硅提高水稻对高锌胁迫抗性的生理与分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Physiological and Molecular Mechanisms of Silicon-enhancend Resistance of Rice to High Zinc Stress
  • 作者:宋阿琳
  • 论文级别:博士后
  • 学科专业名称:植物营养学
  • 学位年度:2011
  • 导师:梁永超
  • 学科代码:090302
  • 学位授予单位:中国农业科学院
  • 论文提交日期:2011-08-01
摘要
水稻是我国的主要粮食作物,在我国的种植面积已达到4.5亿亩,每年生产的稻谷产量占我国粮食总产的44%左右。近年来,随着工业“三废”的排放,城市生活污水、垃圾以及不合理施用含有锌的农药和化肥,土壤锌污染对水稻造成的毒害作用日益严重。硅肥对植物的生长和发育是有益的,特别是在土壤重金属污染方面,目前有关Si缓解重金属锌毒害的研究仍处于初步阶段,其具体机制仍需进一步研究。
     因此本报告采用水培试验,以根系耐性指数为指标,从19个水稻品种中筛选出2个受高锌胁迫后有显著差异的品种,TY-167(耐锌型)和FYY-326(锌敏感型)。利用这两个品种为试验材料,研究了硅对高锌胁迫下水稻的生长、元素吸收、运输及分布、光合作用、抗氧化体统的影响;利用敏感型品种为材料,利用高通量测序技术进一步分析了高锌胁迫下加硅和不加硅处理对水稻基因表达图谱;利用实时定量PCR技术,研究了高锌胁迫下加硅和不加硅处理对有关光合作用相关基因的调控。主要结果如下:
     一、硅对锌胁迫下水稻根系抗氧化系统和过氧化伤害的缓解效应
     高锌胁迫下,显著抑制了植物超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性的变化,诱导了两个水稻品种根部过氧化氢(H202)和丙二醛(MDA)含量的迅速增加,高锌胁迫诱导了植物细胞死亡,导致根系质膜完整性遭到破坏,和脂质过氧化伤害。加硅后上述指标都发生相反的趋势变化,加Si缓解了质膜完整性破坏和质脂过氧化伤害。这种缓解效应在耐性品种TY-167根系中比敏感型品种FYY-326品种根系显著。结果都表示TY-167根系与FYY-326相比不易于遭受Zn胁迫诱导的脂膜过氧化伤害。
     二、硅对锌胁迫下水稻根系形态参数变化及超微结构的影响
     锌在两个水稻品种地上部和地下部含量随着营养液中锌浓度升高而增加,高锌胁迫下,根表总面积、总根长和总根尖数量根系形态参数的在高锌胁迫下这些参数显著降低,根尖超微结构发生变化,细胞壁呈现不规则的增厚,出现质壁分离现象,细胞器融合,模糊不清,部分细胞液泡化程度提高,抑制了水稻地上部和地下部的生物量,但是加硅处理后,减少水稻对地上部对锌的吸收和抑制锌从地下部-地上部迁移,根系形态参数都显著增加,细胞壁与高锌胁迫相比变得较为清晰,质壁分离不显著,抵消了锌胁迫对植物生长的抑制作用,提高了水稻的生物量。
     三、硅对锌胁迫下水稻元素相对含量与分布的影响
     高锌胁迫下加硅或不加硅,锌主要累积在水稻根系,高锌处理导致水稻K、Ca、Mn、Fe、Cu相对含量的变化,影响体内K、Ca、Mn、Fe、Cu元素的相对吸收和运输,水稻体内这些元素的相对含量平衡遭到破坏,加硅处理降低Zn在水稻体内地上部的积累和分布,增加了地下部对Zn的积累,减少了锌从地下部向地上部迁移;抑制了某些元素在水稻体内的不平衡移动,减缓Zn造成的毒害。
     四、硅对锌胁迫下水稻叶片毒害的缓解效应
     高锌胁迫下,两水稻叶片变黄,从老叶逐渐向新叶转移,特别是敏感型FYY-326,降低了SOD、CAT和APX酶活性,诱导了两个水稻叶片H2O2、MDA、抗坏血酸(AsA)、谷胱甘肽(GSH)和非蛋白巯基(NPT)含量的迅速增加。加硅后除AsA、GSH和NPT含量仍表现进一步增加的趋势外,其它指标都发生相反的趋势变化。说明加硅缓解了锌诱导的水稻叶片毒害,而且这种缓解效应在耐锌型品种TY-167叶片中比敏感型品种FYY-326叶片显著。
     五、硅对锌胁迫下水稻光合作用、荧光参数及叶绿体超微结构的影响
     高锌胁迫下,两个水稻品种的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、水分利用率(WUE)、叶绿素含量和叶绿素荧光光谱中Fv/Fm比值都呈下降的趋势,细胞间隙CO2浓度(Ci)在高锌处理下增加。叶绿体的基质片层结构破坏,片层方向紊乱,加硅处理后上述指标都表现出相反的趋势,而且使叶绿体结构也变的完整,基质片层排列较为有序。说明加硅处理提高了水稻的光合效率,改善了叶绿体超微结构的变化。而这种缓解效应在耐锌型品种中表现的效果更加显著。
     六、硅对锌胁迫下水稻基因表达图谱的影响
     硅在正常(非胁迫)条件下能使56798个水稻基因中的2077个基因出现表达差异,其中101个基因表达上调,另外1976个基因表达下调;重金属胁迫72小时后,能诱导3888个基因出现差异,其中1920个基因表达上调,另外1968个基因表达下调;高锌胁迫下,硅使873个基因表达差异,其中504个基因表达上调,369个基因表达下调;硅存在下,高锌胁迫使4976个基因表达差异,其中4115个基因表达上调,861个基因表达下调。这些差异表达的基因涉及到代谢调节、离子转运、信号传导、转录调节和逆境应答等方面。高通量测序的结果表明,硅在正常(非胁迫)条件下对植物生长代谢具有明显作用,至少对于水稻这类单子叶植物是必需的,当植物受到重金属胁迫时,硅能调控植物本身产生更高效或更同步的关键基因减轻重金属对植物的伤害。
