ST段抬高型心肌梗死急性期单核细胞亚群与单核细胞—血小板聚集体的动态变化规律及临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:单核细胞亚群比例失衡和功能失调是众多炎症相关疾病发生发展重要病理生理学基础之一。人类单核细胞由三个亚群组成(经典型:CD14++CD16-单核细胞[Mon1];中间型:CD14++CD16+单核细胞[Mon2];非经典型:CD14+CD16++单核细胞[Mon3]),不同亚群具有不同的生理和病理生理学作用,其中具有促炎症表型的Mon2亚群的在心血管疾病病理生理学过程中发挥的作用备受关注。此外,单核细胞与血小板形成的聚集体(monocyte-platelet aggregate, MPA)是单核细胞活化和血小板聚集活性增强的结构基础,是与血栓和炎症相关疾病有关的新型标志物。近期有研究显示在ST段抬高型心肌梗死(ST segment elevation myocardial infarction, STEMI)患者中,Mon2单核细胞亚群的数量变化与心肌酶的升高呈正相关关系,提示心肌梗死后单核细胞亚群比例的变化,尤其是Mon2单核细胞的数量,可能是新的心肌梗死患者心脏功能和远期预后血液学标志物。因此本研究旨在国人STEMI患者中,明确以下两个尚未阐明的问题:1)STEMI后急性期(7天内)单核细胞亚群和MPA的动态变化规律;2)单核细胞亚群和MPA的变化与STEMI后心血管事件发生的关系。研究内容与方法:连续入选在中国人民武装警察部队后勤学院附属医院心脏中心接受急诊经皮冠状动脉介入治疗(percutaneous coronary intervention, PCI)的STEMI患者100例,其中男性78人,平均年龄58.20±11.00岁,女性22人,平均年龄64.11±9.10岁。分别在入院即刻(进行抗血小板药物治疗之前)、第2、3、5及7天共5个时间点抽取外周血进行单核细胞亚群和MPA的四色流式细胞术检测(CD14-FITC, CD16-PE, CD86-PE-Cy5和CD41-PE-Cy7)。入院24小时内及第7天完成心脏彩超检查。据患者基线资料和入院化验检查结果行GRACE评分、CRUSADE评分;依据造影结果进行SYNTAX评分。记录住院期间和出院1个月内出现的心血管死亡、致死性和非致死性缺血性脑卒中、再梗死、血运重建术、心力衰竭或心绞痛再入院等主要不良心脏事件(major adverse cardiovascular events, MACE)的发生情况。
     结果:
     1) MACE发生情况:全部入选的100名STEMI患者中,前壁心梗48例,下壁心梗52例;共发生7个MACE,其中院内事件4个,院外3个。院内1人发生缺血性脑卒中,3人死亡。死亡3人中1人只完成第1次流式细胞检测,1人完成2次流式细胞检测,第3人完成全部5次流式细胞检测。院外3个事件中,1人死亡,2人因心绞痛再次入院行靶血管血运重建术。
     2)白细胞(white blood cell, WBC)、总单核细胞,总MPA计数动态变化:总体WBC计数在发病第1天即达到峰值,随后呈逐步下降趋势。总单核细胞计数逐渐升高,在第3天达峰值,随后呈下降趋势。总MPA和MPA占单核细胞的比例在心梗后第1天开始呈现逐渐下降的趋势,在第5天达到最低值。
     3)Mon1和Mon1MPA动态变化:Monl计数第3天达峰值,第5天开始降低,Mon1占总单核细胞的百分比在第2天出现轻度降低,第3天再次升高达峰值,随后呈逐步降低趋势。Monl MPA呈现与总MPA一致的变化趋势,即STEMI后第一天处于峰值,随后缓慢下降,在第5天达到最低值。
     4)Mon2和Mon2MPA动态变化:与第1天相比,Mon2计数第2天迅速升高[24.67cells/μL (14.96-45.73cells/μL) vs.48.78cells/μL (22.89-79.45cells/μL), P<0.0001(以中位数和四分位间距表示,下同)],并在第3天达峰值[74.13cells/μL (27.77-86.27cells/μL)],随后呈逐步降低趋势。Mon2百分比也是从第2天开始迅速升高[6.60%(4.38%-9.50%)vs.11.26%(7.56%-18.16%),.P<0.0001],并在第3天达峰值,随后呈逐步降低趋势。Mon2MPA的变化趋势与Mon2计数相似,也是从第2天明显增高并达峰值随后逐步降低。
     5)Mon3和Mon3-MPA动态变化:Mon3计数在发病前3天呈逐步降低趋势,后逐步升高。Mon3百分比与计数呈一致性变化。Mon3MPA计数也是从发病开始至第3天呈逐步降低趋势,随后逐步增高。
     6) LVEF与Mon2计数相关性分析:共有85例患者完成第7天经胸超声检测,Mon2计数的累积效应(以Mon2计数动态变化的曲线下面积[area under curve, AUC]表示)与第7天左心室射血分数(left ventricular ejection fraction, LVEF)呈负相关(r=-0.247,P=0.023,n=85)。前壁心梗组Mon2计数AUC值与LVEF呈负相关(r=-0.318,P=0.046,n=40),而下壁心梗组Mon2计数AUC值与LVEF无相关性(r=-0.092,P=N.S,n=45)。85例患者中Mon2计数峰值与第7天LVEF值呈负相关(r=-0.227,P=0.037,n=85)。前壁心梗组Mon2峰值计数与LVEF值呈负相关(r=-0.329,P=0.038,n=40),下壁心梗组Mon2峰值计数与LVEF值无相关性(r=-0.064,P=N.S,n=45)
     7)Mon2计数和Mon2MPA计数相关性:第1天Mon2计数和Mon2MPA计数呈正相关(r=0.881,P<0.0001,n=100);第3天Mon2计数和Mon2MPA计数呈正相关(r=0.841,P<0.0001,n=98)。
     8) Logistic回归分析:以MACE事件的发生作为二分变量,经单变量、逐步回归多变量以及经传统心血管危险因素校正的多变量Logistic回归分析后显示,入院即刻的Mon2MPA计数是唯一与住院期间及出院后1个月MACE相关的独立危险因素(Mon2MPA每增加10cells/μL, OR=2.37[95%CI:1.265-4.44],0.007)。排除早期死亡病例,对98例完成全部流式细胞术分析的患者进行Logistic回归分析显示,STEMI后第3日Mon2计数是唯一与住院期间及出院后1个月MACE相关的独立危险因素(Mon2每增加10cells/μL, OR=1.248,[95%CI:1.029-1.513],P=0.024)受试者工作特征曲线(receiver operating characteristic curve, ROC curve)分析显示,STEMI后第3日Mon2计数对MACE事件发生的判别能力具有临床意义(AUC=0.823,[95%CI:0.679-0.964],P=0.016)。
     9) Kaplan-Meier生存曲线分析:以第3日Mon2计数的中位数(43.4cells/μL)将98例患者分为两组,全部5例MACE均出现在Mon2计数>43.4cells/μL组(Log-rank检验P=0.0224)。
     结论:本研究首次揭示了STEMI患者单核细胞亚群在急性期的动态变化规律,其中Mon2(CD14++CD16+)单核细胞在STEMI后第2天开始明显升高,第3天达峰值,随后缓慢下降。这一变化伴随着Mon2MPA的一致性改变。此外,本研究首次证实STEMI患者第3天Mon2数量和第1天Mon2MPA的数量是住院期间和出院后1个月MACE的独立预测因子。本研究首次将STEMI后单核细胞亚群的变化与心血管临床“硬终点”事件联系在一起,为STEMI患者危险分层提供了一个新的临床标志物。本研究的结论仍需要后续随访研究进一步证实。
Objective: Mounting evidence has shown that the imbalance of monocyte subset proportion and dysfunction is an important pathophysiological basis for many immune related diseases. Currently, human circulating monocytes are at least composed of three subsets with distinct physiological functions, including classical (CD14++CD16-,[Monl]), intermediate (CD14++CD16+,[Mon2]), and non-classical (CD14+CD16++,[Mon3]) monocytes. Among them, the "pro-inflammatory" Mon2subset has been received a great attention due to their active participation in cardiovascular pathophysiology. In addition, the formation of monocyte-platelet aggregates (MPA) is the structural basis for subsequent inflammatory and pro-thromboembolic activations. A recent study has confirmed a positive correlation between the Mon2monocyte subset quantity changes and elevated cardiac enzymes in patients with ST-segment elevation myocardial infarction (STEMI). These results indicate that changes in monocyte subsets after myocardial infarction, especially the increased number of Mon2monocytes, may be a novel marker for decompensated post-infarction heart failure and long-term prognosis. The present study was designed to investigate the following unresolved issues in a Chinese population suffered from STEMI:1) the dynamic profile of the monocyte subsets and their associations with MPAs in the acute phase (within7days) after STEMI;2) the prognostic values of monocyte subsets and MPAs for the occurrence of major cardiovascular events (MACE) after myocardial infarction.
