小麦黄花叶病抗性及三个农艺性状的QTL分析和抗性主效QTL QYm.nau-5A.1的精细定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦黄花叶病(Wheat yellow mosaic, WYM)是由小麦黄花叶病毒(Wheat yellow mosaic bymovirus, WYMV)引起的一种土传病毒病害,在冬小麦种植区经常发生,正日益成为危害我国小麦生产的最严重的病害之一,危害小麦安全生产。抗WYMV基因资源的挖掘和深入研究对于小麦抗病毒育种具有重要意义。
     ‘西风小麦’是自日本引进的早熟抗病优良品种,具有抗倒伏、白粉病、赤霉病、条锈病、穗发芽和高抗WYMV等优异性状。在我国,育种工作者利用‘西风小麦’作为骨干亲本直接或间接育成了一些广泛推广的优良品种,如‘宁麦9号’、‘宁麦16号’和‘扬麦18号’,这些品种也高抗WYMV.‘镇9523’是江苏丘陵地区镇江农科所育成的综合性状优良的品种,具有矮秆茎粗、穗大粒多、粒重高、粒型好,中抗赤霉病、叶锈病、纹枯病等优异性状,但高感WYMV.本研究以‘西风小麦×镇9523’重组自交系群体构建了分子标记连锁图谱,在此基础上,结合WYMV抗性、株高、穗长和每穗小穗数等4个性状的考察和鉴定,进行QTL分析,为小麦育种提供新的基因资源。研究还针对鉴定出的一个抗WYMV主效QTL QYm.nau-5A.1,构建次级F2分离群体进行精细定位,为图位克隆分离该主效QTL奠定重要的基础。
     1.抗WYMV QTL分析和主效QTL QYm.nau-5A.1的精细定位
     应用植物数量性状主基因+多基因混合遗传模型对WYMV抗性进行遗传分析,结果表明,WYMV抗性的遗传在四个试验环境中符合2或3对主基因+多基因混合遗传模型,主基因的遗传率为81.00-93.93%,多基因的遗传率为5.55-17.17%。
     利用覆盖小麦全基因组的1790对SSR、STS、EST-SSR和EST-STS标记在‘西风小麦×镇9523’RIL群体双亲之间进行多态性筛选,选取在双亲及群体中多态性较好且带型清晰的317个标记,利用JoinMap 4.0软件进行分子标记连锁图谱的构建,271个标记的274个位点组成了33个连锁群,连锁群总长度为1685.3cM,标记位点间的平均距离为9.8cM,覆盖小麦的21条染色体。在此基础上,结合群体四个环境的WYMV抗性鉴定结果,利用Windows QTL Cartographer V2.5软件的复合区间作图法对WYMV抗性进行QTL定位,共检测到3个新的抗WYMV QTL:QYm.nau-3B.1、QYm.nau-5A.1和QYm.nau-7B.1,分别位于染色体3BS、5AL和7BS上。抗病等位基因均来自抗病亲本‘西风小麦’。其中QYm.nau-3B.1和QYm.nau-5A.1在四个环境中均被检测到,分别解释3.3-10.2%和25.9-53.7%的表型变异;而QYm.nau-7B.1仅在试验环境E1中被检测到,解释4.9%的表型变异。
     根据抗WYMV QTL分析的结果,在RIL群体中选择一个仅含有QYm.nau-5A.1且其他农艺性状和镇9523相似的高抗家系与镇9523杂交,构建了一个包含6002个单株的次级F2分离群体来精细定位QYm.nau-5A.1,经重组体筛选将QYm.nau-5A.1定位于标记Xwmc415.1和5EST-440之间,且2个EST-STS标记5EST-44和5EST-90与QYm.nau-5A.1表现出共分离。连锁分析表明,标记Xwmc415.1、5EST-44和5EST-90与QYm.nau-5A.1之间的遗传距离均为0.0cM,标记5EST-440与QYm.nau-5A.1之间的遗传距离为O.1cM。最终将QYm.nau-5A.1定位于0.1cM的标记区间Xwmc415.1-5EST-440内,为图位克隆分离QYm.nau-5A.1奠定了的基础。
     利用与QYm.nau-5A.1紧密连锁的3个标记Xwmc415.1、5EST-44和5EST-90对WYMV抗性已知的46个品种组成的小麦品种群体进行分子标记分析,结果在10个抗WYMV品种中检测到QYm.nau-5A.1,且这3个标记在所有12个感WYMV品种中均扩增出和感病品种‘镇9523’一致的与感病相关的带型。因此,这3个标记在小麦品种群体中能够对QYm.nau-5A.1进行有效地鉴定,可用于抗WYMV MAS育种。
     2.三个重要农艺性状的QTL分析
     应用植物数量性状主基因+多基因混合遗传模型对株高、穗长和每穗小穗数等3个农艺性状进行遗传分析,结果表明,株高、穗长和每穗小穗数性状的遗传在两个试验环境中均符合2对主基因+多基因混合遗传模型。
     在构建分子标记连锁图谱的基础上,结合群体两个环境目标性状的考察结果,利用Windows QTL Cartographer V2.5软件的复合区间作图法对3个农艺性状进行QTL定位,共检测到4个与株高相关的QTL:QPh.nau-2D、QPh.nau-3B.1、QPh.nau-4B和QPh.nau-4D,分别位于染色体2DS、3BL、4BL和4DS上。其中QPh.nau-2D, QPh.nau-4B和QPh.nau-4D在两个环境中均被检测到,可分别解释7.4-7.9%、29.3-30.3%和28.3-35.6%的表型变异。共检测到5个与穗长相关的QTL:QSl.nau-2D.α、QSl.nau-2D.b, QSl.nau-5A.1、QSl.nau-5B和QSl.nau-6B,分别位于染色体2DS、2DS、5AL、5BS和6BL上。其中,QSl.nau-2D.α、QSl.nau-2D.b和QSl.nau-5A.1在两个环境中均被检测到,可分别解释20.6-29.0%、5.0%和8.8-11.6%的表型变异。共检测到5个与每穗小穗数相关的QTL:QSn.nau-1A.1、QSn.nau-5A.1.α、QSn.nau-5A.1.b、QSn.nau-5D和QSn.nau-6B,分别位于染色体1AS、5AL、5AL、5DL和6BL上。其中,QSn.nau-1A.1和QSn.nau-5D在两个环境中均被检测到,分别解释10.2-11.1%和7.8%-11.9%的表型变异。
Wheat yellow mosaic (WYM), which caused by wheat yellow mosaic bymovirus (WYMV) is a soil-borne bymovirus disease, is an important disease in the winter wheat growing regions and it has growing as one of the most serious diseases in wheat production of China. The mining of more resistance gene resources is of critical importance in wheat breeding for WYMV resistance.
