茉莉素/类茉莉素小分子探针的设计、合成和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茉莉素(Jasmonates, JAs)是一类来自于氧脂素并具有环戊烷酮结构的植物激素,在调控植物整体防御能力,尤其是抗虫性,抗病性和抗伤害方面以及在调控植物的生长发育方面是必不可少的。一种由CORONATINE INSENSITIVE1(COI1)基因编码的F-box蛋白是茉莉素调控植物育性和抗性所必需的。COI1蛋白与多种蛋白相互作用形成的SCFCOI1E3泛素连接酶复合体负责茉莉素的所有应答反应。SCFcon复合物能够识别茉莉素的转录抑制因子-JAZ蛋白。SCFcoI1复合物在茉莉素作用下与JAZ蛋白结合后,使JAZ蛋白泛素化,进而通过26S蛋白酶体降解,开启基因表达,产生茉莉素相关的生物效应。茉莉酸的活性形式JA-Ile或其立体结构类似物一冠菌素(COR)能够促进SCFcoI1与JAZ蛋白的相互作用。因此,推测SCFcoI1复合体上具有结合JA-Ile/COR的位点,SCFcoI1复合体有可能是茉莉素的受体。
     活性导向的蛋白谱技术(ABPP)是一种非常有效的研究功能蛋白组学的化学策略。它利用活性导向的探针分子特异性的标记活性蛋白,从而使靶蛋白的示踪和纯化,以及研究蛋白-蛋白间相互作用成为可能。
     本论文第一部分运用活性导向的蛋白谱技术(activity-based protein profiling, ABPP),根据对茉莉素构效关系的分析以及COI1蛋白与茉莉素相互作用的分子模拟,设计合成了一系列光亲和探针分子,经过全面的生物活性检测,发现探针分子PACOR具有最好的生物活性,它能够特异性地直接结合COI1蛋白,首次成功证明了COI1蛋白能够直接结合茉莉素的活性形式JA-Ile/COR,从而确证了COI1蛋白是茉莉素的受体。
     茉莉酸—异亮氨酸偶联物(JA-Ile)作为茉莉素的活性分子形式,对于SCFcoI1复合物与JAZ蛋白结合以及SCFCOI1-JAZ复合物的信号传导是必不可少的。研究发现JA-Ile具有多种构象,真正起作用的活性构象是(+)-7-iso-JA-Ile,而冠面酸(CFA)与不同氨基酸的偶联物(CFA-AAs)的构象与(+)-7-iso-JA-Ile完全一致。论文第二部分设计合成了一系列CFA与各种不同氨基酸的偶联物(CFA-AAs),通过生物活性测试从中筛选出具有最好活性的CFA-AA分子—CFA-Ile,并且以CFA-Ile为基础合成了光亲和探针,为进一步阐明其作用机制和模式打下基础。
Jasmonates (JAs) are a class of plant hormones, which are derived from oxylipin and characterized by a cyclopentanone structure. JAs are indispensable in plant defense responses and aspects of plant growth and development. An Arabidopsis coronatine insensitive1(COI1) gene encodes an F-box protein required for JA-regulated plant fertility and defense. COI1interacts with multiple proteins to form the SCFcI1E3ubiquitin ligase complex, which is required for all JA responses. The SCFcoI1complex recognizes JA transcriptional repressors called jasmonate ZIM-domain (JAZ) proteins and targets them for subsequent degradation by the26S proteasome in the presence of the hormone. In addition, physical interaction of SCFCOI1with the JAZ proteins is promoted by a bioactive isoleucine-conjugated form of jasmonic acid (JA-Ile) or its stereochemical mimic, coronatine (COR). These results suggest that the SCFCOI1-JAZ complex is the site of JA-Ile/COR perception and that COI1is likely to function as a receptor.
     Activity-based protein profiling (ABPP) is a valuable chemical strategy for the functional proteomics, which utilizes the activity-based probes (ABPs) to specifically label the active proteins, and it makes the tracing, purifying of the target protein and the study of the protein-protein interaction to be reality.
     The first part of this dissertation is the application of ABPP in the study of JAs receptor. We designed and synthesized a series of photoaffinity probes of jasmonates based on analysis of JAs structure-activity relationships and molecular modeling of the interaction between COI1and JAs. Among them, PACOR exhibited the most significant biological activity in inhibiting root growth, promoting accumulation of JA-responsive proteins, and triggering COI1-JAZ1interaction in Arabidopsis seedlings. Our results had shown that PACOR can bind with COI1directly. It demonstrated that COI1functions as a receptor for JAs.
