vgb基因在抗虫棉中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物中存在着控制和应答氧水平的敏感体系,从而维持稳定的氧水平,这对于避免不必要的能量丧失以及植物稳定生长至关重要。已知透明颤菌血红蛋白基因(vgb)在大肠杆菌中的表达明显促进了细胞在微氧条件下的生长和蛋白质合成能力。因此本文对转透明颤菌血红蛋白基因(vgb)的抗虫棉进行研究,通过该基因对棉花代谢水平和棉花生长的影响,确定其在抗虫棉增产和抗涝方面的功能和作用。
     首先利用分子生物学方法对转vgb基因的抗虫棉进行鉴定:PCR检测到Bt基因和vgb基因已整合到棉花基因组中;Southern杂交确定vgb基因在抗虫棉中的拷贝数为多个拷贝;用Bt免疫试纸条检测转vgb基因的抗虫棉有Bt杀虫蛋白存在,并进一步用ELISA检测Bt蛋白表达量;并用荧光定量PCR技术检测了vgb基因在棉花中的表达量。表明vgb基因和Bt基因均整合到棉花基因组中,且稳定的表达。
     通过大田试验对转vgb基因抗虫棉的三个株系进行棉花生理活动跟踪调查得出以下结论:转vgb基因抗虫棉在表现对棉铃虫显著抗性的同时,棉花种子的子叶展开和真叶出现从总体上显著早于对照棉花材料;叶绿素含量较对照提高15%-20%;棉花花期较对照提前3-5天;单株结铃数较对照增多,但衣分没有变化;三个株系的棉花产量均明显提高,其中转vgb基因株系1的棉花子棉较单转Bt的棉花增加了134.5%,皮棉较其增长了150.2%,表现最优;生育期较对照缩短了10天左右;对转vgb基因的抗虫棉进行苗期和花期为期15天的淹水试验,检测SOD、CAT、MAD、PRO等多项生理指标,并对淹水后的棉花进行农艺性状和产量性状的调查,证明转vgb基因的棉花较对照抗涝性明显增强。
     本研究首次报道了透明颤菌血红蛋白基因在棉花的增产和抗涝性提高两方面具有作用,并注意到了叶绿素含量测定可作为检测vgb基因表达的指标。为vgb基因在棉花里表达所产生的生长增加和代谢物变化情况提供数据,并为推进转vgb基因高产抗虫棉的产业化应用和其它转vgb基因农作物或蔬菜研究提供依据。
There is a sensitive system controlling and responding to the level of oxygen in the plants. Thus, it is important to maintain a steady level oxygen to avoid the unnecessary loss energy and to ensure survival. A novel genetic response to enhance oxygen metabolism has been observed in the microbial world: The obligate aerobic, Gram-negative bacterium Vitreoscilla synthesizes elevated quantities of a novel homodimeric hemoglobin (VHb) in oxygen-limited cultivations. Expression of VHb in Escherichia coli increases specific growth rate, final cell density, and cloned reporter enzyme expression in oxygen-limited cultures. This study had developed vgb (Vitreoscilla hemoglobin gene) transgenic cotton,we studied the influence to plant metabolic level and growth.This work showed the function both yield improvement and water logging resistance.of vgb gene in insect-resistant cotton.
     In this study we proved that vgb gene in insect-resistant cotton. containing and expressing the vgb gene and Bt gene respectively, PCR and Southern blot analysis confirmed their transgenic status: PCR result was that there was no specific band appeared in negative control, but a specific band similar to positive control was amplified from the test sample; Southern blot result was there two vgb-specific hybridizing bands. At the same time we found that there were more vgb insecticidal protein at seedling stage than at summer stage of cotton life. Finally, we tested that there were Bt insect-resistant proteins of different levels in both bivalent insect-resistant cotton leaf and transgenic Bt pest-resistant cotton leaf by Bt-Cry1Ab/1Ac rapid paper strips test method. Fluorescence real-time quantitative PCR, the relative expression level of vgb gene in a different transgenic cotton Lane is detected, and had difference expression.