     The wheat variety,'Xifeng Wheat', originally introduced from Japan into China, possesses many elite characters such as resistances to powdery mildew, fusarium head blight, stripe rust, WYMV as well as resistances to lodging and pre-harvest sprouting. Several new wheat varieties with high level of resistance to WYMV have been released using'Xifeng Wheat'as breeding parents directly or indirectly in China (e.g.'Ningmai 9', 'Ningmai 16'and'Yangmai 18'). The wheat variety,'Zhen 9523', developed by Jiangsu Hilly Area Zhenjiang Agricultural Research Institute, strong stem, bigger spikes and more grains, higher grain weight, good grain quality, and has moderately resistant to fusarium head blight, leaf rust and sheath blight, but it is highly susceptible to WYMV. In the present research, a RIL population was constructed using the two varieties as parents, and a molecular marker based linkage map was established. Based on the evaluation of WYMV resistance, QTLs associated with WYMV resistance were analyzed. A secondary F2 population was constructed to fine map a major QTL QYm.nau-5A.1 identified for WYMV resistance in the RIL population, which would provide an important foundation for the map-based cloning of QYm.nau-5A.1. The major results obtained were as following:
     1. Identification of QTLs for WYMV resistance in the RIL population
     Genetic analysis for the WYMV resistance was conducted by mixed major gene plus polygene inheritance models. Results showed that the WYMV resistance was controlled by two or three major genes plus polygenes, major genes and polygenes heritabilities were 81.00-93.93% and 5.55-17.17%, respectively.
     Among the 1,790 SSR, STS, EST-SSR and EST-STS markers,317 primer pairs could amplify clear and reproducible polymorphic band (s) between the two parents and the RILs. Among them, when using the JoinMap 4.0 software,271 markers representing 274 non-redundant loci assigned to the molecular marker-based linkage map contained 33 linkage groups spanning a total genetic length of 1,685.3cM with an average marker interval of 9.8cM. All the 21 wheat chromosomes were represented by at least one linkage group. Based on the molecular marker-based linkage map and phenotypic data of WYMV resistance collected from four-year, two-location replicated field trials, QTLs associated with the WYMV resistance were detected with the Windows QTL Cartographer V2.5 software by composite interval mapping (CIM) method. Three QTLs, QYm.nau-3B.1, QYm.nau-5A.1 and QYm.nau-7B.1, were detected on chromosomes 3BS,5AL and 7BS, respectively. The increased allele effects were all provided by the resistant parent'Xifeng Wheat'. Among the three QTLs, QYm.nau-3B.1 and QYm.nau-5A.1 were detected in all the four trials, and could explain 3.3-10.2% and 25.9-53.7% of the phenotypic variation, respectively, while QYm.nau-7B.1 was detected in one trial that explained 4.9% of the phenotypic variation.