     Jasmonoyl-isoleucine(JA-Ile) is a bioactive molecule of Jasmonates. It is essential for the interaction between SCFCOI1and JAZ proteins and perceived by the SCFCOI1-JAZ complex. Recent studies had shown that JA-Ile have several stereoisomers,(+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. The stereostructure of conjugates of coronafacic acid (CFA) with amino acids (CFA-AAs) is identical to (+)-7-iso-Jasmonoyl-L-isoleucine stereoisomers. In the second part of this dissertation, we designed and synthesized different kinds of conjugates of CFA with amino acids (CFA-AAs). Among them, CFA-Ile exhibited the most significant biological activity. By using the photoaffinity probe of CFA-Ile, we tried to disclose the mechanism of action of CFA-AAs.
引文
[1]Bishopp A, Mahonen A P, Helariutta Y. Signs of change:hormone receptors that regulate plant development. Development,2006,133(10):1857-1869.
    [2]Aldridge D C, Gait S, Giles D, et al. Metabolites of lasiodiplodia-theobromae. J Chem Soc,1971(9):1623-1627.
    [3]Demole E, Lederer E, Mercier D. Isolement et determination de la structure du jasmonate de methyle, constituent odorant caracteristique de lessence de jasmine. Helv Chim Acta,1962,45:675-685.
    [4]Crabajona L. Presence of levorotatory methyl jasmonate, methyl cis-2-(2-penten-1-y1)-3-xo-lyclopenyl acetate in the essential oil of Tunisian rosemany. C R Acad Sci(Paris) serC,1967,264:2074.
    [5]Dathe W, Ronsch H, Preiss A, et al. Endogenous plant hormones of the broad bean, Vicia faba L.(-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta,1981,153(6):530-535.
    [6]Meyer A, Miersch O, Buttner C, et al. Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Regul,1984,3(1):1-8.
    [7]Kramell R, Miersch 0, Hause B, et al. Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.) leaves. FEBS Lett,1997,414(2):197-202.
    [8]Stintzi A, Weber H, Reymond P, et al. Plant defense in the absence of jasmonic acid:The role of cyclopentenones. Proc Natl Acad Sci USA,2001, 98(22):12837-12842.
    [9]Mitchell R E. Coronatine production by some phytopathogenic pseudomonads. Physiol Plant Pathol,1982,20(1):83-89.
    [10]Bender C L, Alarcon C F, Gross D C. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev,1999,63(2):266-292.
    [11]Uppalapati S R, Ayoubi P, Weng H, et al. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J, 2005,42(2):201-217.
    [12]Koda Y, Takahashi K, Kikuta Y, et al. Similarities of the biological activities of coronatine and coronafacic acid to those of jasmonic acid. Phytochemistry, 1996,41(1):93-96.
    [13]Mahonen A P, Bonke M, Kauppinen L, et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev, 2000,14(23):2938-2943.
    [14]Katsir L, Schilmiller A L, Staswick P E, et al. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA,2008,105(19):7100-7105.
    [15]Melotto M, Mecey C, Niu Y, et al. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine-and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J,2008,55(6):979-988.
    [16]Zhao Y F, Thilmony R, Bender C L, et al. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J,2003,36(4):485-499.
    [17]Thilmony R, Underwood W, He S Y. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157: H7. Plant J,2006,46(1):34-53.
    [18]Bray E A, Bailey-Serres J, Weretilnyk E. Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD,2000.
    [19]Weidhase R A, Kramell H M, Lehmann J, et al. Methyljasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci, 1987,51(2-3):177-186.
    [20]Muelleruri F, Parthier B, Nover L. Jasmonate-induced alteration of gene expression in barley leaf segments analyzed by in-vivo and in-vitro protein synthesis. Planta,1988,176(2):241-247.
    [21]Farmer E E, Ryan C A. Interplant communication:airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA,1990,87(19):7713-7716.
    [22]Farmer E E, Johnson R R, Ryan C A. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol,1992, 98(3):995-1002.
    [23]Gundlach H, Muller M J, Kutchan T M, et al. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA,1992, 89(6):2389-2393.
    [24]Franceschi V R, Grimes H D. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc Natl Acad Sci USA,1991,88(15):6745-6749.
    [25]Staswick P E, Su W P, Ho well S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA,1992,89(15):6837-6840.
