产莽草酸枯草芽孢胞杆菌代谢工程改造及代谢流分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以莽草酸为原料可以通过化学合成或微生物合成法生产抗禽流感病毒药物—GS4104(达菲)。莽草酸也是生物代谢途径中重要的中间体,是合成许多生物碱以及芳香氨基酸(L-Phe, L-Trp和L-Tyr)的原料。作为一个商业产品,莽草酸主要从八角茴香中提取。然而,利用微生物发酵方法生产莽草酸受到越来越多的关注。
     起始于PEP和E4P,莽草酸通过莽草酸途径的前四步反应合成而来。对于微生物生长来说,莽草酸途径是必须的,目前仍然没有关于微生物自然累积莽草酸的报道。目前,利用微生物生产莽草酸的工作主要集中在大肠杆菌,而利用枯草芽孢杆菌生产莽草酸鲜有报道。关于高产莽草酸菌株的代谢流工作前人没有开展。本研究中,我们利用代谢工程的方法对枯草芽孢杆菌进行改造并测定了莽草酸高产菌株的代谢流分布。
     B. subtilis1A474的莽草酸激酶基因(aroI)有一个位点发生突变,积累1.5g/L的莽草酸;B. subtilis1A229的EPSP合成酶基因(aroE)有一个位点发生突变,积累0.6g/L的莽草酸。在B. subtilis1A474中分别单独过表达aroA, aroB, aroC或aroD,结果表明过表达aroD莽草酸产量增长最多;在B. subtilis1A229中分别单独过表达aroA, aroB, aroC, aroD或arol,结果表明过表达aroA莽草酸产量增长最多。在B. subtilis1A47407或B. subtilis1A22911中同时过表达aroA和aroD,莽草酸产量最高,分别为3.2g/L或1.5g/L。B. subtilis BSSA47407被用于下‘步研究。蔗糖为其最适碳源;最适蔗糖初始浓度为80g/L; B. subtilis BSSA47407批式补料发酵莽草酸产量达到17.8g/L,其值为普通摇瓶发酵莽草酸产量的5.6倍。
     13C代谢流分析菌株BSSA474a和BSSA47407揭示以下结果:从葡萄糖到莽草酸途径的流量由BSSA474a中的4.4%增加到BSSA47407中的6.8%;从葡萄糖到莽草酸的流量由BSSA474a中的1.9%增加到BSSA47407中的4.6%;从葡萄糖到3-脱氢莽草酸的流量由BSSA474a中的2.5%减小到BSSA47407中的2.2%;经过TCA循环的流量减小;而通过磷酸戊糖途径和糖酵解途径的流量变化不大。基于代谢流量结果,两个代谢改造目标被提出。实验结果表明:敲除pyk曾加了莽草酸产量,而过表达tkt并没有增加莽草酸产量。
     本研究利用SLIC的方法一次将aroD, aroB, aroA和zwf个基因连接到质粒pHCMC04上。B. subtilis BSSA47416莽草酸产量达到4.35g/L,其值为对照菌株B.subtilis BSSA47407莽草酸产量的1.4倍。
Shikimic acid (SA) is a key chiral starting molecule for the synthesis of the neuramidase inhibitor GS4104against viral influenza. It is a key metabolic intermediate of the shikimate pathway for biosynthesis of aromatic amino acids (L-Phe, L-Trp, and L-Tyr) and many alkaloids in plants and microorganisms. As a commercial product, SA has been extracted from the fruits of the Illicium plant. However, microbial fermentation as an alternative process for SA production has attracted more and more interests.
     Beginning with phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P), SA is synthesized via first4reactions of the shikimate pathway. This shikimate pathway is essential to bacterial growth and there has been no report on excessive accumulation of SA by microorganisms. Microbial production of SA has been extensively investigated in Escherichia coli, and to a less extent in B.subtilis. However, metabolic flux of the high SA-producing strains has not been explored. In this study, we constructed with genetic manipulation and further determined metabolic flux with13C-labeling test of high SA-producing B. subtilis strains.