     2. Fine mapping of the major QTL QYm.nau-5A.1
     In order to fine map the QYm.nau-5A.1, based on QTL analysis for WYMV resistance, a secondary F2 population consisting 6002 plants were constructed by a cross 'RILV-6'and 'Zhen 9523', and the highly WYMV-resistant RIL'RILV-6'only contained QYm.nau-5A.1 has similar agronomic traits with'Zhen 9523'. When using the markers to screen the recombinats in all the 1340 susceptible plants, the QYm.nau-5A.1was flanked by Xwmc415.1 and 5EST-440, and the two EST-STS markers were co-separated with the QYm.nau-5A.1. Linkage analysis showed that the genetic distances were 0.0cM between Xwmc415.1,5EST-44,5EST-90 and QYm.nau-5A.1, and that the genetic distances were 0.1 cM between 5EST-440 and QYm.nau-5A.1. Finally the QYm.nau-5A.1 was flanked by the two markers Xwmc415.1 and 5EST-440 with a distance of 0.1cM, which would provide an important foundation for the map-based cloning of QYm.nau-5A.1.
     Three markers, Xwmc415.1,5EST-44 and 5EST-90 closely linked with QYm.nau-5A.1 identified in the present study, were used for marker analysis of the wheat varieties population consisting of 46 varieties with known WYMV resistance. Result showed that that QYm.nau-5A.1 was present in 12 varieties with WYMV-resistance, and all the 12 WYMV-susceptible varieties amplified the same specific band as in'Zhen 9523'using the three markers. So the three markers were very effective to identify the QYm.nau-5A.1 in the wheat varieties population, and they should be useful in marker-assisted selection (MAS) of WYMV resistance in wheat breeding.
     3. QTL analysis of the three important agronomic traits in the RIL population
     Genetic analysis for plant height, spike length and spikelet number per spike were conducted by mixed major gene plus polygene inheritance models. Results showed that the three agronomic traits were all controlled by two major genes plus polygenes.
     Based on the molecular marker-based linkage map and phenotypic data of the three agronomic traits collected from two-year, one-location replicated field trials, QTLs associated with the three traits were detected with the Windows QTL Cartographer V2.5 software by CIM method. Four QTLs for the plant height, QPh.nau-2D, QPh.nau-3B.1, QPh.nau-4B and QPh.nau-4D, were detected on chromosomes 2DS,3BL,4BL and 4DS, respectively. Among them, QPh.nau-2D, QPh.nau-4B and QPh.nau-4D were all detected in all the two trials and could explain 7.4-7.9%,28.3-35.6% and 29.3-30.3% of the phenotypic variation, respectively. Five QTLs for the spike length, QSl.nau-2D.a, QSl.nau-2D.b, QSl.nau-5A.1, QSl.nau-5B and QSl.nau-6B, were detected on chromosomes 2DS,2DS, 5AL,5BS and 6BL, respectively. Among them, QSl.nau-2D.a, QSl.nau-2D.b and QSl.nau-5A.1 were detected in all the two trials and could explain 20.6-29.0%,5.0% and 8.8-11.6% of the phenotypic variation, respectively. Five QTLs for the spikelet number per spike, QSn.nau-1A.1, QSn.nau-5A.1.a, QSn.nau-5A.1.b, QSn.nau-5D and QSn.nau-6B, were detected on chromosomes 1AS,5AL,5AL,5DL and 6BL, respectively. Among them, QSn.nau-1A.1 and QSn.nau-5D were detected in all the two trials and could explain 10.2-11.1% and 7.8-11.9% of the phenotypic variation, respectively.