     Methods:A total of100consecutive STEMI patients admitted for emergency primary percutaneous coronary intervention (PCI) in the Heart Center of Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, were recruited in this study (78male, aged58.20±11.00;22female, aged64.11±9.10). Their venous blood was serially collected at time of admission, day2, day3, day5and day7after STEMI for flow cytometry (FCM) analysis of circulating monocyte subsets and MPAs using a four-color platform (CD14-FITC, CD16-PE, CD86-PE-Cy5and CD41-PE-Cy7). Transthoracic echocardiography was performed within24hours after symptom attack and on day7post infarction. According to laboratory test results on admission, the GRACE score, the CRUSADE score and the SYNTAX score based on coronary angiography were calculated. MACE, which was defined as cardiovascular death, fetal and non-fetal ischemic stroke, re-infarction, target vessel revascularization, and re-hospitalization due the heart failure and/or angina, were recorded in hospital and in one-month after discharge.
     Results:
     1) MACE occurrence:Among all100STEMI patients,48cases had left ventricular (LV) anterior wall infarction, and52cases with LV inferior wall infarction. A total of7MACE was recorded:4in hospital and3after discharge. Among the in-hospital MACE,1case suffered from non-fatal ischemic stroke, and another3cases died (one case finished only one FCM analysis, one case with two FCM tests, and one case finished all FCM tests). Among the3events occurred after discharge,1case died after discharge, and2cases underwent re-hospitalization for target vessel revascularization.
     2) Dynamic changes of white blood cell (WBC) count, total monocyte and MPA count:The WBC count reached its plateau level when the first blood test was carried out on admission, and underwent a gradual decreasing trend thereafter. Total monocyte count gradually increased from the onset and reached the peak level on day3, and then presented with a decreasing trend. The total MPA count and MPA percent to total monocytes also underwent gradual decreasing trend from day1, and reached the nadir on day5.
     3) Dynamic Changes of Monl and Monl MPA:Monl count was gradually increased from the onset and reached the peak on day3, then decreased till day5. Monl percent to total monocytes underwent a significantly decrease on day2, followed by an increasing trend, and reached the peak level on day3. Monl MPA count presented with a similar changing pattern with that of total MPA count.
     4) Dynamic Changes of Mon2and Mon2MPA:Compared with day1, there was a rapid increase of the Mon2subset count [24.67cells/μL (14.96-45.73cells/μL) vs.48.78cells/μL (22.89-79.45cells/μL),P<0.0001(shown as median with interquartile range)] as well as its percent to total monocytes [6.60%(4.38%-9.50%) vs.11.26%(7.56%-18.16%), P<0.0001] on day2after STEMI, peaking on day3[74.13cells/μL (27.77-86.27cells/μL)] followed by a gradual decrease, which was accompanied by a paralleled change in Mon2associated MPAs.
     5) Dynamic Change of Mon3and Mon3MPA: Mon3count, Mon3percent to total monocytes, and Mon3MPA count were all gradually decreased from the onset to the first three days, followed by a gradual increase from day3. There was no obvious change in Mon3MPA percent during the investigation.
     6) LVEF and Mon2count correlation analysis:Among the85patients who had undergone transthoracic echocardiography on day7, the accumulative effect of Mon2subset count (determined by area under curve [AUC] of Mon2count dynamics) was negatively correlated with LV ejection fraction (LVEF) on day7(Pearson r=-0.247,P=0.023, n=85). Specifically, the relationship between Mon2count AUC and LVEF was more obvious in patients suffered from anterior MI (Pearson r=-0.318,P=0.046, n=40), but not in patients with inferior wall MI (Pearson r=-0.092,P=N.S, n=45). In addition, the peak level of Mon2count and LVEF were negatively correlated (Pearson r=-0.227,P=0.037). Specifically, the relationship between peak Mon2count and LVEF was more obvious in patients suffered from anterior MI (Pearson r=-0.329,P=0.038, n=40), but not in patients with inferior wall MI (Pearson r=-0.064,P=NS, n=45).
     7) The correlation between Mon2count and Mon2MPA count:The Mon2count and Mon2MPA count was positively correlated on day1(Pearson r=0.881, P<0.0001, n=100), and on day3(Pearson r=0.841,P<0.0001, n=98).
     8) Logistic regression analysis:The risk factor adjusted multivariate stepwise Logistic regression analysis showed that day1Mon2MPA count was the only independent risk factor associated with in-hospital and one month MACE (for every10cells/μL increase, OR=2.37,[95%CI:1.265-4.44],P=0.007). After excluding2cases of early death who did not complete all flow cytometry analysis, Logistic regression analysis showed Mon2count on day3was the only independent risk factors for in-hospital and one month MACE (for every10cells/μL increase, OR=1.248,[95%CI:1.029-1.513],P=0.024). The receiver operating characteristic (ROC) curve analysis showed that Mon2count on day3 had a clinical acceptable value for discriminating STEMI patients with and without in-hospital and one month (AUC=0.823,[95%CI:0.679-0.964], P=0.016)
     9) Using43.4cells/μL as the cutoff point value (median of Mon2count on day3, n=98), the Kaplan-Meier survival analysis showed that no MACE occurred in patients with Mon2count (day3)<43.4cells/μL (P=0.0224for Log-rank test).
     Conclusions: The present study for the first time provides the detailed monocyte subset kinetics in acute phase after STEMI in humans. Specifically, a dramatic increase of the Mon2subset (CD14++CD16+) occurs on day2and peaks on day3, and then presents with a decreasing trend. The clinical significance of this dynamic profile is supported by the fact that Mon2count on day3and Mon2MPA count on day1, independently predict in-hospital and one month MACE in patients suffered from STEMI. This is the first study that linking monocyte subsets with "hard" clinical end points, and provides a new marker for risk stratification in patients with STEMI. Future long-term follow-up studies are required to validate our findings.
引文
1. Yang ZJ, Liu J, Ge JP, et al. Prevalence of cardiovascular disease risk factor in the Chinese population: the 2007-2008 China National Diabetes and Metabolic Disorders Study [J]. Eur Heart J.2012.33(2):213-220.
    2. 卫生部心血管病防治研究中心北京.中国心血管病报告2010[J].北京:人民卫生出版社.2011.1-141.
    3. Beaglehole R and Bonita R. Global public health: a scorecard [J]. Lancet.2008.372(9654):1988-1996.
    4. Abegunde DO, Mathers CD, Adam T, et al. The burden and costs of chronic diseases in low-income and middle-income countries [J]. Lancet.2007.370(9603):1929-1938.
    5. Lopez AD, Mathers CD, Ezzati M, et al. Global and regional burden of disease and risk factors,2001:systematic analysis of population health data [J]. Lancet.2006.367(9524):1747-1757.
    6. Heine GH, Ortiz A, Massy ZA, et al. Monocyte subpopulations and cardiovascular risk in chronic kidney disease [J]. Nat Rev Nephrol.2012.8(6):362-369.