     B. subtilis1A474had a mutation in SA kinase gene (arol) and accumulated1.5g/L of SA. B. subtilis1A229had a mutation in EPSP synthase gene (aroE) and accumulated0.6g/L of SA. Overexpression of plasmid-encoded aroA, aroB, aroC or aroD in B. subtilis1A474revealed that aroD had the most significantly positive effects on SA production. Overexpression of plasmid-encoded aroA, aroB, aroC, aroD or arol in B. subtilis1A229revealed that aroA had the most significantly positive effects on SA production. Simultaneous overexpression of genes for3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroA) and SA dehydrogenase (aroD) in B. subtilis BSSA47407or BSSA22911resulted in SA production of3.2g/L or1.5g/L. B. subtilis BSSA47407was used for further research. Sucrose was the optimal initial carbon source and the optimal initial sucrose concentration was80g/L Fed-batch of B. subtilis BSSA47407gave the result of17.8g/1shikimic acid titer, which was5.6-fold higher than the corresponding value in a simple baffled flask.
     13C-Metabolic flux assay (MFA) on the two strains BSSA474a and BSSA47407indicated the overall conversion of glucose into shikimate pathway increased to6.8%in strain BSSA47407from4.4%in strain BSSA474a. Consequently, the metabolic flux to SA increased from1.9%in strain BSSA474a to4.6%in strain BSSA47407. Correspondingly, the metabolic flux from E4P and PEP into DHS decreased from 2.5%in the parent strain BSSA474a to2.2%in strain BSSA47407. The carbon flux through tricarboxylic acid cycle significantly reduced, while responses of the pentose phosphate pathway and the glycolysis to high SA production were rather weak, in the strain BSSA47407. Based on the results from MFA, two potential targets for further optimization of SA production were identified. Experiments on genetic deletion of phosphoenoylpyruvate kinase gene confirmed its positive influence on SA production, while the overexpression of the transketolase gene did not lead to increase in SA production.
     SLIC was applied for the assembly of multiple DNA fragments in a single reaction using in vitro homologous recombination and single-strand annealing. aroD, aroB, aroA and zwf were efficient and reproducible assembly into pHCMC04simultaneously by SLIC. B. subtilis BSSA47416gave the best results of4.35g/1shikimic acid titer, which was1.4-fold higher than the corresponding values in B. subtilis BSSA47407.
引文
1. Draths, K.M., D.R. Knop, and J.W. Frost, Shikimic acid and quinic acid:Replacing isolation from plant sources with recombinant microbial biocatalysis. Journal of the American Chemical Society,1999.121(7):p. 1603-1604.
    2. Bochkov, D.V., et al., Shikimic acid:review of its analytical, isolation, and purification techniques from plant and microbial sources. Journal of chemical biology,2012.5(1):p.5-17.
    3. Edmonds, M. and R. Payne, Isolation of shikimic acid from star aniseed. Journal of Chemical Education,2005.82(4):p.599.
    4. 林祁,八角科植物的地理分布.热带亚热带植物学报,1995(03):p.1-11.
    5. Ganem, B., Shikimate-Derived Metabolites.4. From Glucose to Aromatics-Recent Developments in Natural-Products of Shikimic Acid Pathway. Tetrahedron,1978.34(23):p.3353-3383.
    6. Jung, M., Conversion of Shikimic Acid into 2-Crotonyloxymethyl-(4r,5r,6s)-4,5,6-Trihydroxycyclohex-2-Ene Analogous to a Glyoxalase I Inhibitor. Journal of Antibiotics,1987.40(5):p.720-722.
    7. Takeuchi, T., et al., Glyoxalase-I Inhibitor of a New Structural Type Produced by Streptomyces. Journal of Antibiotics,1975.28(10):p.737-742.
    8.孙快麟,若干莽草酸衍生物的合成和生物活性研究.药学学报,1990(01):p.73-76.
    9. Liao, Y.H., et al., Three cyclohexene oxides from Uvaria grandiflora. Phytochemistry,1997.45(4):p.729-732.
    10.马怡,莽草酸对血小板聚集和凝血的抑制作用.药学学报,2000(01):p.1-3.
    11.黄丰阳,三乙酰莽草酸对血小板聚集的抑制作用.药学学报,1999.34(5):p.345-348.
    12.种兆忠,三乙酰莽草酸对局灶性脑缺血后脑组织损伤和血液流变学的作用.中国药学杂志,2000(08):p.16-19.
    13.孙文燕,异亚丙基莽草酸对大脑中动脉缺血再灌注大鼠的保护作用.北京中医药大学学报,2005(03):p.34-37.