     七、硅对高锌胁迫下与水稻光合作用相关基因表达的影响
     高锌胁迫下,无论加硅与否,HemA、Os03g36540、PsaH、PetC和PsbY基因的相对表达均上升;但是在高锌胁迫初期硅能更早更快提高这些基因的相对表达,增长幅度也显著高于不施硅处理。高锌胁迫下Os02g49870基因的相对表达变化不大,施硅处理后显著提高了其相对表达。说明在高锌胁迫下,硅积极参与了与水稻光合作用相关的基因的激活和调控,从而提高了水稻的光合作用。
Rice is the main food crop in China, with the planting area reached30million ha. The annual rice yield accounts for about44%of the total grain output. In recent years, soil contamination with heavy metal Zinc (Zn) has become more and more serious because of the impacts of industrial wastes, sewage sludge, compost, agrochemicals, and mine tailings, leading to toxicity of excess Zn to rice growth. Silicon (Si) has been proven to be beneficial for healthy growth and development of many plant species and plays an important role in enhancing plant resistance against heavy metal, however, the mechanisms underpinning Si-enhanced metal tolerance remain poorly understood and thus need further investigation.
     Therefore, hydroponics experiments were carried out in this study. Two rice cultivars:i.e. TY-167, a Zn-resistance cultivar and FYY-326, a Zn-sensitive cultivar, were selected among19rice genotypes based on the root tolerance index to investigate the effects of Si on plant growth, elements uptake, transport, distribution, photosynthetic parameters and antioxidative defenses of both cultivars under Zn stress; Using high-throughput sequencing, we performed a comprehensive analysis of the influence of Zn on gene expression of the sensitive rice (FYY-326) with or without Si. The effect of Si on regulating photosynthesis-related genes of the sensitive rice under high Zn stress with or without Si was conducted using real-time quantitative PCR approach. The main results are presented as follows:
     1. Effect of Si on antioxidant defense capacity and oxidative of rice in roots under Zn stress
     Superoxide dismutase (SOD), catalase (CAT) and asorbate peroxidases (APX) activities were decreased by high Zn stress; the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) were increased by high Zn treatment, which were all counteracted by addition of Si. Furthermore, such effects were confirmed by using histochemical staining methods. High Zn stress induced the loss of plasma membrane integrity and the damage of membranes due to lipid peroxidation, which was alleviated by Si. The alleviative effects of Si on Zn toxicity were more significant in the Zn-resistance cultivar than in the Zn-sensitive cultivar.