    7. Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood [J]. Blood.2010.116(16):e74-80.
    8. Etzrodt M, Cortez-Retamozo V, Newton A, et al. Regulation of monocyte functional heterogeneity by miR-146a and Relb [J]. Cell Rep.2012.1(4):317-324.
    9. Bidzhekov K, Gan L, Denecke B, et al. microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans [J]. Thromb Haemost.2012.107(4):619-625.
    10. Zawada AM, Rogacev KS, Rotter B, et al. SuperSAGE evidence for CD14++CD16+monocytes as a third monocyte subset [J]. Blood.2011.118(12):e50-61.
    11. Wong KL, Tai JJ, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets [J]. Blood.2011.118(5):e 16-31.
    12. Brown AL, Zhu X, Rong S, et al. Omega-3 fatty acids ameliorate atherosclerosis by favorably altering monocyte subsets and limiting monocyte recruitment to aortic lesions [J]. Arterioscler Thromb Vasc Biol.2012.32(9):2122-2130.
    13. Ley K, Miller YI and Hedrick CC. Monocyte and macrophage dynamics during atherogenesis [J]. Arterioscler Thromb Vasc Biol.2011.31(7):1506-1516.
    14. Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions [J]. J Exp Med.2007.204(12):3037-3047.
    15. Panizzi P, Swirski FK, Figueiredo JL, et al. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis [J]. J Am Coll Cardiol.2010.55(15):1629-1638.
    16. Kempf T, Zarbock A, Vestweber D, et al. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing [J]. J Mol Med (Berl).2012.90(4):361-369.
    17. Tapp LD, Shantsila E, Wrigley BJ, et al. The CD14++CD16+monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction [J]. J Thromb Haemost.2012.10(7):1231-1241.
    18. Poole JC. Phagocytosis of platelets by monocytes in organizing arterial thrombi. An electron microscopical study [J]. Q J Exp Physiol Cogn Med Sci.1966.51(1):54-59.
    19.Elstad MR, McIntyre TM, Prescott SM, et al. The interaction of leukocytes with platelets in blood coagulation [J]. Curr Opin Hematol.1995.2(1):47-54.
    20. Dole VS, Bergmeier W, Patten IS, et al. PSGL-1 regulates platelet P-selectin-mediated endothelial activation and shedding of P-selectin from activated platelets [J]. Thromb Haemost.2007.98(4):806-812.
    21. Simon DI, Ezratty AM, Francis SA, et al. Fibrin(ogen) is internalized and degraded by activated human monocytoid cells via Mac-1 (CD11b/CD 18):a nonplasmin fibrinolytic pathway [J]. Blood.1993.82(8):2414-2422.
    22. Kirchhofer D, Riederer MA and Baumgartner HR. Specific accumulation of circulating monocytes and polymorphonuclear leukocytes on platelet thrombi in a vascular injury model [J]. Blood.1997.89(4):1270-1278.
    23. Furman MI, Barnard MR, Krueger LA, et al. Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction [J]. J Am Coll Cardiol.2001.38(4):1002-1006.
    24. Woollard KJ and Geissmann F. Monocytes in atherosclerosis:subsets and functions [J]. Nat Rev Cardiol.2010.7(2):77-86.
    25. Hristov M, Leyendecker T, Schuhmann C, et al. Circulating monocyte subsets and cardiovascular risk factors in coronary artery disease [J]. Thromb Haemost.2010.104(2):412-414.
    26. Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes:their role in infection and inflammation [J]. J Leukoc Biol.2007.81(3):584-592.
    27. Maekawa Y, Anzai T, Yoshikawa T, et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling [J]. J Am Coll Cardiol.2002.39(2):241-246.
    28. Dresske B, El Mokhtari NE, Ungefroren H, et al. Multipotent cells of monocytic origin improve damaged heart function [J]. Am J Transplant.2006.6(5 Pt 1):947-958.
    29. Elsheikh E, Uzunel M, He Z, et al. Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity [J]. Blood.2005.106(7):2347-2355.
    30. Cros J, Cagnard N, Woollard K, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors [J]. Immunity.2010.33(3):375-386.
    31. Shantsila E and Lip GY. Monocyte diversity in myocardial infarction [J]. J Am Coll Cardiol.2009.54(2):139-142.
    32. Auffray C, Sieweke MH and Geissmann F. Blood monocytes:development, heterogeneity, and relationship with dendritic cells [J]. Annu Rev Immunol.2009.27(669-692.
    33. Rogacev KS, Seiler S, Zawada AM, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease [J]. Eur Heart J.2011.32(1):84-92.
    34. Tsujioka H, Imanishi T, Ikejima H, et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction [J]. J Am Coll Cardiol.2009.54(2):130-138.
    35. Shantsila E, Wrigley B, Tapp L, et al. Immunophenotypic characterization of human monocyte subsets:possible implications for cardiovascular disease pathophysiology [J]. J Thromb Haemost.2011.9(5):1056-1066.
    36. Thygesen K, Alpert JS, White HD, et al. Universal definition of myocardial infarction [J]. Circulation.2007.116(22):2634-2653.
    37. Stone GW, Witzenbichler B, Guagliumi G, et al. Bivalirudin during primary PCI in acute myocardial infarction [J]. N Engl J Med.2008.358(21):2218-2230.
    38. Van de Werf F, Bax J, Betriu A, et al. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation:the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology [J]. Eur Heart J.2008.29(23):2909-2945.
    39. Granger CB, Goldberg RJ, Dabbous O, et al. Predictors of hospital mortality in the global registry of acute coronary events [J]. Arch Intern Med.2003.163(19):2345-2353.
    40. Cohen MG, Roe MT, Mulgund J, et al. Clinical characteristics, process of care, and outcomes of Hispanic patients presenting with non-ST-segment elevation acute coronary syndromes:results from Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the ACC/AHA Guidelines (CRUSADE) [J]. Am Heart J.2006.152(1):110-117.
    41. Sianos G, Morel MA, Kappetein AP, et al. The SYNTAX Score:an angiographic tool grading the complexity of coronary artery disease [J]. EuroIntervention.2005.1 (2):219-227.
    42. Zhou X, Zhang L, Ji WJ, et al. Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans:implications in end organ inflammation [J]. PLoS One.2013.8(4):e60332.
    43. Hume DA. The mononuclear phagocyte system [J]. Curr Opin Immunol.2006.18(1):49-53.
    44. Ziegler-Heitbrock HW. Definition of human blood monocytes [J]. J Leukoc Biol.2000.67(5):603-606.
    45. Passlick B, Flieger D and Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood [J]. Blood.1989.74(7):2527-2534.
    46. Ancuta P, Rao R, Moses A, et al. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes [J]. J Exp Med.2003.197(12):1701-1707.
    47. Rogacev KS and Heine GH. Human monocyte heterogeneity--a nephrological perspective [J]. Nephrol Ther.2010.6(4):219-225.
    48. Heine GH, Ulrich C, Seibert E, et al. CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients [J]. Kidney Int.2008.73(5):622-629.
    49. Ellery PJ, Tippett E, Chiu YL, et al. The CD 16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo [J]. J Immunol.2007.178(10):6581-6589.
    50. Jaworowski A, Kamwendo DD, Ellery P, et al. CD 16+ monocyte subset preferentially harbors HIV-1 and is expanded in pregnant Malawian women with Plasmodium falciparum malaria and HIV-1 infection [J]. J Infect Dis.2007.196(1):38-42.
    51. Ulrich C, Heine GH, Garcia P, et al. Increased expression of monocytic angiotensin-converting enzyme in dialysis patients with cardiovascular disease [J]. Nephrol Dial Transplant.2006.21(6):1596-1602.
    52. Ancuta P, Liu KY, Misra V, et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD 16+ and CD16- monocyte subsets [J]. BMC Genomics.2009.10(403.
