., Kim Y., Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitivePLA2of Spodoptera exigua. Archives of Insect Biochemistry and Physiology2003,54(3):134-142.
    144. Pech L. L., Strand M. R., Granular cells are required for encapsulation of foreign targets by insecthaemocytes. Journal of Cell Science1996,109(8):2053.
    145. Pech L. L., Strand M. R., Plasmatocytes from the moth Pseudoplusia includens induce apoptosis ofgranular cells. Journal of Insect Physiology2000,46(12):1565-1573.
    146. Peters A., Ehlers R. U., Encapsulation of the entomopathogenic nematode Steinernema feltiae inTipula oleracea. Journal of Invertebrate Pathology1997,69(3):218-222.
    147. Peters A., Gouge D., Ehlers R., Hague N., Avoidance of encapsulation by Heterorhabditis spp.infecting larvae of Tipula oleracea. Journal of Invertebrate Pathology1997,70(2):161.
    148. Poinar Jr G. O.,1990. Biology and taxonomy of Steinernematidae and Heterorhabditidae. In:Gaugler R, K.H.(Ed.), Entomopathogenic nematodes in biological control. CRC Press, Boca Raton,FL, pp.23-62.
    149. Qi J., He P., Chen W., Wang H., Wang X., Zhang M., Comparative proteome study of apoptosisinduced by As4S4in retinoid acid resistant human acute promyelocytic leukemia NB4-R1cells.Leukemia Research2010,34(11):1506-1516.
    150. Raetz C. R. H., Reynolds C. M., Trent M. S., Bishop R. E., Lipid A modification systems ingram-negative bacteria. Annual Review of Biochemistry2007,76:295.
    151. Ranford J., Henderson B., Chaperonins in disease: mechanisms, models, and treatments. MolecularPathology2002,55(4):209.
    152. Ratcliffe N. A., Gagen S. J., Cellular defense reactions of insect hemocytes in vivo: Noduleformation and development in Galleria mellonella and Pieris brassicae larvae. Journal ofInvertebrate Pathology1976,28(3):373-382.
    153. Ratcliffe N. A., Gagen S. J., Studies on the in vivo cellular reactions of insects: an ultrastructuralanalysis of nodule formation in Galleria mellonella. Tissue and Cell1977,9(1):73-85.
    154. Ribeiro C., Vignes M., Brehélin M., Xenorhabdus nematophila (enterobacteriacea) secretes acation-selective calcium-independent porin which causes vacuolation of the rough endoplasmicreticulum and cell lysis. Journal of Biological Chemistry2003,278(5):3030.
    155. Rodou A., Ankrah D. O., Stathopoulos C., Toxins and Secretion Systems of Photorhabdusluminescens. Toxins2010,2(6):1250-1264.
    156. S derh ll K., Cerenius L., Role of the prophenoloxidase-activating system in invertebrate immunity.Current Opinion in Immunology1998,10(1):23-28.
    157. Sabatier L., Jouanguy E., Dostert C., Zachary D., Dimarcq J. L., Bulet P., Imler J. L., Pherokine‐2and‐3. European Journal of Biochemistry2003,270(16):3398-3407.
    158. Satoh D., Horii A., Ochiai M., Ashida M., Prophenoloxidase-activating Enzyme of the Silkworm,Bombyx mori. Journal of Biological Chemistry1999,274(11):7441-7453.
    159. Schmid-Hempel P., Evolutionary ecology of insect immune defenses. Annual Review ofEntomology2005,50:529-551.
    160. Schmidt O., Theopold U., Strand M., Innate immunity and its evasion and suppression byhymenopteran endoparasitoids. Bioessays2001,23(4):344-351.
    161. Sergeant M., Jarrett P., Ousley M., Morgan J. A. W., Interactions of insecticidal toxin geneproducts from Xenorhabdus nematophilus PMFI296. Applied and Environmental Microbiology2003,69(6):3344.
    162. Sheets J. J., Hey T. D., Fencil K. J., Burton S. L., Ni W., Lang A. E., Benz R., Aktories K.,Insecticidal Toxin Complex Proteins from Xenorhabdus nematophilus. Journal of BiologicalChemistry2011,286(26):22742-22749.
    163. Shia A. K. H., Glittenberg M., Thompson G., Weber A. N., Reichhart J. M., Ligoxygakis P.,Toll-dependent antimicrobial responses in Drosophila larval fat body require Sp tzle secreted byhaemocytes. Journal of Cell Science2009,122(24):4505.
    164. Shrestha S., Kim Y., An entomopathogenic bacterium, Xenorhabdus nematophila, inhibitshemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A2. Journal ofInvertebrate Pathology2007,96(1):64-70.