     The transgenic cotton plants had showed obvious cotton bollworm resistance. Simultaneously, we also found their geminating speeded up, leave chlorophyll content improved by 15-20%, flowering date moved up 3-5 day ,the boll number increased significantly,but the seed-cotton weight per-boll is no change . The yield increased significantly, thereinto ,the transgenic cotton 1 lint weight seed increased 134.5%, cotton yield increased 150.2%.Carry on the inundation experiment during seedling and flowering period, Observe Cotton yield and its yield components were affected significantly by different cotton Species. Examine several physiology index signs of SOD, CAT, MAD, PRO etc,provrd vgb Gene in Transgenic Insect-resistant Cotton have water logging resistance.
     This work had proved that the transgenic cotton expressing Vitreoscilla hemoglobin showed both yield improvement and water logging resistance. We also noticed that chlorophyll content was a good mark to judge the expression of Vitreoscilla hemoglobin in transgenic plant. This work had laid a research foundation for developing yield improvement transgenic crops in further.We manage to reach the goal of increasing the yield of transgenic plants and cultivate new plant vatities with pest-resistance by applying transgenic approaches, and eventually in the hope of cultivating new varities of crops with both highly-steady-yield and pest-resistance. will undoubtedly promote the studies and the commercialization of the GMO crops.
引文
[1]. 崔凤文,杨胜利,利用ORF438启动子在链霉菌中表达透明颤菌血红蛋白,生物工程学报,1997,13(4):443-445
    [2].贾士荣,郭三堆,安道昌主编,转基因棉花,北京:科学出版社。2001
    [3].郭三堆,植物抗虫基因工程研究进展,中国农业科学 1995,25(5):8-13
    [4]. 吴奕,杨胜利,透明颤菌血红蛋白的表达及对基因工程菌的影响,生物工程学报,1996,12(2):177-182
    [5]. 吴奕,杨胜利.透明颤菌血红蛋白基因调控与功能的研究,生物工程学报,1997,13(1):1-5
    [6].吴巧雯,崔洪志,郭三堆.透明颤菌血红蛋白基因的研究与应用[J].生物技术通报, 2004,(02)27-30
    [7]. J. 萨母布鲁克,E. F. 弗里奇,T. 曼尼阿蒂斯.分子克隆实验指南(第二版),1996,第一章,第六章,第十四章,第十八章,以及附录
    [8]. 许大全,光合速率、光合效率与作物产量,生物学通报,1999,34(8):8-10
    [9]. 张静娴,荆玉祥,植物的血红蛋白,生命科学,1999,11(2):66-71
    [10]. 章银梅等,血红蛋白基因在枯草芽孢杆菌中的表达及其作用的研究,遗传学报,2000,27(2):183-188
    [11]. 赵亚兰,尉亚辉,豆血红蛋白的研究进展,西北植物学报,2000,20(4):684-689
    [12]. 邹绮主编. 植物生理学试验指导. 北京:中国农业出版社,2000: 72-75
    [13]. 卢少云,郭振飞,彭新湘,等.干旱条件下水稻幼苗的保护酶活性及其耐旱性关系.华南农业大学学报,1997,18(4) :21~25
    [14]. 白宝璋,王景安,孙玉霞,等.植物生理学测试技术.北京:中国科学技术出版社,1993,145,148~149
    [15]. 汤章城,王国强,史益敏,等.现代植物生理学实验指南.北京:科学出版社,1999
    [16]. 向华,饶力群,肖立锋.水杨酸对水稻种子萌发及其生理生化的影响.2003,29(1):12~14
    [17]. 林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化作用的关系.植物学报,1984,26(6) :605~615
    [18]. 张志良.植物生理学实验指导.北京:高等教育出版社,1990:277~278
    [19]. Khosla C, Bailey J E. Mol. Gene. Genet., 1988, 214:158-161
    [20]. 吕山花,邱丽娟,陶波.转基因植物食品检测技术研究进展[J].生物技术通报,2002,(4)34-38
    [21]. 欧阳松应,杨冬,欧阳红生,等.实时荧光定量PCR技术及其应用[J].生命的化学,2004,24(1):74- 76
    [22]. Appleby C A, The origin and functions of haemoglobin in plants. Sci. Progress Oxford, 1992, 76:365-398
    [23]. Arredondo Peter R, Hargrove M S, Sarath G et al, Rice haemoglobins. Gene cloning, analysis, and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli. Plant Physiol. 1997, 115:1259-1266
    [24]. Bailey J E. Toward a science of metabolic engineering. Science, 1991, 252:1668-1675
    [25]. Bailey J E, Sburlati A, Hatzimanikatis V, et al. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol. Bioeng., 1996, 52:109-121
    [26]. Boerman S, Webster D A. Control of heme content in Vitreoscilla by oxygen. J. Gen. Appl. Microbiol., 1982, 28:35-43
    [27]. Breuling M, Alfermann A W, Reinhard E. Cultivation of cell cultures of Berberis wilsonae 20-l airlift bioreactors-for use in the production of increased yields of berbine alkaloids e.g. jatrorrhizine. Plant Cell Rep., 1985, 4:220-223