    53. Zhao C, Zhang H, Wong WC, et al. Identification of novel functional differences in monocyte subsets using proteomic and transcriptomic methods [J]. J Proteome Res.2009.8(8):4028-4038.
    54. Ingersoll MA, Spanbroek R, Lottaz C, et al. Comparison of gene expression profiles between human and mouse monocyte subsets [J]. Blood.2010.115(3):e10-19.
    55. Matsumura H, Reich S, Ito A, et al. Gene expression analysis of plant host-pathogen interactions by SuperSAGE [J]. Proc Natl Acad Sci U S A.2003.100(26):15718-15723.
    56. Iwasaki A and Medzhitov R. Regulation of adaptive immunity by the innate immune system [J]. Science.2010.327(5963):291-295.
    57. Weyrich AS and Zimmerman GA. Platelets:signaling cells in the immune continuum [J]. Trends Immunol.2004.25(9):489-495.
    58. Weyrich AS, Lindemann S and Zimmerman GA. The evolving role of platelets in inflammation [J]. J Thromb Haemost.2003.1(9):1897-1905.
    59. van Gils JM, Zwaginga JJ and Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases [J]. J Leukoc Biol.2009.85(2):195-204.
    60. Semple JW and Freedman J. Platelets and innate immunity [J]. Cell Mol Life Sci.2010.67(4):499-511.
    61. von Hundelshausen P and Weber C. Platelets as immune cells:bridging inflammation and cardiovascular disease [J]. Circ Res.2007.100(1):27-40.
    62. Rinder HM, Bonan JL, Rinder CS, et al. Dynamics of leukocyte-platelet adhesion in whole blood [J]. Blood.1991.78(7):1730-1737.
    63. Rinder HM, Tracey JL, Rinder CS, et al. Neutrophil but not monocyte activation inhibits P-selectin-mediated platelet adhesion [J]. Thromb Haemost.1994.72(5):750-756.
    64. Lorant DE, McEver RP, McIntyre TM, et al. Activation of polymorphonuclear leukocytes reduces their adhesion to P-selectin and causes redistribution of ligands for P-selectin on their surfaces [J]. J Clin Invest.1995.96(1):171-182.
    65. Michelson AD, Barnard MR, Krueger LA, et al. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin:studies in baboons, human coronary intervention, and human acute myocardial infarction [J]. Circulation.2001.104(13):1533-1537.
    66. Weyrich AS, McIntyre TM, McEver RP, et al. Monocyte tethering by P-selectin regulates monocyte chemotactic protein-1 and tumor necrosis factor-alpha secretion. Signal integration and NF-kappa B translocation [J]. J Clin Invest.1995.95(5):2297-2303.
    67. Fernandes LS, Conde ID, Wayne Smith C, et al. Platelet-monocyte complex formation: effect of blocking PSGL-1 alone, and in combination with alphaⅡbbeta3 and alphaMbeta2, in coronary stenting [J]. Thromb Res.2003.111(3):171-177.
    68. Ahn KC, Jun AJ, Pawar P, et al. Preferential binding of platelets to monocytes over neutrophils under flow [J]. Biochem Biophys Res Commun.2005.329(1):345-355.
    69. van Gils JM, da Costa Martins PA, Mol A, et al. Transendothelial migration drives dissociation of plateletmonocyte complexes [J]. Thromb Haemost.2008.100(2):271-279.
    70. Brittain JE, Knoll CM, Ataga KI, et al. Fibronectin bridges monocytes and reticulocytes via integrin alpha4betal [J]. Br J Haematol.2008.141 (6):872-881.
    71. Dixon DA, Tolley ND, Bemis-Standoli K, et al. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling [J]. J Clin Invest.2006.116(10):2727-2738.
    72. Petrucci G, De Cristofaro R, Rutella S, et al. Prostaglandin E2 differentially modulates human platelet function through the prostanoid EP2 and EP3 receptors [J]. J Pharmacol Exp Ther.2011.336(2):391-402.
    73. Galt SW, Lindemann S, Medd D, et al. Differential regulation of matrix metalloproteinase-9 by monocytes adherent to collagen and platelets [J]. Circ Res.2001.89(6):509-516.
    74. Mahoney TS, Weyrich AS, Dixon DA, et al. Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes [J]. Proc NatlAcad Sci U S A.2001.98(18):10284-10289.
    75. Weyrich AS, Denis MM, Kuhlmann-Eyre JR, et al. Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates [J]. Circulation.2005.111(5):633-642.
    76. Neumann FJ, Marx N, Gawaz M, et al. Induction of cytokine expression in leukocytes by binding of thrombin-stimulated platelets [J]. Circulation.1997.95(10):2387-2394.
    77. Christersson C, Johnell M and Siegbahn A. Tissue factor and IL8 production by P-selectin-dependent platelet-monocyte aggregates in whole blood involves phosphorylation of Lyn and is inhibited by IL 10 [J]. J Thromb Haemost.2008.6(6):986-994.
    78. Barnard MR, Linden MD, Frelinger AL,3rd, et al. Effects of platelet binding on whole blood flow cytometry assays of monocyte and neutrophil procoagulant activity [J]. J Thromb Haemost.2005.3(11):2563-2570.
    79. Freedman JE and Loscalzo J. Platelet-monocyte aggregates:bridging thrombosis and inflammation [J]. Circulation.2002.105(18):2130-2132.
    80. da Costa Martins PA, van Gils JM, Mol A, et al. Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of betal and beta2 integrins [J]. J Leukoc Biol.2006.79(3):499-507.
    81. Ammon C, Kreutz M, Rehli M, et al. Platelets induce monocyte differentiation in serum-free coculture [J]. J Leukoc Biol.1998.63(4):469-476.
    82. Lang D, Dohle F, Terstesse M, et al. Down-regulation of monocyte apoptosis by phagocytosis of platelets:involvement of a caspase-9, caspase-3, and heat shock protein 70-dependent pathway [J]. J Immunol.2002.168(12):6152-6158.
    83. Li G, Kim YJ, Mantel C, et al. P-selectin enhances generation of CD14+CD16+ dendritic-like cells and inhibits macrophage maturation from human peripheral blood monocytes [J]. J Immunol.2003.171(2):669-677.
    84. Furman MI, Benoit SE, Barnard MR, et al. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease [J]. J Am Coll Cardiol.1998.31(2):352-358.
    85. 杨国红,卢芮伊,孙海英,et a1.四色流式分析冠心病患者外周血单核细胞亚群及单核细胞血小板聚集体的变化[J].临床心血管病杂志.2013.29(1):29-33.
    86. Brambilla M, Camera M, Colnago D, et al. Tissue factor in patients with acute coronary syndromes:expression in platelets, leukocytes, and platelet-leukocyte aggregates [J]. Arterioscler Thromb Vasc Biol.2008.28(5):947-953.
    87. Kopp CW, Gremmel T, Steiner S, et al. Platelet-monocyte cross talk and tissue factor expression in stable angina vs. unstable angina/non ST-elevation myocardial infarction [J]. Platelets.2011.22(7):530-536.
    88. Passacquale G, Vamadevan P, Pereira L, et al. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes [J]. PLoS One.2011.6(10):e25595.
    89. 葛兰,周欣,孙海英,et a1.外周血白细胞-血小板聚集体在肌钙蛋白阴性的急性冠脉综合症患者和健康人群的分布差异[J].武警后勤学院学报(医学版).2013.22(4):245-248.
    90. Celi A, Pellegrini G, Lorenzet R, et al. P-selectin induces the expression of tissue factor on monocytes [J]. Proc Natl Acad Sci U S A.1994.91(19):8767-8771.
    91. Cermak J, Key NS, Bach RR, et al. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor [J]. Blood.1993.82(2):513-520.
    92. Barron HV, Cannon CP, Murphy SA, et al. Association between white blood cell count, epicardial blood flow, myocardial perfusion, and clinical outcomes in the setting of acute myocardial infarction:a thrombolysis in myocardial infarction 10 substudy [J]. Circulation.2000.102(19):2329-2334.