    165. Sideri M., Tsakas S., Markoutsa E., Lampropoulou M., Marmaras V. J., Innate immunity in insects:surface‐associated dopa decarboxylase‐dependent pathways regulate phagocytosis, nodulationand melanization in medfly haemocytes. Immunology2008,123(4):528-537.
    166. Siva-Jothy M. T., Moret Y., Rolff J., Insect immunity: an evolutionary ecology perspective.Advances in Insect Physiology2005,32:1-48.
    167. Song K. H., Jung S. J., Seo Y. R., Kang S. W., Han S. S., Identification of up-regulated proteins inthe hemolymph of immunized Bombyx mori larvae. Comparative Biochemistry and PhysiologyPart D: Genomics and Proteomics2006,1(2):260-266.
    168. Strand M. R., The insect cellular immune response. Insect Science2008,15(1):1-14.
    169. Strand M. R., Pech L. L., Immunological basis for compatibility in parasitoid-host relationships.Annual Review of Entomology1995,40(1):31-56.
    170. Stuart L., Boulais J., Charriere G., Hennessy E., Brunet S., Jutras I., Goyette G., Rondeau C.,Letarte S., Huang H., A systems biology analysis of the Drosophila phagosome. Nature2006,445(7123):95-101.
    171. Stuart L. M., Ezekowitz R. A. B., Phagocytosis: elegant complexity. Immunity2005,22(5):539-550.
    172. Tailliez P., Laroui C., Ginibre N., Paule A., Pagès S., Boemare N., Phylogeny of Photorhabdus andXenorhabdus based on universally conserved protein-coding sequences and implications for thetaxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescenssubsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperatasubsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification ofP. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. InternationalJournal of Systematic and Evolutionary Microbiology2010,60(8):1921-1937.
    173.Tailliez P., Pagès S., Ginibre N., Boemare N., New insight into diversity in the genus Xenorhabdus,including the description of ten novel species. International Journal of Systematic andEvolutionary Microbiology2006,56(12):2805-2818.
    174. Takehana A., Katsuyama T., Yano T., Oshima Y., Takada H., Aigaki T., Kurata S., Overexpressionof a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activatesimd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae.Proceedings of the National Academy of Sciences2002,99(21):13705.
    175. Tanji T., Hu X., Weber A. N. R., Ip Y. T., Toll and IMD pathways synergistically activate aninnate immune response in Drosophila melanogaster. Molecular and Cellular Biology2007,27(12):4578-4588.
    176. Tzou P., Ohresser S., Ferrandon D., Capovilla M., Reichhart J. M., Lemaitre B., Hoffmann J. A.,Imler J. L., Tissue-specific inducible expression of antimicrobial peptide genes in Drosophilasurface epithelia. Immunity2000,13(5):737-748.
    177. Vabulas R. M., Ahmad-Nejad P., da Costa C., Miethke T., Kirschning C. J., H cker H., Wagner H.,Endocytosed HSP60s Use Toll-like Receptor2(TLR2) and TLR4to activate the Toll/Interleukin-1receptor signaling pathway in innate immune cells. Journal of Biological Chemistry2001,276(33):31332-31339.
    178. Valanne S., Wang J. H., R met M., The Drosophila Toll signaling pathway. The Journal ofImmunology2011,186(2):649-656.
    179. Vallet-Gely I., Lemaitre B., Boccard F., Bacterial strategies to overcome insect defences. NatureReviews Microbiology2008,6(4):302-313.
    180. Verleyen P., Baggerman G., D'Hertog W., Vierstraete E., Husson S. J., Schoofs L., Identification ofnew immune induced molecules in the haemolymph of Drosophila melanogaster by2D-nanoLCMS/MS. Journal of Insect Physiology2006,52(4):379-388.
    181. Vigneux F., Zumbihl R., Jubelin G., Ribeiro C., Poncet J., Baghdiguian S., Givaudan A., Breh¨|linM., The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdusnematophila are present in plant and human pathogens. Journal of Biological Chemistry2007,282(13):9571.
    182. Vorum H., Hager H., Christensen B. M., Nielsen S., Honoré B., Human calumenin localizes to thesecretory pathway and is secreted to the medium. Experimental Cell Research1999,248(2):473-481.
    183. Wang J., Bedding R., Population development of Heterorhabditis bacteriophora and Steinernemacarpocapsae in the larvae of Galleria mellonella. Fundamental and Applied Nematology1996,19(4):363-368.
    184. Wang J., Wu Y., Yang G., Aksoy S., Interactions between mutualist Wigglesworthia and tsetsepeptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission. Proceedings ofthe National Academy of Sciences2009,106(29):12133.
    185. Wang Y., Campbell J. F., Gaugler R., Infection of entomopathogenic nematodes Steinernemaglaseri and Heterorhabditis bacteriophora against Popillia japonica (Coleoptera: Scarabaeidae)larvae. Journal of Invertebrate Pathology1995,66(2):178-184.