    [26]Howe G A, Lightner J, Browse J, et al. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell,1996,8(11):2067-2077.
    [27]Mcconn M, Creelman R A, Bell E, et al. Jasmonate is essential for insect defense Arabidopsis. Proc Natl Acad Sci USA,1997,94(10):5473-5477.
    [28]Reymond P, Weber H, Damond M, et al. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell, 2000,12(5):707-719.
    [29]Herms D A, Mattson W J. The dilemma of plants:to grow or defend. Q Rev Biol,1992,67(3):283-335.
    [30]Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol,2005:205-227.
    [31]Yoshihara T, Omer E A, Koshino H, et al. Structure of a tuber-inducing stimulus from potato leaves(Solanum tuberosum L.). Agric Biol Chem,1989, 53(10):2835-2837.
    [32]Falkenstein E, Groth B, Mithofer A, et al. Methyl jasmonate and alpha -linolenic acid are potent inducers of tendril coiling. Planta,1991, 185(3):316-322.
    [33]Schommer C, Palatnik J F, Aggarwal P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol,2008, 6(9):1991-2001.
    [34]Mcconn M, Browse J. The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell,1996, 8(3):403-416.
    [35]Farmer E E, Ryan C A. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell,1992, 4(2):129-134.
    [36]Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol,2005,8(5):532-540.
    [37]Shan X, Zhang Y, Peng W, et al. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J Exp Bot,2009, 60(13):3849-3860.
    [38]Wasternack C, Hause B. Jasmonates and octadecanoids:Signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol,2002, 72:165-221.
    [39]Hyun Y, Choi S, Hwang H, et al. Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell, 2008,14(2):183-192.
    [40]Ishiguro S, Kawai-Oda A, Ueda J, et al. The DEFECTIVE IN ANTHER DEHISCENCEI gene encodes a novel phospholipase Al catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell,2001, 13(10):2191-2209.
    [41]Lee D, Nioche P, Hamberg M, et al. Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature,2008,455(7211):327-363.
    [42]Ziegler J, Stenzel I, Hause B, et al. Molecular cloning of allene oxide cyclase. J Biol Chem,2000,275(25):19132-19138.
    [43]Sanders P M, Lee P Y, Biesgen C, et al. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell,2000,12(7):1041-1062.
    [44]Vick B A, Zimmerman D C. The biosynthesis of jasmonic acid:A physiological role for plant lipoxygenase. Biochem Biophys Res Commun,1983, 111(2):470-477.
    [45]Koch T, Bandemer K, Boland W. Biosynthesis of cis-jasmone:A pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase?. Helv Chim Acta,1997,80(3):838-850.
    [46]Staswick P E, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell,2004, 16(8):2117-2127.
    [47]Chow B, Mccourt P. Plant hormone receptors:perception is everything. Genes Dev,2006,20(15):1998-2008.
    [48]Spartz A K, Gray W M. Plant hormone receptors:new perceptions. Genes Dev, 2008,22(16):2139-2148.
    [49]Chang C, Kwok S F, Bleecker A B, et al. Arabidopsis ethylene-response gene Etrl:similarity of product to 2-component regulators. Science,1993, 265(5133):539-544.
    [50]Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. J Exp Bot, 2009,60(12):3311-3336.
    [51]Fonseca S, Chini A, Hamberg M, et al. (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol,2009,5(5):344-350.
    [52]Mueller B, Sheen J. Advances in cytokinin signaling. Science,2007,318(5847): 68-69.
    [53]Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF 1 encodes a soluble receptor for gibberellin. Nature, 2005,437(7059):693-698.
    [54]Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor. Nature,2005,435(7041):441-445.
    [55]Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature,2005,435(7041):446-451.
    [56]Tan X, Calderon-Villalobos L I, Sharon M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature,2007,446(7136):640-645.
    [57]Kinoshita T, Cano-Delgado A, Seto H, et al. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature,2005, 433(7022):167-171.
    [58]Shen Y, Wang X, Wu F, et al. The Mg-chelatase H subunit is an abscisic acid receptor. Nature,2006,443(7113):823-826.
    [59]Park S Y, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science,2009, 324(5930):1068-1071.
    [60]Pandey S, Nelson D C, Assmann S M. Two novel GPCR-Type G proteins are abscisic acid receptors in Arabidopsis. Cell,2009,136(1):136-148.
    [61]Ma Y, Szostkiewicz I, Korte A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science,2009,324(5930):1064-1068.