    93. Cannon CP, Weintraub WS, Demopoulos LA, et al. Comparison of early invasive and conservative strategies in patients with unstable coronary syndromes treated with the glycoprotein Ⅱb/Ⅲa inhibitor tirofiban [J]. N Engl J Med.2001.344(25):1879-1887.
    94. Krumholz HM, Chen J, Wang Y, et al. Comparing AMI mortality among hospitals in patients 65 years of age and older: evaluating methods of risk adjustment [J]. Circulation.1999.99(23):2986-2992.
    95. Cannon CP, McCabe CH, Wilcox RG, et al. Association of white blood cell count with increased mortality in acute myocardial infarction and unstable angina pectoris. OPUS-TIMI 16 Investigators [J]. Am J Cardiol.2001.87(5):636-639, A610.
    96. Patel MR, Mahaffey KW, Armstrong PW, et al. Prognostic usefulness of white blood cell count and temperature in acute myocardial infarction (from the CARDINAL Trial) [J]. Am J Cardiol.2005.95(5):614-618.
    97. 刘新林,曾晖,宋冬林,et a1.白细胞计数在非ST段抬高型急性冠脉综合征患者入院早期危险分层中的作用[J].武警医学.2009.20(01):12-14.
    98. Poitou C, Dalmas E, Renovato M, et al. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis [J]. Arterioscler Thromb Vasc Biol.2011.31(10):2322-2330.
    99. Rocha VZ and Libby P. Obesity, inflammation, and atherosclerosis [J]. Nat Rev Cardiol.2009.6(6):399-409.
    100. Cottam DR, Schaefer PA, Shaftan GW, et al. Effect of surgically-induced weight loss on leukocyte indicators of chronic inflammation in morbid obesity [J]. Obes Surg.2002.12(3):335-342.
    101. Antman EM, Cohen M, Bernink PJ, et al. The TIMI risk score for unstable angina/non-ST elevation MI:A method for prognostication and therapeutic decision making [J]. JAMA.2000.284(7):835-842.
    102. Portnay EL, Foody JM, Rathore SS, et al. Prior aspirin use and outcomes in elderly patients hospitalized with acute myocardial infarction [J]. J Am Coll Cardiol.2005.46(6):967-974.
    103. Spencer FA, Santopinto JJ, Gore JM, et al. Impact of aspirin on presentation and hospital outcomes in patients with acute coronary syndromes (The Global Registry of Acute Coronary Events [GRACE]) [J]. Am J Cardiol.2002.90(10):1056-1061.
    1. Kelly LM, Englmeier U, Lafon I, et al. MafB is an inducer of monocytic differentiation [J]. EMBO J.2000.19(9):1987-1997.
    2. Herbomel P, Thisse B and Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo [J]. Development.1999.126(17):3735-3745.
    3. Hadji-Azimi I, Coosemans V and Canicatti C. Atlas of adult Xenopus laevis laevis hematology [J]. Dev Comp Immunol.1987.11(4):807-874.
    4. Williams MJ. Drosophila hemopoiesis and cellular immunity [J]. J Immunol.2007.178(8):4711-4716.
    5. Lebestky T, Chang T, Hartenstein V, et al. Specification of Drosophila hematopoietic lineage by conserved transcription factors [J]. Science.2000.288(5463):146-149.
    6. Franc NC, Dimarcq JL, Lagueux M, et al. Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells [J]. Immunity.1996.4(5):431-443.
    7. Chen G, Zhuchenko O and Kuspa A. Immune-like phagocyte activity in the social amoeba [J]. Science.2007.317(5838):678-681.
    8. Varol C, Landsman L, Fogg DK, et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells [J]. J Exp Med.2007.204(1):171-180.
    9. Serbina NV and Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2 [J]. Nat Immunol.2006.7(3):311-317.
    10. Geissmann F, Jung S and Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties [J]. Immunity.2003.19(1):71-82.
    11. Randolph GJ, Inaba K, Robbiani DF, et al. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo [J]. Immunity.1999.11 (6):753-761.
    12. Waskow C, Liu K, Darrasse-Jeze G, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues [J]. Nat Immunol.2008.9(6):676-683.
    13. Massberg S, Schaerli P, Knezevic-Maramica I, et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues [J]. Cell.2007.131(5):994-1008.
    14. Fogg DK, Sibon C, Miled C, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells [J]. Science.2006.311(5757):83-87.
    15. Auffray C, Fogg D, Garfa M, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior [J]. Science.2007.317(5838):666-670.
    16. Serbina NV, Jia T, Hohl TM, et al. Monocyte-mediated defense against microbial pathogens [J]. Annu Rev Immunol.2008.26(421-452.
    17. Geissmann F, Auffray C, Palframan R, et al. Blood monocytes:distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses [J]. Immunol Cell Biol.2008.86(5):398-408.
    18. Strauss-Ayali D, Conrad SM and Mosser DM. Monocyte subpopulations and their differentiation patterns during infection [J]. J Leukoc Biol.2007.82(2):244-252.
    19. Libby P, Nahrendorf M, Pittet MJ, et al. Diversity of denizens of the atherosclerotic plaque:not all monocytes are created equal [J]. Circulation.2008.117(25):3168-3170.
    20. Cecchini MG, Dominguez MG, Mocci S, et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse [J]. Development.1994.120(6):1357-1372.
    21. Wiktor-Jedrzejczak W and Gordon S. Cytokine regulation of the macrophage (M phi) system studied using the colony stimulating factor-1-deficient op/op mouse [J]. Physiol Rev.1996.76(4):927-947.
    22. Dai XM, Ryan GR, Hapel AJ, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects [J]. Blood.2002.99(1):111-120.
    23. Ryan GR, Dai XM, Dominguez MG, et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csfl(op)/Csfl(op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis [J]. Blood.2001.98(1):74-84.
    24. Sasmono RT, Oceandy D, Pollard JW, et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse [J]. Blood.2003.101(3):1155-1163.
    25. MacDonald KP, Rowe V, Bofinger HM, et al. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion [J]. J Immunol.2005.175(3):1399-1405.
    26. Kawasaki ES, Ladner MB, Wang AM, et al. Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1) [J]. Science.1985.230(4723):291-296.
    27. Lin H, Lee E, Hestir K, et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome [J]. Science.2008.320(5877):807-811.
    28. McKenna HJ, Stocking KL, Miller RE, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells [J]. Blood.2000.95(11):3489-3497.
    29. Kabashima K, Banks TA, Ansel KM, et al. Intrinsic lymphotoxin-beta receptor requirement for homeostasis of lymphoid tissue dendritic cells [J]. Immunity.2005.22(4):439-450.
    30. Iwasaki H and Akashi K. Myeloid lineage commitment from the hematopoietic stem cell [J]. Immunity.2007.26(6):726-740.
    31. Nerlov C and Graf T. PU.1 induces myeloid lineage commitment in multipotent hematopoietic progenitors [J]. Genes Dev.l998.12(15):2403-2412.
    32. Dakic A, Metcalf D, Di Rago L, et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis [J]. J Exp Med.2005.201(9):1487-1502.
    33. Iwasaki H, Somoza C, Shigematsu H, et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation [J]. Blood.2005.106(5):1590-1600.
    34. Walsh JC, DeKoter RP, Lee HJ, et al. Cooperative and antagonistic interplay between PU.1 and GATA-2 in the specification of myeloid cell fates [J]. Immunity.2002.17(5):665-676.
    35. Dahl R, Walsh JC, Lancki D, et al. Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor [J]. Nat Immunol.2003.4(10):1029-1036.
    36. Laslo P, Spooner CJ, Warmflash A, et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates [J]. Cell.2006.126(4):755-766.
    37. Xie H, Ye M, Feng R, et al. Stepwise reprogramming of B cells into macrophages [J]. Cell.2004.117(5):663-676.
    38. Laiosa CV, Stadtfeld M, Xie H, et al. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors [J]. Immunity.2006.25(5):731-744.