     2. Effect of Si on root morphology and ultrastructure of rice in roots under Zn stress
     Zn concentration in both shoots and roots of the two cultivars increased in response to an altered Zn supply in the nutrient solution. Total root surface area (TRSA), total root length (TRL) and total root tip amount (TRTA) were decreased under Zn stress, and transmission electron microscope (TEM) analysis showed that serious untrastructural damage was observed in both cultivar roots treated with Zn. Plasmolysis, concentrated cytoplasm, ambiguity of organelle were all symptoms of root cell damage under Zn stress. Shoot and root growth of both cultivars was negatively affected by a root environment with2mM Zn ion concentrations. However, addition of Si significantly decreased root-to-shoot Zn transport and increased the parameters of root morphology. And exogenous Si alleviated the plasmolysis of root cell, counteracted the inhibitory effect of Zn on plant growth and increased the biomass of rice.
     3. Effect of Si on relative elements concentration and distribution in rice under Zn stress
     High Zn stress dramatically increased the relative Zn concentration with Zn concentration being significantly higher in roots than in shoots irrespective of cultivar used and silicon added. The balance of K, Ca, Mn, Fe and Cu in shoots and roots of both cultivars tested was disturbed by high Zn stress. However, Si significantly decreased Zn uptake and root-to-shoot transport, improved the unbalanced distribution of some elements in rice, and alleviated Zn toxicity to rice.
     4. Effect of Si on antioxidant defence capacity in rice plants under Zn stress
     The symptoms of Zn toxicity were typically manifested as a yellow colour on the lower leaves starting from the tips and spreading toward the bases of the leaves, which became severer as the experiment continued. Severer leafy symptoms of Zn toxicity were observed in the Zn-sensitive cultivar (FYY-326) than in the Zn-resistant cultivar (TY-167). Under Zn stress, the activities of SOD, CAT, APX decreased, but the contents of H2O2, MDA, ascorbic acid (AsA), glutathione (GSH) and non-protein thiols (NPT) except AsA, GSH and NPT were increased by Zn treatments, which were all counteracted by addition of Si. The toxicity symptoms of Zn were alleviated by addition of Si. The alleviative effects of Si on Zn toxicity were more significant in the Zn-tolerant cultivar than in the Zn-sensitive cultivar.
     5. Effect of Si on photosynthetic and fluorescence parameters and chloroplast ultrastructure in rice under Zn stress
     Net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), water use efficiency (WUE), chlorophyll cocntent, the value of Fv/Fm of the two rice cultivars tested were all decreased under high Zn stress, while intercellular CO2concentration (Ci) was increased. Chloroplast structure was swollen observably with chloroplast granae being destroyed heavily under Zn-stress, which was all counteracted by addition of Si. The results showed that addition of Si improved the photosynthetic efficiency and alleviated the chloroplast ultrastructure in Zn-stressed rice. However, the alleviation of Si on above-mentioned parameters was smaller in Zn-sensitive plant cultivar than in Zn-resistant plant.
     6. Effect of Si on expression of genes in shoots of rice under Zn stress
     We identified2077genes out of56798rice genes which were differentially expressed in the Si-amended plants in the treatments without high Zn added (Si/CK), with101genes up-regulated and1976genes down-regulated. Among3888differentially-expressed genes in rice plants treated with high Zn (Zn/CK),1920genes were up-regulated and1968genes were down-regulated. In the high Zn-treated Si+plants,873genes were differentially expressed, compared with the high Zn-treated Si-plants (Si+Zn/Zn), with504genes up-regulated and369genes down-regulated. In high Zn-treated plants amended with Si,4976genes were differentially expressed, compared with the normal Zn-treated plants amended with Si (Si+Zn/Si), with4115genes up-regulated and861genes down-regulated. These differentially-expressed genes included metabolic regulation, ion transport, transcription and adversity response, etc. On the basis of analyzing expression profile of rice gens, it can be concluded that Si can exhibit obvious impacts on growth and development of plants, especially in rice plants under non-stressed condition, and can regulate natural resistance mechanisms to produce more efficient and timely key genes to alleviate damage caused by high Zn stress.
     7. Effect of Si on genes responsible for photosynthesis of rice under Zn stress
     The gene expression levels of HemA, Os03g36540, PsaH, PetC and PsbY all increased in plants treated with high Zn with or without Si. However, Si could increase expression of these genes earlier and faster in plants under high Zn stress in the early stages, and the increasing extent of expression was higher in Si+plants than in Si-plants. The gene expression of Os02g49870was not remarkable under high Zn stress, but was significantly increased by addition of Si. The results show that Si activated and regulated some photosynthesis-related genes in response to high Zn stress in rice, and consequently increased the photosynthesis.