引文
Abe H, Tamada T (1986) Parasite of polymyxa betae. Ann Phytopath Soc Jpn 52:235-247
    Alpert KB, Grandillo S, Tanksley SD (1995)fw 2.2:a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994-1000
    Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C et al (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164-1168
    Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977-984
    Borner A, Plaschke J, Korzun V, Worland AJ (1996) The relationships between the dwarfing genes of wheat and rye. Euphytica 89:69-75
    Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder MS et al (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921-936
    Bassam BJ, Gresshoff PM (2007) Silver staining DNA in polyacrylamide gels. Nature Protoc 2:2649-2654
    Boyko EV, Gill KS, Mickelson-Young L, Nasuda S, Raupp WJ, Ziegle JN et al (1999) A high-density genetic linkage map of Aegilops tauschii, the D-genome progenitor of bread wheat. Theor Appl Genet 99:16-26
    Bozzini A, Giorgi B (1971) Genetic analysis of tetraploid and hexaploid wheat by utilization of monopentaploid hybrids. Theor Appl Genet 41:67-74
    Buerstmayr M, Lemmens M, Steiner B, Buerstmayr H (2011) Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha×T. aestivum population. Theor Appl Genet DOI 101007/s00122-011-1584-x
    Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989)RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495-504
    Chebotar SV, Korzun VN, Sivolap YM (2001) Allele Distribution at Locus WMS261 Marking the Dwarfing Gene Rht8 in Common Wheat Cultivars of Southern Ukraine. Russian J Genet 37:894-898
    Chen J (1993) Occurrence of fungally transmitted wheat mosaic viruses in China. Ann appl biol 123:55-61
    Chen J, Adams MJ, Zhu F, Shi C, Chen H (1992) Responses of some Asian and European barley cultivars to UK and Chinese isolates of soil-borne barley mosaic viruses. Ann appl biol 121:631-639
    Chen J, Wang Z, Hong J, Collier CR, Adams MJ (1998) Ultrastructural studies of resting spore development in Polymyxa graminis. Mycol Res 102:687-691
    Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P et al (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. The Plant Cell 22:1686-1701
    Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251-266
    Clover G, Henry C (1999) Detection and discrimination of wheat spindle streak mosaic virus and wheat yellow mosaic virus using multiplex RT-PCR. Eur J Plant Pathol 105:891-896
    Cui F, Li J, Ding A, Zhao C, Wang L, Wang X et al (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet DOI 101007/s00122-011-1551-6
    Devos KM, Atkinson MD, Chinoy CN, Liu CJ, Gale MD (1992) RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theor Appl Genet 83:931-939
    Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461-481
    Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285-294
    Dubcovsky J, Luo MC, Zhong GY, Bransteitter R, Desai A, Kilian A et al (1996) Genetic map of diploid wheat, Triticum monococcum L., and its comparison with maps of Hordeum vulgare L. Genetics 143:983-999
    Ellis M, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038-1042
    Elouafi I, Nachit MM (2004) A genetic linkage map of the Durum×Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits. Theor Appl Genet 108:401-413
    Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J et al (2000) fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85-88
    Gale MD, Atkinson MD, Chinoy CN, Harcourt RL, Jia J, Li Q Y et al (1995) Genetic maps of hexaploid wheat. In:Li ZS, Xin ZY (eds) Proceedings of 8th international wheat genetics symposium, China Agricultural Scientech Press, Beijing, pp 29-40
    Garcia-Suarez JV, Roder MS, Diazdeleon JL (2010) Identification of QTLs and associated molecular markers of agronomic traits in wheat (Triticum aestivum L.) under two conditions of nitrogen fertilization. Cereal Res Comm 38:459-470
    Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362-374
    Goud JV, Sridevi O (1988) Cytogenetic investigations of some quantitative characters in hexaploid wheat Triticum aestiv um using F2 monosomic analysis. In:Proc 7th Intern Wheat Symp. Cambridge, England:521-525.
    Goud JV, Sridevi O (1990) Cytogenetic investigations of some quantitative characters in hexaploid wheat (Triticum aestivum L.)using F2 monosomic analysis [A]. Miller TE, Koevner RMD (eds). Intern Wheat Genet Symp[C]. Cambridge,1990,521-525.