    39. Feng R, Desbordes SC, Xie H, et al. PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells [J]. Proc Natl Acad Sci U S A.2008.105(16):6057-6062.
    40. Karsunky H, Zeng H, Schmidt T, et al. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfil [J]. Nat Genet.2002.30(3):295-300.
    41. Hock H, Hamblen MJ, Rooke HM, et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation [J]. Immunity.2003.18(1):109-120.
    42. Nguyen HQ, Hoffman-Liebermann B and Liebermann DA. The zinc finger transcription factor Egr-1 is essential for and restricts differentiation along the macrophage lineage [J]. Cell.1993.72(2):197-209.
    43. Krishnaraju K, Hoffman B and Liebermann DA. Early growth response gene 1 stimulates development of hematopoietic progenitor cells along the macrophage lineage at the expense of the granulocyte and erythroid lineages [J]. Blood.2001.97(5):1298-1305.
    44. Lee SL, Wang Y and Milbrandt J. Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1) [J]. Mol Cell Biol.1996.16(8):4566-4572.
    45. Tamura T, Nagamura-Inoue T, Shmeltzer Z, et al. ICSBP directs bipotential myeloid progenitor cells to differentiate into mature macrophages [J]. Immunity.2000.13(2):155-165.
    46. Meraro D, Hashmueli S, Koren B, et al. Protein-protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors [J]. J Immunol.1999.163(12):6468-6478.
    47. Feinberg MW, Wara AK, Cao Z, et al. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation [J]. EMBO J.2007.26(18):4138-4148.
    48. Hegde SP, Zhao J. Ashmun RA, et al. c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors [J]. Blood.1999.94(5):1578-1589.
    49. Bakri Y, Sarrazin S, Mayer UP, et al. Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate [J]. Blood.2005.105(7):2707-2716.
    50. Gemelli C, Montanari M, Tenedini E, et al. Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells [J]. Cell Death Differ.2006.13(10):1686-1696.
    51. Banchereau J and Steinman RM. Dendritic cells and the control of immunity [J]. Nature.1998.392(6673):245-252.
    52. Gordon S. Pattern recognition receptors:doubling up for the innate immune response [J]. Cell.2002.111(7):927-930.
    53. van Furth R and Cohn ZA. The origin and kinetics of mononuclear phagocytes [J]. J Exp Med.1968.128(3):415-435.
    54. Taylor PR and Gordon S. Monocyte heterogeneity and innate immunity [J]. Immunity.2003.19(1):2-4.
    55. Liu K, Waskow C, Liu X, et al. Origin of dendritic cells in peripheral lymphoid organs of mice [J]. Nat Immunol.2007.8(6):578-583.
    56. Steinman RM, Lustig DS and Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice.3. Functional properties in vivo [J]. J Exp Med.1974.139(6):1431-1445.
    57. Dudziak D, Kamphorst AO, Heidkamp GF, et al. Differential antigen processing by dendritic cell subsets in vivo [J]. Science.2007.315(5808):107-111.
    58. Serbina NV, Salazar-Mather TP, Biron CA, et al. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection [J]. Immunity.2003.19(1):59-70.
    59. Sunderkotter C, Nikolic T, Dillon MJ, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response [J]. J Immunol.2004.172(7):4410-4417.
    60. Inaba K, Inaba M, Deguchi M, et al. Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow [J]. Proc Natl Acad Sci U S A.1993.90(7):3038-3042.
    61. Kennedy DW and Abkowitz JL. Mature monocytic cells enter tissues and engraft [J]. Proc Natl Acad Sci U S A.1998.95(25):14944-14949.
    62. Manz MG, Traver D, Akashi K, et al. Dendritic cell development from common myeloid progenitors [J]. Ann N Y Acad Sci.2001.938(167-173; discussion 173-164.
    63. Akashi K, Traver D, Miyamoto T, et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages [J]. Nature.2000.404(6774):193-197.
    64. Naik SH, Sathe P, Park HY, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo [J]. Nat Immunol.2007.8(11):1217-1226.
    65. Onai N, Obata-Onai A, Schmid MA, et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow [J]. Nat Immunol.2007.8(11):1207-1216.
    66. Pixley FJ and Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action [J]. Trends Cell Biol.2004.14(11):628-638.
    67. Sullivan J, Feeley B, Guerra J, et al. Identification of the major positive regulators of c-myb expression in hematopoietic cells of different lineages [J]. J Biol Chem.1997.272(3):1943-1949.
    68. Graf T. Myb:a transcriptional activator linking proliferation and differentiation in hematopoietic cells [J]. Curr Opin Genet Dev.1992.2(2):249-255.
    69. Roussel MF. Regulation of cell cycle entry and G1 progression by CSF-1 [J]. Mol Reprod Dev.1997.46(1):11-18.
    70. Tillmanns S, Otto C, Jaffray E, et al. SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression [J]. Mol Cell Biol.2007.27(15):5554-5564.
    71. Sieweke MH, Tekotte H, Frampton J, et al. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation [J]. Cell.1996.85(1):49-60.
    72. Klappacher GW, Lunyak VV, Sykes DB, et al. An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation [J]. Cell.2002.109(2):169-180.
    73. Hedge SP, Kumar A, Kurschner C, et al. c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation [J]. Mol Cell Biol.1998.18(5):2729-2737.
    74. Aziz A, Vanhille L, Mohideen P, et al. Development of macrophages with altered actin organization in the absence of MafB [J]. Mol Cell Biol.2006.26(18):6808-6818.
    75. Martinez FO, Gordon S, Locati M, et al. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization:new molecules and patterns of gene expression [J]. J Immunol.2006.177(10):7303-7311.
    76. Mildner A, Schmidt H, Nitsche M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions [J]. Nat Neurosci.2007.10(12):1544-1553.
    77. Merad M, Manz MG, Karsunky H, et al. Langerhans cells renew in the skin throughout life under steady-state conditions [J]. Nat Immunol.2002.3(12):1135-1141.
    78. Scatizzi JC, Hutcheson J, Bickel E, et al. p21Cipl is required for the development of monocytes and their response to serum transfer-induced arthritis [J]. Am J Pathol.2006.168(5):1531-1541.
    79. Brown NJ, Hutcheson J, Bickel E, et al. Fas death receptor signaling represses monocyte numbers and macrophage activation in vivo [J]. J Immunol.2004.173(12):7584-7593.
    80. Swirski FK, Libby P, Aikawa E, et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata [J]. J Clin Invest.2007.117(1):195-205.
    81. Saederup N, Chan L, Lira SA, et al. Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2-/-mice:evidence for independent chemokine functions in atherogenesis [J]. Circulation.2008.117(13):1642-1648.
    82. Combadiere C, Potteaux S, Rodero M, et al. Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice [J]. Circulation.2008.117(13):1649-1657.
    83. Passlick B, Flieger D and Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood [J]. Blood.1989.74(7):2527-2534.
    84. Chamorro S, Revilla C, Gomez N, et al. In vitro differentiation of porcine blood CD 163- and CD 163+ monocytes into functional dendritic cells [J]. Immunobiology.2004.209(1-2):57-65.
    85. Grage-Griebenow E, Flad HD, Ernst M, et al. Human MO subsets as defined by expression of CD64 and CD 16 differ in phagocytic activity and generation of oxygen intermediates [J]. Immunobiology.2000.202(1):42-50.
    86. Ziegler-Heitbrock HW. Definition of human blood monocytes [J]. J Leukoc Biol.2000.67(5):603-606.
    87. Grage-Griebenow E, Flad HD and Ernst M. Heterogeneity of human peripheral blood monocyte subsets [J]. J Leukoc Biol.2001.69(1):11-20.
    88. Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions [J]. J Exp Med.2007.204(12):3037-3047.
    89. Tacke F, Alvarez D, Kaplan TJ, et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques [J]. J Clin Invest.2007.117(1):185-194.
    90. Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood [J]. Blood.2010.116(16):e74-80.