引文
Aebi H. Catalase in vitro [J]. Meth Enzymology,1984,105:121-126.
    Agarie S, Hanaoka N, Ueno O, et al. Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L), monitored by electrolyte leakage [J]. Plant Prod Sci,1998,1:96-103.
    Ahmad R, Zaheer S H, Ismail S. Role of silicon in salt tolerance of wheat (Triticum aestivum L.) [J]. Plant Sci (Limerick),1992,85:43-50.
    Al-Aghabary K, Zhu J Z, Qin H S. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress [J]. J Plant Nutr,2004,27:2101-2115.
    Ananyev G M, Zaltsman L, Vasko C, et al. The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation [J]. Biochimica Biophysica Acta,2001,1503:52-68.
    Andersen B, Koch B, Scheller H V. Structural and functional analysis of the reducing side of photosystem I [J]. Physiol Plant,1992,84:154-161.
    Audic S, Claverie J M. The significance of digital gene expression profiles [J]. Genome Res,1997,7:986-95.
    Bagnyukova T V, Chahrak O I, Lushchak V I. Coordinated response of goldfish antioxidant defenses to environmental stressors [J]. Aquatic Toxicology,2006, 78:325-331.
    Barber J, Ferreira K, Maghlaoui, Iwata S. Structural model of the oxygen-evolving center of photosystem II with mechanistic implications. Phys Chem Chem Phys [J],2004,6:4737-4742.
    Beale S I. Green gens gleaned [J]. Trends Plant Sci,2005,10:309-312.
    Belanger R R, Benhamou N, Menzies J G. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici) [J]. Phytopathology,2003,93:402-412.
    Bloss T, Clemens S, Nies D H. Characterization of the ZATlp zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes [J]. Planta,2002,214:783-791.
    Bowen P, Menzies J G, Ehret D, et al. Soluble silicon sprays inhibit powdery mildew development on grape leaves [J]. J Amer Soc Hort Sci,1992,117:906-912.
    Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance [J]. Annu Rev Plant Biol,1992,43:83-116.
    Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem,1976,72:248-254.
    Cakmak I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species [J]. New Phytologist,2000,146:185-205.
    Carver T L W, Zeyen R J, Ahlstrand G G. The relation between insoluble silicon and success or failure of attempted penetration by powdery mildew (Erysiphe graminis) germlings on barley [J]. Physiol Plant Pathol,1987,31,133-148.
    Chen W R, Feng Y, Chao Y E. Genomic analysis and expression pattern of OsZIPl, OsZIP3, and OsZIP4 in two rice(Oryza sativa L.) genotypes with different zinc efficiency [J]. Russ J Plant Physiol,2008,55:441-452.
    Chen Z X, Silva H, Klessig D F. Active oxygen species in the induction of plant systematic acquired resistance by salicylic acid [J]. Sci,1993,262:1883-1886.
    Cherif M, Asselin A, Belanger R R. Defence responses induced by soluble silicon in cucumber roots infected by Pythium spp [J]. Phytopathology,1994,84:236-242.
    Cherif M, Benhamou N, Menzies J G, et al. Silicon induced resistance in cucumber plants against Pythium ultimum [J]. Physiol Molec Plant Pathol,1992,41: 411-425.
    Chitnis P R. Photosystem I [J]. Plant Physiol,1996,111:661-669.
    Ciamporova M, Mistrik L. The ultrastructural response of root cells to stressful conditions [J]. Environ Exp Bot,1993,33:11-26.
    Cocker K M, Evans D E, Hodson M J. The amelioration of aluminium toxicity by silicon in higher plants:Solution chemistry or an in planta mechanism [J]. Physiol Plant,1998,104:608-614.
    Cunha K P V, Nascimentol Clistenes W A, Silval A J. Silicon alleviates the toxicity of cadmium and zinc for maize(Zea mays L.) grown on a contaminated soil [J]. J Plant Nutr Soil Sci,2008,171,849-853.
    Currie H A, Perry C C. Silica in plants:Biological, biochemical and chemical studies [J]. Ann Bot,2007,7:1383-1389.
    Dat J, Vandenabeele S, Vranov'a E, et al. Dual action of the active oxygen species during plant stress responses [J]. Cell Mol Life Sci,2000,57:779-795.