    [28]. Brewin N J, Flavell R B. A cure for anemia in plants? Nature Biotechnol., 1997, 15:222-223
    [29]. Buddenhagen R E, Webster D A, Stark B C. Enhancement by bacterial hemoglobin of amylase production in recombinant E. coli occurs under conditions of low O2. Biotechnol. Lett., 1996, 18(6):695-700
    [30]. Bulow L, Holmberg N, Lilius G et al, The metabolic effects of native and transgenic hemoglobins on plants. Trends Biotechnol, 1999, 17(1):21-24
    [31]. Chen W, Hughes D E, Bailey J E. Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. Biotechol. Prog., 1994, 10:308-313
    [32]. DeModena J A, Gutierrez S, Velasco J, Fermandez F J et al. The production of Cephalosporin C by Acremonium chrysogenum is improved by the intracellular expression of a bacterial hemoglobin. Bio/Technology 1993, 11:926-929
    [33]. Dikshit K L, Dikshit R P, Webster D A. Study of Vitreoscilla globin( vgb ) gene expression and promoter activity in E. coli through transcriptional fusion. Nucleic Acids Research, 1990, 18(14):4149-4155
    [34]. Dikshit K L, Webster D A. Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene, 1988, 70:377-386
    [35]. Dikshit K L, Webster D A. Oxygen inhibition of globin gene transcription and bacterial hemoglobin synthesis in Vitreoscilla. J Gen Microbiol, 1989, 135:2601-2610
    [36]. Dikshit R P, Dikshit K L, Liu Y, et al. The bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases. Archs. Biochem. Biophys., 1992, 293(2):241-245
    [37]. Duff S M G, Wittenberg J B, Hill R D, Expression, purification, and properties of recombinant barley (Hordeum sp.) hemoglobin. Optical spectra and reactions with gaseous ligands. J Biol Chem, 1997, 272:16746-16752
    [38]. Farres J, Kallio P T, Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobin, Biotechnol Prog, 2002, 18:229-233
    [39]. Gardner P R, Gardner A M, Martin L A et al, Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci USA, 1998, 95:10378-10383
    [40]. Geckil H. Ph.D thesis, Illinois Institute of Technology, Chicago, IL. 1995
    [41]. Hardison R C. A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. USA 1996, 93:5675-5679
    [42]. Hart R A, Kallio P T, Bailey J E. Effect of biosynthetic manipulation of heme on insolubility of Vitreoscilla hemoglobin in Escherichia coli. Appl. and Environ. Microbiol., 1994, 60(7):2431-2437
    [43]. Hill R D, What are haemoglobins doing in plants? Can J Bot, 1998, 76:707-712
    [44]. Jacobsen-Lyon K, Jensen E O, Jorgensen J E, et al. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca. The Plant Cell, 1995, 7:213-223
    [45]. Hockney R C, Recent developments in heterologous protein production in Escherichia coli. Trends Biotechnol, 1994, 12:456-463
    [46]. Hunt P W, Watts R A, Trevaskis B et al. Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Molecular Biology, 2001, 47:677-692
    [47]. Joshi M, Dikshie K L. Oxygen dependent regulation of Vitreoscilla globin gene: evidence for positive regulation by FNR. Biochem. and Biophys. Res. Com., 1994, 202(1):535-542
    [48]. Joshi M, Mande S, Dikshie K L. Hemoglobin biosynthesis in Vitreoscilla stercoraria DW: cloning, expression, and characterization of a new homolog of a bacterial globin gene. Appl. and Environ. Microbiol., 1998, 64(6):2220-2228
    [49]. Kallio P T, Bailey J E. Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of α-amylase and neutral protease in Bacillus subtilis. Biotechnol. Prog., 1996, 12:31-39
    [50]. Kallio P T, Kim D J, Tsai P S, et al. Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energe metabolism under oxygen-limited conditions. Eur. J. Biochem., 1994, 219:201-208