    91. Van Voorhis WC, Valinsky J, Hoffman E, et al. Relative efficacy of human monocytes and dendritic cells as accessory cells for T cell replication [J]. J Exp Med.1983.158(1):174-191.
    92. Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-producing cells in human blood [J]. Science.1999.284(5421):1835-1837.
    93. Cella M, Facchetti F, Lanzavecchia A, et al. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent THl polarization [J]. Nat Immunol.2000.1(4):305-310.
    94. Almeida J, Bueno C, Alguero MC, et al. Comparative analysis of the morphological, cytochemical, immunophenotypical, and functional characteristics of normal human peripheral blood lineage(-)/CD16(+)/HLA-DR(+)/CD14(-/lo) cells, CD14(+) monocytes, and CD16(-) dendritic cells [J]. Clin Immunol.2001.100(3):325-338.
    95. Ancuta P, Rao R, Moses A, et al. Fractalkine preferentially mediates arrest and migration of CD16+ monocytes [J]. J Exp Med.2003.197(12):1701-1707.
    96. Yasaka T, Mantich NM, Boxer LA, et al. Functions of human monocyte and lymphocyte subsets obtained by countercurrent centrifugal elutriation: differing functional capacities of human monocyte subsets [J]. J Immunol.1981.127(4):1515-1518.
    97. Weiner RS and Mason RR. Subfractionation of human blood monocyte subsets with Percoll [J]. Exp Hematol.1984.12(10):800-804.
    98. Figdor CG, Bont WS, Touw I, et al. Isolation of functionally different human monocytes by counterflow centrifugation elutriation [J]. Blood.1982.60(1):46-53.
    99. Ziegler-Heitbrock HW, Strobel M, Kieper D, et al. Differential expression of cytokines in human blood monocyte subpopulations [J]. Blood.1992.79(2):503-511.
    100. Weber C, Belge KU, von Hundelshausen P, et al. Differential chemokine receptor expression and function in human monocyte subpopulations [J]. J Leukoc Biol.2000.67(5):699-704.
    101. Belge KU, Dayyani F, Horelt A, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF [J]. J Immunol.2002.168(7):3536-3542.
    102. Mizuno K, Toma T, Tsukiji H, et al. Selective expansion of CD16highCCR2-subpopulation of circulating monocytes with preferential production of haem oxygenase (HO)-1 in response to acute inflammation [J]. Clin Exp Immunol.2005.142(3):461-470.
    103. Fingerle-Rowson G, Auers J, Kreuzer E, et al. Expansion of CD14+CD16+ monocytes in critically ill cardiac surgery patients [J]. Inflammation.1998.22(4):367-379.
    104. Horelt A, Belge KU, Steppich B, et al. The CD14+CD16+ monocytes in erysipelas are expanded and show reduced cytokine production [J]. Eur J Immunol.2002.32(5):1319-1327.
    105. Skrzeczynska-Moncznik J, Bzowska M, Loseke S, et al. Peripheral blood CD14high CD16+ monocytes are main producers of IL-10 [J]. Scand J Immunol.2008.67(2):152-159.
    106. Ross R. Atherosclerosis-an inflammatory disease [J]. N Engl J Med.1999.340(2):115-126.
    107. Mestas J and Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis [J]. Trends Cardiovasc Med.2008.18(6):228-232.
    108. Ley K, Miller YI and Hedrick CC. Monocyte and macrophage dynamics during atherogenesis [J]. Arterioscler Thromb Vasc Biol.2011.31(7):1506-1516.
    109. Huo Y, Hafezi-Moghadam A and Ley K. Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions [J]. Circ Res.2000.87(2):153-159.
    110. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture [J]. Physiol Rev.2005.85(1):1-31.
    111. Fuster V, Moreno PR, Fayad ZA, et al. Atherothrombosis and high-risk plaque: part I:evolving concepts [J]. J Am Coll Cardiol.2005.46(6):937-954.
    112. Johnsen SH, Fosse E, Joakimsen O, et al. Monocyte count is a predictor of novel plaque formation:a 7-year follow-up study of 2610 persons without carotid plaque at baseline the Tromso Study [J]. Stroke.2005.36(4):715-719.
    113. Grau AJ, Boddy AW, Dukovic DA, et al. Leukocyte count as an independent predictor of recurrent ischemic events [J]. Stroke.2004.35(5):1147-1152.
    114. Libby P, Ridker PM and Hansson GK. Progress and challenges in translating the biology of atherosclerosis [J]. Nature.2011.473(7347):317-325.
    115. Zawada AM, Rogacev KS, Rotter B. et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset [J]. Blood.2011.118(12):e50-61.
    116. Cros J, Cagnard N, Woollard K, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors [J]. Immunity.2010.33(3):375-386.
    117. Rogacev KS, Seiler S, Zawada AM, et al. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease [J]. Eur Heart J.2011.32(1):84-92.
    118. Pai JK, Kraft P, Cannuscio CC, et al. Polymorphisms in the CC-chemokine receptor-2 (CCR2) and-5 (CCR5) genes and risk of coronary heart disease among US women [J]. Atherosclerosis.2006.186(1):132-139.
    119. Rocha VZ and Libby P. Obesity, inflammation, and atherosclerosis [J]. Nat Rev Cardiol.2009.6(6):399-409.
    120. Rogacev KS and Heine GH. Human monocyte heterogeneity--a nephrological perspective [J]. Nephrol Ther.2010.6(4):219-225.
    121. Cottam DR, Schaefer PA, Shaftan GW, et al. Effect of surgically-induced weight loss on leukocyte indicators of chronic inflammation in morbid obesity [J]. Obes Surg.2002.12(3):335-342.
    122. Poitou C, Dalmas E, Renovato M, et al. CD14dimCD16+ and CD14+CD16+ monocytes in obesity and during weight loss:relationships with fat mass and subclinical atherosclerosis [J]. Arterioscler Thromb Vase Biol.2011.31(10):2322-2330.
    123. Kapinsky M, Torzewski M, Buchler C, et al. Enzymatically degraded LDL preferentially binds to CD14(high) CD16(+) monocytes and induces foam cell formation mediated only in part by the class B scavenger-receptor CD36 [J]. Arterioscler Thromb Vasc Biol.2001.21 (6):1004-1010.
    124. Mosig S, Rennert K, Krause S, et al. Different functions of monocyte subsets in familial hypercholesterolemia:potential function of CD 14+ CD 16+ monocytes in detoxification of oxidized LDL [J]. FASEB J.2009.23(3):866-874.
    125. Rothe G, Gabriel H, Kovacs E, et al. Peripheral blood mononuclear phagocyte subpopulations as cellular markers in hypercholesterolemia [J]. Arterioscler Thromb Vasc Biol.1996.16(12):1437-1447.
    126. Rothe G, Herr AS, Stohr J, et al. A more mature phenotype of blood mononuclear phagocytes is induced by fluvastatin treatment in hypercholesterolemic patients with coronary heart disease [J]. Atherosclerosis.1999.144(1):251-261.
    127. Coen PM, Flynn MG, Markofski MM, et al. Adding exercise to rosuvastatin treatment:influence on C-reactive protein, monocyte toll-like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population [J]. Metabolism.2010.59(12):1775-1783.
    128. Imanishi T, Ikejima H, Tsujioka H, et al. Association of monocyte subset counts with coronary fibrous cap thickness in patients with unstable angina pectoris [J]. Atherosclerosis.2010.212(2):628-635.
    129. Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease:a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention [J]. Circulation.2003.108(17):2154-2169.
    130. de Jager DJ. Grootendorst DC, Jager KJ, et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis [J]. JAMA.2009.302(16):1782-1789.
    131. Grip O, Bredberg A, Lindgren S, et al. Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn's disease [J]. Inflamm Bowel Dis.2007.13(5):566-572.
    132. Soares G, Barral A, Costa JM, et al. CD 16+monocytes in human cutaneous leishmaniasis:increased ex vivo levels and correlation with clinical data [J]. J Leukoc Biol.2006.79(1):36-39.