    DelRio L A, Sandalio L M, Corpas F J, Palma J M, Barroso J B. Reactive oxygen species and reactive nitrogen species in Peroxisomes. Production, scavenging, and role in cell signaling [J]. Plant Physiol,141:330-335.
    Doncheva S N, Poschenriederb C, Stoyanovaa Z1. Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties [J]. Environ Exp Bot, 2009,65:189-197.
    Dragisic Maksimovic J, Bogdanovic J, Maksimovic V, et al. Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese [J]. J Plant Nutr Soil Sci,2007,170:739-744.
    Ebbs S D, Kochian L V. Toxicity of zinc and copper to Brassica species:implications for phytoremediation [J]. J Environ Qual,1997,26:776-781.
    Eisen M B, Spellman P T, Brown P O, et al. Cluster analysis and display of genome-wide expression patterns [J]. Proc Nat Acad Sci Us-Phys Sci,1998,95: 14863-148638.
    Elawad S H, Gascho G J, Street J J. Response of sugarcane to silicate source and rate. I. growth and yield [J]. Amer Soc Agron,1982,74:481-484.
    Epstein E. Silicon [J]. Ann Rev Plant Biol,1999,50:641-664.
    Epstein E. The anomaly of silicon in plant biology [J]. Pnas,1994,91:11-17.
    Ezell B D, Wilcox M S. Vegetable vitamins, loss of vitamin C in fresh vegetables as related to wilting and temperature [J]. J Agr Food Chem,1959,7:507-509.
    Fabien M, Nathalie V, Philippe V, et al. Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress [J]. J Plant Physiol,2001,158:1137-1144.
    Fauteux F, Chain F, Belzile F, et al. The protective role of silicon in the Arabidopsis-powdery mildew pathosystem [J]. Proc Nat Acad Sci USA,2006, 103:17554-17559.
    Fawe A, Abou-Zaid M, Menzies J G, et al. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber [J]. Phytopathology,1998,88:396-401.
    Feng J P, Shi Q H, Wang X F. Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese [J]. Agri Sci China,2009,8:40-50.
    Fontes R L F, Cox F R. Iron deficiency and zinc toxicity in soybean grown in nutrient solution with different levels of sulfur [J]. J Plant Nutr,1998,21:1715-1722.
    Foreman J, Demidchik V, Bothwell J H F, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth [J]. Nature,2003,422:426-446.
    Fornazier R F, Ferreira R R. Effects of Cadmium on antioxidant enzyme activities in sugar cane [J]. Biol Plant,2002,45:91-97.
    Foyer C H, Noctor G. Oxidant and antioxidant signaling in plants:a re-evaluation of the concept of oxidative stress in a physiological context [J]. Plant Cell Environ, 2005,28:1056-1071.
    Funk C. Functional analysis of the PsbX protein by deletion of the corresponding gene in Synechocystis sp. PCC 6803 [J]. Plant Mol Biol,2000,44:815-827.
    Galvez L, Clark R B, Gourley L M, et al. Silicon interaction with manganese and aluminum toxicity in Sorghum [J]. J Plant Nutr,1987,10:1139-1147.
    Gao X, Zou C, Wang L, Zhang F. Silicon decreases transpiration rate and conductance from stomata of maize plants [J]. J Plant Nutr,2006,29:1637-1647.
    Gau A E, Thole H H, Sokolenko A, et al. PsbY, a novel manganesebinding, low-molecular-mass protein associated with Photosystem Ⅱ [J]. Mol Gen Genet, 1998,260:56-68.
    Germar B. Some functions of silicic acid in cereals with special reference to mildew. Z Pflazenemahr Dung Bodenk,1934,35:102-115.
    Ghanmi D, Mcnally D J, Benhamou N, et al. Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant-microbe interactions [J]. Physiol Molec Plant Pathol,2004,64:189-199.
    Gianquinto G, Abu-Rayyan A, Tola L D, et al. Interaction effects of phosphorus and zinc on photosynthesis, growth and yield of dwarf bean grown in two environments [J]. Plant Soil,2000,220:219-228.
    Gong H J, Zhu X Y, Chen K M, et al. Silicon alleviate oxidative damaged of wheat plants in pots under drought [J]. Plant Sci,2005,169:313-321.
    Gong H, Chen K, Chen G, et al. Effects of silicon on growth of wheat under drought [J]. J Plant Nutr,2003,26:1055-1063.