    186. Wang Y., Gaugler R., Steinernema glaseri surface coat protein suppresses the immune response ofPopillia japonica (Coleoptera: Scarabaeidae) larvae. Biological Control1999,14(1):45-50.
    187. Wang Y., Gaugler R., Cui L., Variations in immune response of Popillia japonica and Achetadomesticus to Heterorhabditis bacteriophora and Steinernema species. Journal of Nematology1994,26(1):11.
    188. Waterfield N., George Kamita S., Hammock B. D., Ffrench-Constant R., The Photorhabdus Pirtoxins are similar to a developmentally regulated insect protein but show no juvenile hormoneesterase activity. FEMS Microbiology Letters2005,245(1):47-52.
    189. Waterfield N. R., Bowen D. J., Fetherston J. D., Perry R. D., The genes of Photorhabdus: agrowing family. Trends in Microbiology2001,9(4):185-191.
    190. Waterfield N. R., Ciche T., Clarke D., Photorhabdus and a host of hosts. Annual Review ofMicrobiology2009,63:557-574.
    191. Waterfield N. R., Daborn P. J., Dowling A. J., Yang G., Hares M., Ffrench‐Constant R. H., Theinsecticidal toxin makes caterpillars floppy2(Mcf2) shows similarity to HrmA, an avirulenceprotein from a plant pathogen. FEMS Microbiology Letters2003,229(2):265-270.
    192. Waterfield N. R., Sanchez-Contreras M., Eleftherianos I., Dowling A., Yang G., Wilkinson P.,Parkhill J., Thomson N., Reynolds S. E., Bode H. B., Rapid Virulence Annotation (RVA):Identification of virulence factors using a bacterial genome library and multiple invertebrate hosts.Proceedings of the National Academy of Sciences2008,105(41):15967.
    193. Weber F., Keppel F., Georgopoulos C., Hayer-Hartl M. K., Hartl F. U., The oligomeric structure ofGroEL/GroES is required for biologically significant chaperonin function in protein folding.Nature Structural&Molecular Biology1998,5(11):977-985.
    194. Wee K. E., Yonan C. R., Chang F. N., A new broad-spectrum protease inhibitor from theentomopathogenic bacterium Photorhabdus luminescens. Microbiology2000,146(12):3141-3147.
    195. Wiegand C., Levin D., Gillespie J. P., Willott E., Kanost M. R., Trenczek T., Monoclonal antibodyMS13identifies a plasmatocyte membrane protein and inhibits encapsulation and spreadingreactions of Manduca sexta hemocytes. Archives of Insect Biochemistry and Physiology2000,45(3):95-108.
    196. Yang G., Dowling A., Gerike U., Waterfield N., Photorhabdus virulence cassettes confer injectableinsecticidal activity against the wax moth. Journal of Bacteriology2006,188(6):2254-2261.
    197. Yonggyun Kim D. J., Sunghwan Cho, Youngjin Park, Two groups of entomopathogenic bacteria,Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2to induce hostimmunodepression. Journal of Invertebrate Pathology2005,89:258-264.
    198. Yoshida N., Oeda K., Watanabe E., Mikami T., Fukita Y., Nishimura K., Komai K., Matsuda K.,Protein function: Chaperonin turned insect toxin. Nature2001,411(6833):44-44.
    199. Yoshiga T., Georgieva T., Dunkov B. C., Harizanova N., Ralchev K., Law J. H., Drosophilamelanogaster transferrin. European Journal of Biochemistry1999,260(2):414-420.
    200. Zaidman-Rémy A., Hervé M., Poidevin M., Pili-Floury S., Kim M. S., Blanot D., Oh B. H., UedaR., Mengin-Lecreulx D., Lemaitre B., The Drosophila amidase PGRP-LB modulates the immuneresponse to bacterial infection. Immunity2006,24(4):463-473.
    201. Zdybicka-Barabas A., Cytryńska M., Phenoloxidase activity in hemolymph of Galleria mellonellalarvae challenged with Aspergillus oryzae. Annales UMCS, Biologia2010,65(2):49-57.
    202. Zeaiter Z., Fournier P.-E., Ogata H., Raoult D., Phylogenetic classification of bartonella species bycomparing groEL sequences. International Journal of Systematic and Evolutionary Microbiology2002,52(1):165-171.
    203. Zeilstra-Ryalls J., Fayet O., Georgopoulos C., The universally conserved GroE (Hsp60)chaperonins. Annual Reviews in Microbiology1991,45(1):301-325.
    204. Zioni S., Glazer I., Segal D., Life cycle and reproductive potential of the nematode Heterorhabditisbacteriophora strain HP88. Journal of Nematology1992,24(3):352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700