    [62]Yin P, Fan H, Hao Q, et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol,2009,16:1230-1236.
    [63]Melcher K, Ng L M, Zhou X E, et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature,2009, 462(7273):602-608.
    [64]Feys B, Benedetti C E, Penfold C N, et al. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell,1994,6(5):751-759.
    [65]Devoto A, Ellis C, Magusin A, et al. Expression profiling reveals COI1 to be a key regulator of genes involved in wound-and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol, 2005,58(4):497-513.
    [66]Li L, Zhao Y, McCaig B C, et al. The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell,2004,16(1):126-143.
    [67]Vijayan P, Shockey J, Levesque C A, et al. A role for jasmonate in pathogen defense of Arabidopsis. Proc NatlAcadSci USA,1998,95(12):7209-7214.
    [68]Xie D X, Feys B F, James S, et al. COI1:An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science,1998, 280(5366):1091-1094.
    [69]Xu L H, Liu F Q, Lechner E, et al. The SCFCO11 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell,2002, 14(8):1919-1935.
    [70]Ren C M, Pan J W, Peng W, et al. Point mutations in Arabidopsis Cullinl reveal its essential role in jasmonate response. Plant J,2005,42(4):514-524.
    [71]Liu Y, Patricelli M P, Cravatt B F. Activity-based protein profiling:the serine hydrolases. Proc Natl Acad Sci USA,1999,96(26):14694-14699.
    [72]Thines B, Katsir L, Melotto M, et al. JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature,2007, 448(7154):661-662.
    [73]Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature,2007,448(7154):664-666.
    [74]Yan Y, Stolz S, Chetelat A, et al. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell,2007,19(8):2470-2483.
    [75]Vanholme B, Grunewald W, Bateman A, et al. The tify family previously known as ZIM. Trends Plant Sci,2007,12(6):239-244.
    [76]Chung H S, Howe G A. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the Jasmonate ZIM-domain protein JAZ 10 in Arabidopsis. Plant Cell,2009,21(1):131-145.
    [77]Chini A, Fonseca S, Chico J M, et al. The ZIM domain mediates homo-and heteromeric interactions between Arabidopsis JAZ proteins. Plant J,2009, 59(1):77-87.
    [78]Browse J. Jasmonate passes muster:a receptor and targets for the defense hormone. Annu Rev Plant Biol,2009,60:183-205.
    [79]Kidd D, Liu Y, Cravatt B F. Profiling serine hydrolase activities in complex proteomes. Biochemistry,2001,40(13):4005-4015.
    [80]Greenbaum D, Baruch A, Hayrapetian L, et al. Chemical approaches for functionally probing the proteome. Mol Cell Proteomics,2002, 1(1):60-68.
    [81]Evans, M. J.; Cravatt, B. F. Mechanism-based profiling of enzyme families. Chemical Reviews 2006,106,3279-3301.
    [82]Borodovsky, A.; Ovaa, H.; Kolli, N.; Gan-Erdene, T.; Wilkinson, K. D.; Ploegh, H. L.; Kessler, B. M. Chemistry-Based Functional Proteomics Reveals Novel Members of the Deubiquitinating Enzyme Family. Chem. Biol.2002,9,1149-1159.
    [83]Jiarpinitnun, C.; Kiessling, L. L. Unexpected Enhancement in Biological Activity of a GPCR Ligand Induced by an Oligoethylene Glycol Substituent. J. Am. Chem. Soc.2010,132,8844-8845.
    [84]Saxon, E. Cell Surface Engineering by a Modified Staudinger Reaction. Science 2000,287,2007-2010.
    [85]Sletten, E. M.; Bertozzi, C. R. Bioorthogonal Chemistry:Fishing for Selectivity in a Sea of Functionality. Angew. Chem.-Int. Edit.2009,48,6974-6998.
    [86]Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A Stepwise Huisgen Cycloaddition Process:Copper(Ⅰ)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes. Angewandte Chemie International Edition 2002,41,2596-2599.
    [87]Speers, A. E.; Cravatt, B. F. Profiling Enzyme Activities In Vivo Using Click Chemistry Methods. Chem. Biol.2004,11,535-546.
    [88]Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller,I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R. From the Cover: Copper-free click chemistry for dynamic in vivo imaging. Proceedings of the National Academy of Sciences 2007,104,16793-16797.