    [51]. Kaur R, Hwang K W, Raje M et al. vitreoscilla hemoglobin intracellular localization and binding to membranes. J of Biological Chemistry, 2001, 276(27): 24781-24789
    [52]. Kaur R, Pathania R, Sharma V et al, Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: new insight into the functional role of VHb. Applied and Environmental Microbiology, 2002, 68(1):152-160
    [53]. Khosla C, Bailey J E. Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J. Bacteriol., 1989, 171(11): 5995-6004
    [54]. Khosla C, Bailey J E. The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence and genetic expression in Escherichia coli. Mol. Gene. Genet., 1988, 214:158-161
    [55]. Khosla C, Bailey J E. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature, 1988, 331(18):633-635
    [56]. Khosla C, Curtis J E, DeModena J, et al. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Bio/Technology 1990, 8:849-853
    [57]. Khosravi M, Webster D A, Stark B C. Presence of the bacterial hemoglobin gene improves α-amylase production of a recombinant Escherichia coli strain. Plasmid, 1990, 24:190-194
    [58]. Kuhse J, Puehler A. Conserved sequence modifs in the untranslated 3’ end of leghemoglobin transcripts isolated from broadbean nodules. Plant Sci., 1987, 49:137-143
    [59]. Landsmann J, Llewellyn D, Dennis E S et al, Organ regulated expression of the Parasponia andersoniihaemoglobin gene in transgenic tobacco plants. Mol Gen Genet, 1988, 214:68-73
    [60]. Liu S C, Webster D A, Stark B C. Cloning and expression of the Vitreoscilla hemoglobin gene in Pseudomonas: effects on cell growth. Appl. Microbiol. Biotechnol., 1995, 44:419-424
    [61]. Liu S C, Webster D A, Wei M L, et al. Genetic engineering to contain the Vitreoscilla hemoglobin gene enhances degradation of benzoic acid by Xanthomonas maltophilia. Biotechnol. Bioeng., 1996, 49:101-105
    [62]. Magnolo S K, Leenutaphong D L, DeModena J A, et al. Actinorhodin production by Streptomyces coelicolor and growth of Streptomyces lividans are improved by the expression of a bacterial hemoglobin. Bio/Technology, 1991, 9:473-476
    [63]. Monson E K, Weinstein M, Ditta G S, et al. The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc Natl Acad Sci USA, 1992, 89:4280-4284
    [64]. Nie Xih, Hill R D, Nie X Z, Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue. Plant Physiol, 1997, 114:835-840
    [65]. Patel S M, Stark B C, Hwang K-W, et al. Cloning and expression of Vitreoscilla hemoglobin gene in Burkholderia sp. strain DNT for enhancement of 2,4-dinitrotoluene degradation. Biotechnol. Prog., 2000, 16:26-30
    [66]. Pendse G J, Bailey J E. Effect of Vitreoscilla hemoglobin expression on growth and specific tissue plasminogen activator productivity in recombinant Chinese Hamster Ovary cells. Biotechnol. Bioeng., 1994, 44:1367-1370
    [67]. Pringsheim E G. The Vitreoscillaceae: a family of colourless, gliding, filamentous organisms. J Gen Microbio, 1951, 5: 124-149
    [68]. Ramirez M, Valderrama B, Arredondo-Peter R, et al. Rhizobium etli genetically engineered for the heterologous expression of Vitreoscilla sp. hemoglobin: effects on free-living and symbiosis. Molec. Plant-Microbe Interactions, 1999, 12(11):1008-1015
    [69]. Riistama S, Puustinen A, Garcia-Horsman A et al, Channeling of dioxygen into the respiratory enzyme. Biochim Biophys Acta, 1996, 1275:1-4
    [70]. Roberts J K M, Callis J, Jardetsky O et al, Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc Natl Acad Sci USA, 1984, 81:6029-6033
    [71]. Sander F C, Fachini R A, Hughes D E et al. Expression of Vitreoscilla hemoglobin in Corynebacterium glutamicum increases final concentration and yield of L-lysine. ECB6: Proceedings of the 6th European Congress on Biotechnology, Elsevier, Amsterdam, 1993, pp. 607-610