    Gupta PK, Roy JK (2002) Molecular markers in crop improvement:Present status and future needs in India. Plant Cell, Tiss Org Cul 70:229-234
    Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315-324
    Hart GE, Gale MD, McIntosh RA (1993) Linkage maps of Triticum aestivum (hexaploid wheat,2n= 42, genomes A, B, and D) and T. tauschii (2n=14, genome D). Genetic maps:Locus maps of complex genomes Cold Spring Harbor Laboratory Press, New York:204-219
    Hoogendoorn J (1985) A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica 34:545-558
    Ⅱ'ina LB (1981) Inheritance of length of topmost internode, ear length and number of spikelets per ear and the effect of monosomy for these characters. Rost I productkivnost Dep 31:149-161
    Inouye T (1969) Viral pathogen of the wheat yellow mosaic disease. Nogaku Kenkyu 53:61-68
    Jakobson I, Timofejeva HPL, Jarve K (2006) Adult plant and seedling resistance to powdery midew in a Triticum aestivum×Triticum militinae hybrid line. Theor Appl Genet 112:760-769
    Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261-273
    Jiang G-L, Dong Y, Shi JR, Ward RW (2007a)QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 115:1043-1052
    Jiang G-L, Shi JR, Ward RW (2007b) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306.I. Resistance to fungal spread. Theor Appl Genet 116:3-13
    Joshi BC, Kumar S (1967) Variation and covariation of quantitative characters in euploids and aneuploids for chromosome 5A in wheat. Indian J Genet 27:86-89
    Kamat RT (1980) Disomid F3 analysis in hexaploid wheat (T.aestivum L. em.) using pbC 591 monosomic series and cv UP301. Thesis Abstr Mysore J Agril Sci 8:205 USA, Dharwad
    Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203-1216
    Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114-1121
    Khan A, Bergstrom G, Nelson J, Sorrells M (2000) Identification of RFLP markers for resistance to wheat spindle streak mosaic bymovirus (WSSMV) disease. Genome 43:477-482
    Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17-28
    Kobiljski B, Dencic S, Kondic-Spika A, Lohwasser U, Borner A (2009) Locating stable across environment QTL involved in the determination of agronomic characters in wheat. Cereal Res Comm 37:327-333
    Korzun V, Roder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104-1109
    Korzun V, Roder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW et al (1999) Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 98:1202-1207
    Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172-175
    Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360-1363
    Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199
    Ledingham GA (1939) Studies on Polymyxa graminis, n. gen. n. sp., a plasmodiophoraceous root parasite of wheat. Canadian J Res 17:38-51
    Li S, Jia J, Wei X, Zhang X, Li L, Chen H et al (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167-178
    Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357-366
    Littlefield LJ, Delfosse P, Whallon JH, Hassan ZM, Sherwood JL, Reddy DVR (1997) Anatomy of sporosori of Polymyxa graminis, the vector of Indian peanut clump virus, in roots of Sorghum bicolor. Canadian J Plant Pathol 19:281-288
    Liu K, Muse SV (2005) Powermarker:New Genetic Data Analysis Software, Version 3.25,2006. Available at http://powermarker.net.
    Liu S, Zhou R, Dong Y, Li P, Jia J (2006) Development, utilization of introgression lines using a synthetic wheat as donor. Theor Appl Genet 112:1360-1373
    Liu WH, Nie H, He ZT, Chen XL, Han YP, Wang JR et al (2005a) Mapping of a wheat resistance gene to yellow mosaic disease by amplified fragment length polymorphism and simple sequence repeat markers. J Integr Plant Biol 47:1133-1139
    Liu WH, Nie H, Wang SB, Li X, He ZT, Han CG et al (2005b) Mapping a resistance gene in wheat cultivar Yangfu 9311 to yellow mosaic virus, using microsatellite markers. Theor Appl Genet 111:651-657
    Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB et al (2001) Over dominant epistemic loci are the primary genetic basis of inbreeding depression and heterocyst in rice. Genetics 158:1755-1771
    Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F et al (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Molecular Genetics and Genomics 277:31-42
    Mangin B, Goffinet B, Rebai A (1994) Constructing confidence intervals for QTL location. Genetics 138:1301-1308
    Manickavelu A, Kawaura K, Imamura H, Mori M, Ogihara Y (2008) Construction of SSR linkage map and QTL mapping for spike characters in common wheat RIL population. Wheat Genetics. Sydney University Press.
    Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327-1336
    Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840×Clark. Theor Appl Genet 112:688-698
    McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J et al (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 x AC Domain. Genome 48:870-883
    Millet E (1986) Genetic control of heading date and spikelet number in common wheat (T. aestivum L.) line 'Noa'. Theor Appl Genet 72:105-107
    Millet E (1987) Monosomic analysis of heading date and spikelet number in the common wheat (Triticum aestivum L.) multispikelet line 'Noa'. Theor Appl Genet 74:487-492
    Nalini E, Bhagwat SG, Jawali N (2010) Construction of Genetic Linkage Map of Bread Wheat (Triticum aestivum L.) Using an Intervarietal Cross and QTL Map for Spike Related Traits. Triticeae Genomics and Genetics 1:1-2
    Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat×synthetic wheat population. Theor Appl Genet 112:787-796
    Nishio Z, Kojima H, Hayata A, Iriki N, Tabiki T, Ito M et al (2010) Mapping a gene conferring resistance to wheat yellow mosaic virus in European winter wheat cultivar'Ibis'(Triticum aestivum L.). Euphytica 176:223-229
    Ordon F, Habekuss A, Kastirr U, Rabenstein F, Kuhne T (2009) Virus resistance in cereals:sources of resistance, genetics and breeding. J Phytopathol 157:535-545
    Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O et al (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235-1242
    Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101-104
    Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE et al (1999)'Green revolution' genes encode mutant gibberellin response modulators. Nature 400:256-261
    Pestsova E, Salina E, Borner A, Korzun V, Maystrenko OI, Roder MS (2000) Microsatellites confirm the authenticity of inter-varietal chromosome substitution lines of wheat (Triticum aestivum L.) Theor Appl Genet 101:95-99
    Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, Anderson OD et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701-712
    Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C et al (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865-880
    Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N et al (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Functional & integrative genomics 9:473-484
    Roder MS, Korzun V, Gill BS, Ganal MW (1998) The physical mapping of microsatellite markers in wheat. Genome 41:278-283
    Sadanada AR (1977) Cytogenetic investigations of some morphological and grain characters of hexaploid wheat (T. aestivum L. em Thell) using F2 monosomic analysis. Mysore J Agric Sci 11:257
    Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A bayesian approach to detect quantitative trait loci using markov chain monte carlo. Genetics 144:805-816
    Sawada E (1927) Wheat yellow mosaic prevention. J Plant Protect (Byochugai-Zasshi) 14:444-449
    Sears ER (1954) The aneuploids of common wheat. Univ Missouri Res bullet 572:1-58
    Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286-290
    Shnaider T, Dorokhova T (1979) Monosomic analysis of some quantitative characters in bread wheat. Biologia 28:250-259
    Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T et al (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum x T. monococcum RIL population. Theor Appl Genet 115:301-312