    133. Nockher WA and Scherberich JE. Expanded CD 14+ CD 16+ monocyte subpopulation in patients with acute and chronic infections undergoing hemodialysis [J]. Infect Immun.1998.66(6):2782-2790.
    134. Ramirez R, Carracedo J, Soriano S, et al. Stress-induced premature senescence in mononuclear cells from patients on long-term hemodialysis [J]. Am J Kidney Dis.2005.45(2):353-359.
    135. Carracedo J, Merino A, Nogueras S, et al. On-line hemodiafiltration reduces the proinflammatory CD14+CD16+ monocyte-derived dendritic cells:A prospective, crossover study [J]. J Am Soc Nephrol.2006.17(8):2315-2321.
    136. Rogacev KS, Ziegelin M, Ulrich C, et al. Haemodialysis-induced transient CD 16+ monocytopenia and cardiovascular outcome [J]. Nephrol Dial Transplant.2009.24(11):3480-3486.
    137. Nockher WA, Wiemer J and Scherberich JE. Haemodialysis monocytopenia: differential sequestration kinetics of CD14+CD16+ and CD 14++ blood monocyte subsets [J]. Clin Exp Immunol.2001.123(1):49-55.
    138. Urra X, Villamor N, Amaro S, et al. Monocyte subtypes predict clinical course and prognosis in human stroke [J]. J Cereb Blood Flow Metab.2009.29(5):994-1002.
    139. Tsujioka H, Imanishi T, Ikejima H, et al. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction [J]. J Am Coll Cardiol.2009.54(2):130-138.
    140. Barisione C, Garibaldi S, Ghigliotti G, et al. CD14CD16 monocyte subset levels in heart failure patients [J]. Dis Markers.2010.28(2):115-124.
    141. Tapp LD, Shantsila E, Wrigley BJ, et al. The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction [J]. J Thromb Haemost.2012.10(7):1231-1241.
    142. Jung S, Aliberti J, Graemmel P, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion [J]. Mol Cell Biol.2000.20(11):4106-4114.
    143. Faust N, Varas F, Kelly LM, et al. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages [J]. Blood.2000.96(2):719-726.
    144. Sasmono RT, Ehrnsperger A, Cronau SL, et al. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1 [J]. J Leukoc Biol.2007.82(1):111-123.
    145. Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo [J]. Nat Immunol.2006.7(3):265-273.
    146. Landsman L, Varol C and Jung S. Distinct differentiation potential of blood monocyte subsets in the lung [J]. J Immunol.2007.178(4):2000-2007.
    147. Serbina NV, Kuziel W, Flavell R, et al. Sequential MyD88-independent and-dependent activation of innate immune responses to intracellular bacterial infection [J]. Immunity.2003.19(6):891-901.
    148. Tsou CL, Peters W, Si Y, et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites [J]. J Clin Invest.2007.117(4):902-909.
    149. Copin R, De Baetselier P, Carlier Y, et al. MyD88-dependent activation of B220-CD11b+LY-6C+ dendritic cells during Brucella melitensis infection [J]. J Immunol.2007.178(8):5182-5191.
    150. Robben PM, LaRegina M, Kuziel WA, et al. Recruitment of Gr-1+ monocytes is essential for control of acute toxoplasmosis [J]. J Exp Med.2005.201(11):1761-1769.
    151. Le Borgne M, Etchart N, Goubier A, et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo [J]. Immunity.2006.24(2):191-201.
    152. Narni-Mancinelli E, Campisi L, Bassand D, et al. Memory CD8+ T cells mediate antibacterial immunity via CCL3 activation of TNF/ROI+ phagocytes [J]. J Exp Med.2007.204(9):2075-2087.
    153. Burke B, Ahmad R, Staples KJ, et al. Increased TNF expression in CD43++ murine blood monocytes [J]. Immunol Lett.2008.118(2):142-147.
    154. Germain RN, Castellino F, Chieppa M, et al. An extended vision for dynamic high-resolution intravital immune imaging [J]. Semin Immunol.2005.17(6):431-441.
    155. Moatti D, Faure S, Fumeron F, et al. Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease [J]. Blood.2001.97(7):1925-1928.
    156. Combadiere C, Potteaux S, Gao JL, et al. Decreased atherosclerotic lesion formation in CX3CRl/apolipoprotein E double knockout mice [J]. Circulation.2003.107(7):1009-1016.
    157. Lesnik P, Haskell CA and Charo IF. Decreased atherosclerosis in CX3CR1-/-mice reveals a role for fractalkine in atherogenesis [J]. J Clin Invest.2003.111(3):333-340.
    158. Platzer B, Jorgl A, Taschner S, et al. RelB regulates human dendritic cell subset development by promoting monocyte intermediates [J]. Blood.2004.104(12):3655-3663.
    159. Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis [J]. J Exp Med.2007.204(5):1057-1069.
    160. Panizzi P, Swirski FK, Figueiredo JL, et al. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis [J]. J Am Coll Cardiol.2010.55(15):1629-1638.
    161. Leuschner F, Panizzi P, Chico-Calero I, et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction [J]. Circ Res.2010.107(11):1364-1373.
    162. Burger PC and Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development [J]. Blood.2003.101(7):2661-2666.
    163. Dong ZM, Brown AA and Wagner DD. Prominent role of P-selectin in the development of advanced atherosclerosis in ApoE-deficient mice [J]. Circulation.2000.101 (19):2290-2295.
    164. An G, Wang H, Tang R, et al. P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice [J]. Circulation.2008.117(25):3227-3237.
    165. Eriksson EE, Xie X, Werr J, et al. Importance of primary capture and L-selectin-dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo [J]. J Exp Med.2001.194(2):205-218.
    166. Wolf D, Hohmann JD, Wiedemann A, et al. Binding of CD40L to Mac-l's I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis--but does not affect immunity and thrombosis in mice [J]. Circ Res.2011.109(11):1269-1279.
    167. Chuang KP, Huang YF, Hsu YL, et al. Ligation of lymphocyte function-associated antigen-1 on monocytes decreases very late antigen-4-mediated adhesion through a reactive oxygen species-dependent pathway [J]. Blood.2004.104(13):4046-4053.
    168. Nie Q, Fan J, Haraoka S, et al. Inhibition of mononuclear cell recruitment in aortic intima by treatment with anti-ICAM-1 and anti-LFA-1 monoclonal antibodies in hypercholesterolemic rats:implications of the ICAM-1 and LFA-1 pathway in atherogenesis [J]. Lab Invest.1997.77(5):469-482.
    169. Kling D, Fingerle J, Harlan JM, et al. Mononuclear leukocytes invade rabbit arterial intima during thickening formation via CD18-and VLA-4-dependent mechanisms and stimulate smooth muscle migration [J]. Circ Res.1995.77(6):1121-1128.
    170. Hilgendorf I, Eisele S, Remer I, et al. The oral spleen tyrosine kinase inhibitor fostamatinib attenuates inflammation and atherogenesis in low-density lipoprotein receptor-deficient mice [J]. Arterioscler Thromb Vasc Biol.2011.31(9):1991-1999.
    171. Zhou Q and Liao JK. Pleiotropic effects of statins.-Basic research and clinical perspectives [J]. Circ J.2010.74(5):818-826.
    172. Ziegler-Heitbrock L. The CD14+ CD16+ blood monocytes:their role in infection and inflammation [J]. J Leukoc Biol.2007.81(3):584-592.
    173. Gordon S and Taylor PR. Monocyte and macrophage heterogeneity [J]. Nat Rev Immunol.2005.5(12):953-964.
    174. Ingersoll MA, Spanbroek R, Lottaz C, et al. Comparison of gene expression profiles between human and mouse monocyte subsets [J]. Blood.2010.115(3):e10-19.
    175. Wong KL, Tai JJ, Wong WC, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets [J]. Blood.2011.118(5):e16-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700