    [72]. Schlatmann J E, Vinke J L, ten Hoopen H J G et al. Relation between dissolved oxygen concentration and ajmalicine production rate in high-density cultures of catharanthus roseus. Biotech. Bioeng., 1995, 45:435-439
    [73]. Sharrocks A D, Green J, Guest J R. FNR activates and represses transcription in vitro. Proceedings of the Royal Society of London B. Biological Sciences, 1991, 245(1314):219-226
    [74]. Spiro S, Guest J R. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiology Review, 1990, 75:399-428
    [75]. Strohl W R, Schmidt T M, Lawry N H et al. Characterization of Vitreoscilla beggiatoides and Vitreoscilla filifornis sp. nov., nom. rev., and comparison with Vitreoscilla stercoraria and Beggiatoa alba. Intern J of Systematic Bacterology, 1986, Apr. : 302-313
    [76]. Tarricone c, Galizzi A, Coda A et al, Unusual structure of the oxygenbinding site in the dimeric bacterial hemoglobin from Vitreoscilla sp. Structure, 1997, 5:497-507
    [77]. Taylor E R, Nie X Z, Macgregor A W, et al. A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Molecular Biology, 1994, 24:853-862
    [78]. Trevaskis B, Watts R A, Andersson C R et al, Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci USA, 1997, 94:12230-12234
    [79]. Tsai P S, Hatzimanikatis V, Bailey J E. Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotechnol. Bioeng., 1996, 49(2):139-150
    [80]. Tsai P S, Kallio P T, Bailey J E. Fnr, a global transcriptional regulator of Escherichia coli, activates the Vitreoscilla hemoglobin( VHb ) promoter and intracellular VHb expression increase cytochrome d promoter activity. Biotechnol. Prog., 1995, 11:288-293
    [81]. Tsai P S, Nageli M, Bailey J E. Intracellular expression of Vitreoscilla hemoglobin modifies microaerbic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o. Biotechnology and Bioengineering, 1996, 49(2):151
    [82]. Tsukihara T, Aoyama H, Yamashit E et al, Structure of metal sites of oxidized bovine heart cytochrome c oxidases at 2.8A. Science, 1995, 269:1069-1074
    [83]. Tyree B, Webster D A. The binding of cyanide and carbon nonoxide to cytochrome o purified from Vitreoscilla. J. Biol. Chem., 1978, 253:6988-6991
    [84]. Vasudevan S G, Armaregro W L, Shaw D C et al. Isolation and nucleotide sequence of the hmp gene that encodes a haemoglobin-like protein in Escherichia coli K-12. Mol Gen Genet, 1991, 226: 49-58
    [85]. Verderber E, Lucast L J, Van Dehy J A et al. Role of hemA gene product and δ-aminolevulinic acid in regulation of Escherichia coli heme synthesis. J. Bacterology, 1997, 179(14):4583-4590
    [86]. Wakabayashi S, Matsubara H, Webster D A. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature, 1986, 322(31):481-483
    [87]. Wittenberg J B. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J Biol Chem, 1966, 241:104-114
    [88]. Wei M L, Webster D A, Stark B C. Genetic engineering of Serratia marcescens with bacterial hemoglobin gene: effects on growth, oxygen utilization, and cell size. Biotechnol. Bioeng., 1998, 57(4):477-483
    [89]. Kenneth J,Livak.Thomas D,et al.Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method.Method,2001,25,402-408.
    [90]. Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of Mol Endocrinology,2000,25,169-193.
    [91]. Gibson, U.E., Heid, C.A. and Williams, P.M. A novel method for real time quantitative RT-PCR. Genome Research,1996,6,995-1001.
    [92]. KleinD,Quantification using real-time PCR technology applications and limitations Trends in Molecular Medicine,2002,8(6):257-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700