    Singh RP, Huerta-Espino J, Rajaram S, Crossa J (2001) Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica 119:241-244
    Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105-1114
    Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J et al (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550-560
    Sourdille P, Cadalen T, Guyomarc'h H, Snape JW, Perretant MR, Charmet G et al (2003) An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530-538
    Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L et al (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Functional and integrative genomics 4:12-25
    Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S et al (2000) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247-255
    Suenaga K, Khairallah M, William HM, Hoisington DA (2005) A new intervarietal linkage map and its application for quantitative trait locus analysis of "gigas" features in bread wheat. Genome 48:65-75
    Usugi T, Kashiwazaki S, Omura T, Tsuchizaki T (1989) Some properties of nucleic acids and coat proteins of soil-borne filamentous viruses. Ann Phytopathol Soc Jpn 55:26-31
    Usugi T, Saito Y (1976) Purification and serological properties of barley yellow mosaic virus and wheat yellow mosaic virus. Ann Phyfopath Soc Jpn 42:12-20
    Van Koevering M, Haufler KZ, Fulbright DW, Isleib TG, Everson EH (1987) Heritability of resistance in winter wheat to wheat spindle streak mosaic virus. Phytopathology 77:742-744
    Van Ooijen JW (2006) JoinMap 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands
    Wang DL, Zhu J, Li ZKL, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL× environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255-1264
    Wang J, Liao X, Li Y, Zhou R, Yang X, Gao L et al (2010) Fine mapping a domestication-related QTL for spike-related traits in a synthetic wheat. Genome 53:798-804
    Wang J, Liu W, Wang H, Li L, Wu J, Yang X et al (2011) QTL mapping of yield-related traits in the wheat germplasm 3228. Euphytica 177:277-292
    Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai×Yu8679. Theor Appl Genet 118:313-325
    Wang S, Basten CJ, Zeng Z-B (2006) Windows QTL Cartographer V2.5. User manual. Bioinformatics Research Centre, North Carolina State University, Raleigh, NC, USA
    Wiese MV, Ravenscroft AV, Everson EH (1974) Incidence of wheat spindle streak mosaic among ten wheat cultivars and its effect on yield. Plant Dis Rep 58:522-525
    Worland AJ, Korzun V, R der MS, Ganal MW, Law C (1998) Genetic analysis of the dwarfing gene Rht8 in wheat. Part Ⅱ. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening. Theor Appl Genet 96:1110-1120
    Xu S (1998) Mapping quantitative trait loci using multiple families of line crosses. Genetics 148:517-524
    Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C et al (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181-189
    Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M (1998) Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet 97:37-44
    Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ et al (2008) QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721-723
    Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527-1536
    Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T et al (2000) Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell 12:2473-2483
    Yao J, Wang L, Liu L, Zhao C, Zheng Y (2009) Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 137:67-75
    You FM, Huo N, Gu YQ, Lazo GR, Dvorak J, Anderson OD (2009) ConservedPrimers 2.0:A high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery. BMC Bioinformatics 10:331
    Zeng Z-B (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972-10976
    Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457-1468
    Zhang K, Tian J, Zhao L, Wang S (2008a) Mapping QTLs with epistatic effects and QTL environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genetics and Genomics 35:119-127
    Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V et al (2008b) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361-1377