    14.王宏涛,异亚丙基莽草酸对大脑中动脉栓塞大鼠脑组织自由基代谢的影响.中国药理学通报,2002(05):p.569-571.
    15.邢建峰,异亚丙基莽草酸抗炎作用的研究.中国药学杂志,2006(24):p.1861-1863.
    16.陈小军,异亚丙基莽草酸抗炎作用机制研究.中国中医药信息杂志,2008.15(3):p.28-29.
    17. Aoki, F.Y. and K.E. Doucette, Oseltamivir:a clinical and pharmacological perspective. Expert Opinion on Pharmacotherapy,2001. 2(10):p.1671-1683.
    18. McClellan, K. and C.M. Perry, Oseltamivir-A review of its use in influenza. Drugs,2001.61(2):p.263-283.
    19.何新华,八角茴香中莽草酸提取和纯化工艺的研究.天然产物研究与开发,2008.20(5):p.914-917.
    20.林海禄.微波辅助提取八角茴香中莽草酸的工艺研究.食品工业科技,2007(03):p.137-138+142.
    21. Adams, H., et al., The shikimate pathway.8. synthesis of (-)-3(R)-amino-4(R),5(R)-dihydroxy-1-cyclohexene-1-carboxylic acid:The 3(R)-amino analogue of (-)-shikimic acid. Tetrahedron,1996.52(25):p. 8565-8580.
    22. Pawlak, J.L. and G.A. Berchtold, Total synthesis of (-)-chorismic acid and (-)-shikimic acid. The Journal of Organic Chemistry,1987.52(9):p. 1765-1771.
    23. Wood, H.B. and B. Ganem, Short Chemical Synthesis of (-)-Chorismic Acid from (-)-Shikimic Acid. Journal of the American Chemical Society,1990.112(24):p.8907-8909.
    24. Jiang, S.D. and G. Singh, Chemical synthesis of shikimic acid and its analogues. Tetrahedron,1998.54(19):p.4697-4753.
    25. Zhang, Y., et al., New approach to the total synthesis of(-)-zeylenone from shikimic acid. Chemical & Pharmaceutical Bulletin,2006.54(10):p. 1459-1461.
    26. Fleet, G.W. and T.K. Shing, An entry to chiral cyclohexenes from carbohydrates:a short, efficient, and enantiospecific synthesis of (-)-shikimic acid from D-mannose. Journal of the Chemical Society, Chemical Communications,1983(15):p.849-850.
    27. Alves, C., et al., An efficient transformation of quinic acid to shikimic acid derivatives. Tetrahedron,1999.55(28):p.8443-8456.
    28. Escalante, A., et al., Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system. Microb Cell Fact,2010.9:p.21.
    29. Cui, Y.Y., et al., Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb Cell Fact,2014.13:p.21.
    30. Li, K., et al., Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli. Biotechnology and Bioengineering, 1999.64(1):p.61-73.
    31. Ahn, J.O., et al., Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions. J Microbiol Biotechnol,2008.18(11):p.1773-84.
    32. Rodriguez, A., et al., Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF. Microb Cell Fact,2013.12:p.86.
    33. Cortes-Tolalpa, L., et al., Global transcriptomic analysis of an engineered Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system during shikimic acid production in rich culture medium. Microb Cell Fact,2014.13(1):p.28.
    34. Defeyter, R.C. and J. Pittard, Genetic and Molecular Analysis of Arol, the Gene for Shikimate Kinase-Ii in Escherichia-Coli K-12. Journal of Bacteriology,1986.165(1):p.226-232.
    35.付小花、大肠杆菌aroL基因敲除及其对莽草酸合成的影响.复旦学报(自然科学版),2007(03):p.366-370.
    36. Iomantas, Y.A.V., et al., Method for producing shikimic acid,2002, Google Patents.
    37. Shirai, M., et al., Microorganism belonging to the genus Citrobacter and process for producing shikimic acid,2001, EP Patent 1,092,766.
    38. Brown, K.D. and C.H. Doy, Transport and utilization of the biosynthetic intermediate shikimic acid in Escherichia coli. Biochim Biophys Acta,1976.428(3):p.550-62.