    [89]Laughlin, S. T.; Bertozzi, C. R. In Vivo Imaging of Caenorhabditis elegans Glycans. ACS Chem. Biol.2009,4,1068-1072.
    [90]Laughlin, S. T.; Baskin, J. M; Amacher, S. L.; Bertozzi, C. R. In Vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish. Science 2008,320, 664-667.
    [91]Chang, P. V.; Prescher, J. A.; Sletten, E. M.; Baskin, J. M.; Miller, I. A.; Agard, N. J.; Lo, A.; Bertozzi, C. R. Copper-free click chemistry in living animals. Proceedings of the National Academy of Sciences 2010,107,1821-1826.
    [92]Hosoya, T.; Hiramatsu, T.; Ikemoto, T.; Nakanishi, M.; Aoyama, H.; Hosoya, A.; Iwata, T.; Maruyama, K.; Endo, M.; Suzuki, M. Novel bifunctional probe for radioisotope-free photoaffinity labeling:compact structure comprised of photospecific ligand ligation and detectable tag anchoring units. Org. Biomol. Chem.2004,2,637-641.
    [93]Sieber, S. A.; Niessen, S.; Hoover, H. S.; Cravatt, B. F. Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat. Chem. Biol. 2006,2,274-281.
    [94]Qiu, W. W.; Xu, J.; Li, J. Y.; Li, J.; Nana, F. J. Activity-based protein profiling for type I methionine aminopeptidase by using photo-affinity trimodular probes. ChemBioChem 2007,8,1351-1358.
    [95]Hatanaka Y, Sadakane Y. Photoaffinity labeling in drug discovery and developments:chemical gateway for entering proteomic frontier. Curr Top Med Chem,2002,2(3):271-288.
    [96]Brown R L, Gerber W V, Karpen J W. Specific labeling and permanent activation of the retinal rod cGMP-activated channel by the photoaffinity analog 8-p-azidophenacylthio-cGMP. Proc Natl Acad Sci USA,1993, 90(11):5369-5373.
    [97]Resek J F, Ruoho A E. Photoaffinity labeling the beta-adrenergic receptor with an iodoazido derivative of norepinephrine. J Biol Chem,1988,263:14410-14416.
    [98]Dorman G, Prestwich G D. Benzophenone photophores in biochemistry. Biochemistry,1994,33(19):5661-5673.
    [99]Prestwich G D, Dorman G, Elliott J T, et al. Benzophenone photoprobes for phosphoinositides, peptides and drugs. Photochem Photobiol,1997, 65(2):222-234.
    [100]Weber P J, Beck-Sickinger A G. Comparison of the photochemical behavior of four different photoactivatable probes. J Pept Res,1997,49:375-383.
    [101]Brunner J, Senn H, Richards F M.3-Trifluoromethyl-3-phenyldiazirine. A new carbine generating group for photolabeling reagents. J Biol Chem,1980, 255:3313-3318.
    [102]Nassal M.4'-(1-Azi-2,2,2-trifluoroethyl)phenylalanine, a photolabile carbene-generating analog of phenylalanine. J Am Chem Soc,1984, 106(24):7540-7545.
    [103]Gu M, Yan J B, Bai Z Y, et al. Design and synthesis of biotin-tagged photoaffinity probes of jasmonates. Bioorg Med Chem,2010,18(9):3012-3019.
    [104]Yan J B, Zhang C, Gu M, et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell,2009, 21:2220-2236.
    [105]Kotzyba-Hibert F, Kapfer I, Goeldner M. Recent trends in photoaffinity labeling. Angew Chem Int Ed Engl,1995,34(12):1296-1312.
    [106]Sembdner G, Parthier B. The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol, 1993,44:569-589
    [107]Koda Y, Kikuta Y, Kitahara T, et al. Comparisons of various biological activities of stereoisomers of methyl jasmonate. Phy to chemistry,1992,31(4): 1111-1114
    [108]Sheard L B, Tan X, Mao H B, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature,2010,468(7322): 400-405.
    [109]Bhamare N.K, Granger T, Macas T.S, et al. The Synthesis of (±)-Coronafacic Acid by a Tandem Wessely Oxidation-Diels-Alder Reaction Sequence. J.Chem.Soc., Chem.Commun.,1990,739-740.
    [110]Yates P, Macas T.S. Tandem Wessely Oxidation-Diels-Alder Reactions. Ⅲ. Synthesis of isotwistanes. Can. J. Chem.1988,66:2386
    [111]闫健斌.清华大学理学博士学位论文.2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700