    Zhang X, Yang S, Zhou Y, He Z, Xia X (2006) Distribution of the Rht-B1b, Rht-D1b and Rht8 reduced height genes in autumn-sown Chinese wheats detected by molecular markers. Euphytica 152:109-116
    Zhirov EG, Ternovskaya TK, Bessard K (1979) Genetic analysis of bread wheat using a monosomic series of bread wheat. Tsitologiia i Genetika 13:199-204
    陈炯,程晔,陈剑平(2000)小麦黄花叶病毒和小麦梭条斑花叶病毒的生物学和分子生物学研究.中国病毒学15:97-105
    窦秉德,徐海风,侯北伟,张新玲,王芳,刘福霞等(2009)小麦雌性育性遗传的分离分析.江苏 农业科6:103-107
    方先文,姜东,戴廷波,荆奇,曹卫星(2003)小麦籽粒蛋白质含量的遗传分析.江苏农业学报19:5-8
    方宣钧,吴为人,唐纪良(2002)作物DNA标记辅助育种[M].北京:科学出版社2002,pp 22-24
    盖钧镒(2000)试验统计方法.北京:中国农业出版社pp 35-47,58-65,130-137
    盖钧镒,章元明,王建康(2003)植物数量性状遗传体系.北京:科学出版社pp 1-95,224-260,351-370
    高力(2004)抗源望水白赤霉病抗性遗传分析和QTL定位研究.合肥:安徽农业大学硕士学位论文
    高力,陈飞,周立人,陆维忠(2005)小麦品种望水白的抗赤霉病性遗传分析.麦类作物学报25:5-9
    葛秀秀,张立平,何中虎,章元明(2004)冬小麦PPO活性的主基因+多基因混合遗传分析.作物学报30:18-20
    侯北伟,窦秉德,章元明,李生强,杨晋彬,刘福霞(2006)小麦雌性育性的主基因+多基因混合遗传分析.遗传学报28:1567-1572
    贾高峰,陈佩度,秦跟基,王秀娥,周波,刘大钧(2005)望水白和苏麦3号构建的DH群体赤霉病抗性比较.作物学报31:1179-1185
    雷娟利,陈炯,陈剑平,郑滔,程晔(1998)我国真菌传线状小麦花叶病毒病病原初步鉴定为小麦黄花叶病毒(WYMV)中国病毒学13:189-196
    李彬,范永坚,许志刚,周益军,吴淑华,程兆榜(2001)南京小麦梭条花叶病毒RT-PCR的分子鉴定.南京农业大学学报24:37-40
    李大伟,韩成贵,邢一明等(1997)中国小麦黄花叶病毒(WYMV)分布的RT-PCR鉴定.植物病理学报27:303-307
    李卓坤,谢全刚,朱占玲,刘金良,韩淑晓,田宾等(2010)基于QTL定位分析小麦株高的杂种优势.作物学报36:771-778
    刘宾,赵亮,张坤普,朱占玲,田宾,田纪春(2010)小麦株高发育动态QTL定位.中国农业科学43:4562-4570
    刘冬成,高睦枪,关荣霞,李润枝,曹双河,郭小丽等(2002)小麦株高性状的QTL分析.遗传学报29:706-711
    刘仁虎,孟金陵(2003)MapDraw,在Excel中绘制遗传连锁图的宏.遗传25:317-321
    刘伟华,何震天,耿波,侯明生,张敏,聂桓等(2004)小麦对黄花叶病的抗性鉴定及典型品种的遗传分析.植物病理学报34:542-547
    刘小芳,田笑明,韩新年,崔凤娟,相吉山,聂迎彬(2010)AL型小麦育性恢复主基因+多基因混 合遗传分析.新疆农业科学47:1332-1335
    卢翔,张锦鹏,王化俊,杨欣明,李秀全,李立会(2011)小麦-冰草衍生后代3558-2穗部相关性状的遗传分析和QTL定位.植物遗传资源学报12:86-91
    彭正松,颜济,杨俊良(1997)大穗小麦多小穗基因的染色体定位.种子91:5-8
    彭正松,颜济,杨俊良(1998)普通小麦多小穗基因定位.中国农业科学31:82-84
    秦家忠,黎中明,陶家凤等(1986)小麦品种对土传小麦黄色花叶病毒病抗性遗传的初步研究.四川农业大学学报4:17-28
    秦家忠,陶家凤,秦芸(1990)小麦品种系对小麦黄花叶病抗性的研究.西南农业大学学报15:27-29
    任丽娟,颜伟,陈怀谷,姚金保,马鸿翔(2010)小麦纹枯病抗性的主基因+多基因遗传分析.江苏农业学报28:1156-1161
    任丽娟,张旭,周淼平,陈庆标,马鸿翔(2008)小麦梭条花叶病抗性遗传分析.麦类作物学报28:154-159
    汤颋(2005)小麦纹枯病的抗性遗传与QTL定位研究.扬州:扬州大学硕士学位论文
    陶家风(1980)四川土传小麦黄花叶病的研究.植物病理学报10:5-25
    王建康(2009)数量性状基因的完备区间作图方法.作物学报35:239-245
    王岩,李卓坤,田纪春(2009)利用永久F2群体定位小麦株高的QTL.作物学报35:1038-1043
    王羽,樊庆琦,张利,隋新霞,李根英(2007)小麦K35早熟特性的遗传分析.麦类作物学报27:957-960
    王竹林,王辉,孙道杰,何中虎,夏先春,刘曙东(2008)小麦株高的QTL分析.西北农林科技大学学报(自然科学版)36:59-63
    吴纪中,颜伟,蔡士宾,任丽娟,汤颋(2005)小麦纹枯病抗性的主基因+多基因遗传分析.江苏农业学报21:6-11
    谢晓玲,邓自发,解俊峰(2002)小麦新种质241主要特异性状的遗传性.广西科学院学报18:77-79
    谢晓玲,邓自发,解俊峰(2003)巨穗小麦种质小穗数的染色体定位研究.湖北农业科学5:19-21
    徐相波,张爱民,李新华,孙永堂(2000)小麦矮源的利用和矮秆基因的研究进展.核农学报15:188-192
    颜伟,蔡士宾,吴纪中,任丽娟,张仙义,吴小有(2008)小麦抗梭条花叶病的分子标记及QTL定位.麦类作物学报28:900-904
    杨松杰,张晓科,何中虎,夏先春,周阳(2006)用STS标记检测矮秆基因Rht-B1b和Rht-D1b在中国小麦中的分布.中国农业科学39:1680-1687
    姚琴,周荣华,潘昱名,傅体华,贾继增(2010)小麦品种偃展1号与品系早穗30重组自交系群 体遗传连锁图谱构建及重要农艺性状的QTL分析.中国农业科学43:4130-4139
    于嘉林,晏立英,苏宁等(1999)小麦黄花叶病毒基因组核苷酸序列分析.中国科学c辑42:554-560
    于善谦(1986)发生在我国的小麦黄花叶病毒病.植物保护学报13:217-219
    袁有禄(2000)棉花优质纤维特性的遗传及分子标记研究.南京:南京农业大学博士学位论文
    张坤普,徐宪斌,田纪春(2009)小麦籽粒产量及穗部相关性状的QTL定位.作物学报35:270-278
    张立平,赵昌平,单福华,张风廷,叶志杰(2007)小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析.作物学报33:1553-1557
    张勇,程顺和,张伯桥,高德荣,吴素兰,王朝顺(2005a)小麦抗病新材料H35-S42和N553抗赤霉病性的遗传效应.江苏农业学报21:22-25
    张勇,张伯桥,高德荣,程顺和(2005b)小麦抗病新材料S42抗赤霉病性的主基因+多基因遗传分析.江苏农业学报21:272-276
    张勇,张伯桥,高德荣,程顺和(2005c)小麦赤霉病抗源N553的主基因+多基因遗传分析.中国农学通报21:305-307
    张宗英,徐建美,韩成贵,张振臣,李大伟,于嘉林(2010)小麦黄花叶病毒河南驻马店分离物的鉴定与全序列分析.华北农学报25:5-11
    赵和(2004)小麦矮秆基因研究和利用现状.河北农业科学8:96-99
    赵建伟,孟金陵(1998)植物抗病基因的克隆及其在作物遗传育种改良中的意义.高技术通讯5:58-62
    郑有良,颜济,杨俊良(1992)普通小麦穗长基因定位研究.四川农业大学学报10:570-573
    种康,谭克辉,黄华粱等(1994)冬小麦春化作用相关基因的cDNA分子克隆研究.中国科学(B辑)24:964-970
    周延清,杨清香,张改娜(2008)生物遗传标记与应用[M].北京:化学工业出版社
    周益军,程兆榜,侯庆树,范永坚,吴淑华(2000)小麦品种对梭条花叶病的抗性研究.植物保护学报27:102-106
    周淼平,黄益洪,任丽娟,王书文,马鸿翔,陆维忠(2004)利用重组自交系检测小麦株高的QTL.江苏农业学报20:201-206
    朱军(1999)运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(工学版)33:327-335
    朱坤(1999)小麦黄花叶病毒(WYMV) RNA2全长cDNA克隆的构建及体外转录.北京:中国农业大学硕士学位论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700