    39. Pittard, J. and B.J. Wallace, Gene controlling the uptake of shikimic acid by Escherichia coli. Journal of Bacteriology,1966.92(4):p.1070-5.
    40. Knop, D.R., et al., Hydroaromatic equilibration during biosynthesis of shikimic acid. Journal of the American Chemical Society,2001.123(42):p. 10173-82.
    41. Chandran, S.S., et al., Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog,2003.19(3):p.808-14.
    42. Chandran, S.S., et al., Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnology Progress,2003.19(3):p. 808-814.
    43. Bailey, J.E., Toward a Science of Metabolic Engineering. Science, 1991.252(5013):p.1668-1675.
    44. Sauer, U., D.C. Cameron, and J.E. Bailey, Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnology and Bioengineering,1998.59(2):p.227-238.
    45. Koffas, M., et al., Metabolic engineering. Annual Review of Biomedical Engineering,1999.1:p.535-557.
    46. Aldor, A.S., et al., Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium. Applied and Environmental Microbiology, 2002.68(8):p.3848-3854.
    47. Stephanopoulos, G., Metabolic engineering:Perspective of a chemical engineer. Aiche Journal,2002.48(5):p.920-926.
    48. Stephanopoulos, G. and D.E. Stafford, Metabolic engineering:a new frontier of chemical reaction engineering. Chemical Engineering Science, 2002.57(14):p.2595-2602.
    49. Walker, A.W. and J.D. Keasling, Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnology and Bioengineering,2002.78(7):p.715-721.
    50. Szyperski, T.,13C-NMR, MS and metabolic flux balancing in biotechnology research. Q Rev Biophys,1998.31(1):p.41-106.
    51. Wiechert, W., et al., A universal framework for 13C metabolic flux analysis. Metabolic Engineering,2001.3(3):p.265-83.
    52. Fischer, E. and U. Sauer, Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. European Journal of Biochemistry,2003.270(5):p.880-891.
    53. Klapa, M.I., J.C. Aon, and G. Stephanopoulos, Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. European Journal of Biochemistry,2003.270(17):p. 3525-42.
    54. Sauer, U., et al., Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. Journal of Bacteriology,1999.181(21):p.6679-6688.
    55. Hua, Q., et al., Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Applied and Environmental Microbiology,2004.70(4):p.2354-2366.
    56. Hua, Q., et al., Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. Journal of Bacteriology,2003.185(24):p.7053-7067.
    57. Yang, C, Q. Hua, and K. Shimizu, Metabolic flux analysis in Synechocystis using isotope distribution from C-13-labeled glucose. Metabolic Engineering,2002.4(3):p.202-216.
    58. Niklas, J., K. Schneider, and E. Heinzle, Metabolic flux analysis in eukaryotes. Current Opinion in Biotechnology,2010.21(1):p.63-69.
    59. Wiechert, W.,13C metabolic flux analysis. Metabolic Engineering, 2001.3(3):p.195-206.
    60. Stephanopoulos, G., Metabolic Fluxes and Metabolic Engineering. Metabolic Engineering,1999.1(1):p.1-11.
    61. Christensen, B., A.K. Gombert, and J. Nielsen, Analysis of flux estimates based on C-13-labelling experiments. European Journal of Biochemistry,2002.269(11):p.2795-2800.
    62. Fischer, E., N. Zamboni, and U. Sauer, High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived C-13 constraints. Analytical Biochemistry,2004.325(2):p.308-316.
    63. Sriram, G., et al., Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional C-13 labeling, two-dimensional [C-13, H-1] nuclear magnetic resonance, and comprehensive isotopomer balancing (vol 136, pg 3043,2004). Plant Physiology,2006.142(4):p.1771-1771.
    64. Libourel, I.G. and Y. Shachar-Hill, Metabolic flux analysis in plants: from intelligent design to rational engineering. Annu Rev Plant Biol,2008.59: p.625-50.
    65. Luo, Y.E., et al., Analysis of metabolic flux in Escherichia coli expressing human-like collagen in fed-batch culture. Biotechnology Letters, 2008.30(4):p.637-43.
    66. McKinlay, J.B. and C. Vieille, (13)C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO(3) and H(2) concentrations. Metabolic Engineering,2008.10(1):p.55-68.
    67. Zhang, Q., et al., Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae. Bioprocess Biosyst Eng,2008.31(2):p. 127-35.
    68. Dauner, M. and U. Sauer, GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnology Progress, 2000.16(4):p.642-649.
    69. Yang, C., et al., Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnology and Bioengineering,2003.84(2):p.129-144.
    70. Zamboni, N., et al., The phosphoenolpyruvate carboxykinase also catalyzes C-3 carboxylation at the interface of glycolysis and the TCA cycle of Bacillus subtilis. Metabolic Engineering,2004.6(4):p.277-284.
    71. Hua, Q., et al., Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Applied and Environmental Microbiology,2007.73(14):p.4639-4647.
    72. Blank, L.M., L. Kuepfer, and U. Sauer, Large-scale C-13-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast. Genome Biology,2005.6(6).
    73. Fuhrer, T., E. Fischer, and U. Sauer, Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology,2005.187(5):p.1581-1590.
    74. Perrenoud, A. and U. Sauer, Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coll Journal of Bacteriology,2005.187(9):p.3171-3179.
    75. Zamboni, N., E. Fischer, and U. Sauer, FiatFlux--a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics, 2005.6:p.209.
    76. Zamboni, N., Toward metabolome-based 13C flux analysis:a universal tool for measuring in vivo metabolic activity, in Metabolomics2007, Springer, p.129-157.
    77. Sauer, U., et al., The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. Journal of Biological Chemistry,2004.279(8): p.6613-6619.
    78. Zhu, T., et al., Engineering of Bacillus subtilis for enhanced total synthesis of folic acid. Appl Environ Microbiol,2005.71(11):p.7122-9.
    79. Yoshida, K., S. Ueda, and I. Maeda, Carotenoid production in Bacillus subtilis achieved by metabolic engineering. Biotechnology Letters, 2009.31(11):p.1789-1793.
    80. Wang, M., et al., Metabolic engineering of Bacillus subtilis for enhanced production of acetoin. Biotechnology Letters,2012.34(10):p. 1877-1885.
    81. Wong, S.-L., Advances in the use of< i> Bacillus subtilis for the expression and secretion of heterologous proteins. Current Opinion in Biotechnology,1995.6(5):p.517-522.
    82. GueroutFleury, A.M., N. Frandsen, and P. Stragier, Plasmids for ectopic integration in Bacillus subtilis. Gene,1996.180(1-2):p.57-61.
    83. Kunst, F., et al., The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature,1997.390(6657):p. 249-256.
    84. Vagner, V., E. Dervyn, and S.D. Ehrlich, A vector for systematic gene inactivation in Bacillus subtilis. Microbiology-Uk,1998.144:p. 3097-3104.
    85. Joseph, P., et al., Rapid orientated cloning in a shuttle vector allowing modulated gene expression in Bacillus subtilis. Ferns Microbiology Letters,2001.205(1):p.91-97.
    86. Kobayashi, K., et al., Essential Bacillus subtilis genes. Proceedings of the National Academy of Sciences of the United States of America,2003. 100(8):p.4678-4683.
    87. Nguyen, H.D., et al., Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid,2005. 54(3):p.241-248.
    88. Sauer, U., et al., Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Applied and Environmental Microbiology,1996.62(10):p.3687-3696.
    89. Davis, B.D., Aromatic biosynthesis. I. The role of shikimic acid. Journal of Biological Chemistry,1951.191(1):p.315-25.
    90. Davis, B.D. and E.S. Mingioli, Aromatic biosynthesis. VII. Accumulation of two derivatives of shikimic acid by bacterial mutants. Journal of Bacteriology,1953.66(2):p.129-36.
    91. Wu, J., G.Y. Sheflyan, and R.W. Woodard, Bacillus subtilis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase revisited:resolution of two long-standing enigmas. Biochemical Journal,2005.390:p.583-590.
    92. Samsbrook, J., E.F.Fritsch, and T.Maniatis, Molecular cloning:a laboratory manual,2nd ed. Cold Sping Harbor Laboratory Press,1989.
    93. 花强,代谢流量比率分析及其在代谢工程中的应用.生物工程学报,2009(09):p.1303-1311.
    94. Fischer, E. and U. Sauer, Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nature Genetics,2005.37(6):p.636-640.
    95. Li, M.Z. and S.J. Elledge, Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods,2007.4(3):p. 251-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700