    Gunes A, Inal A, Bagci E G, et al. Silicon increases boron tolerance and reduces oxidative damage of wheat grown in soil with excess boron [J]. Biol Plant,2007a, 51:571-574.
    Gunes A, Inal A, Bagci E G, et al. Silicon mediates changes to some physiological and enzymatic parameters symptomatic for oxidative stress in spinach (Spinacia oleracea L.) grown under B toxicity [J]. Sci Hort-amsterdam,2007b,113: 113-119.
    Guo B, Liang Y C, Zhu Y G, et al. Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress [J]. Environ Pollut,2007,147:743-749.
    Guri A. Variation in glutathione and ascorbic acid content among selected cultivars of phaseolus vulgaris prior to and after exposure to ozone [J]. Can J Plant Sci,1983, 63:733-737.
    Gutschick, V P. Nutrient-limited growth rates:roles of nutrient-use efficiency and of adaptation to increase uptake rates [J]. J Exp Bot,1993,44:41-52.
    Hamei P, Qlive J, Pierre Y, et al. A new subunit of cytochrome b6f complex undergoes reversible phosphorylation upon state transition [J]. J Biol Chem, 2000,275:17072-17079.
    Hammond K E, Evans D E, Hodson M J. Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings [J]. Plant Soil,1995,173:89-95.
    Harris E D. Cellular transporters for zinc. Nutr Rev,2002,60:121-124.
    Hattori T, Inanaga S, Araki H, et al. Application of silicon enhanced drought tolerance in Sorghum bicolor [J]. Physiol Plant,2005,123:459-466.
    Heath M C. The suppression of the development of silicon containing deposits on French bean leaves by exudates of the bean rust fungus and extracts from bean rust infected tissue [J]. Physiol Plant Pathol,1981,18:149-155.
    Heath R L, Pacher L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichemistry of fatty acid peroxidation [J]. Arch Biochem Biophys,1968,125: 189-198.
    Hoen P A, Yavuz Ariyurek, Helene H T, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms [J]. Nucl Acid Res,2008,36:e141
    Horiguchi T, Morita S. Mechanism of manganese toxicity and tolerance of plants. Ⅵ: Effect of silicon on alleviation of manganese toxicity of barley [J]. J Plant Nutr, 1987,10:2299-2310.
    Iannelli M A, Pietrini F, Fiore L, et al. Massacci A. Antioxidant response to cadmium in Phragmites australis plants [J]. Plant Physiol Bioch,2002,40:977-982.
    Ishibashi T, Kimura S, Yamamoto T, et al. Rice UV-damaged DNA binding protein homologues are most abundant in proliferating tissues [J]. Gene,2003,308: 79-87.
    Jansson S, Andersen B, Scheller H V. Nearest-neighbor analysis of high-plant photosystem I holocomplex [J]. Plant physiol,1996,112:409-420.
    Jin Y H, Du Y J, Liu G Z. Production of active oxygen species from Taxus cuspidata induced by far-UV radiation [J]. Acta Botanica Sinica,2001,43:380-384.
    Jucker E I, Foy C D, De Paula J C, et al. Electron paramagnetic resonance studies of manganese toxicity, tolerance, and amelioration with silicon in snapbean [J]. J Plant Nutr,1999,22:769-782.
    Jucker E M, Foy C D, Paula J C, et al. Studies of manganese toxicity tolerance and amelioration with silicon in snapbean [J]. Plant Nutr,1999,22:769-782.
    Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment [J]. Nucl Acid Res,2008,36 (Database issue):480-484.
    Kang S X, Sun X J, Huang Y Y, et al. Measurement and calculation of escape peak intensities in synchrotron radiation X-ray fluorescence analysis [J]. Nucl Instr Meth Physics Res B,2002,192:365-369.
    Karina P V da C, Clistenes W A do N. Silicon effects on metal tolerance and structural changes in Maize(Zea mays L.) grown on a Cadmium and Zinc enriched Soil [J]. Water Air Soil Pollut,2009,197:323-330.
    Katoh H, Ikeuchi M. Targeted disruption of psbX and biochemical characterization of Photosystem II complex in the thermophilic cyanobacterium Synechococcus elongates [J]. Plant Cell Physiol,2001,42:179-188.
    Kaya C, Tuna A L, Sonmez O, et al. Mitigation effects of silicon on maize plants grown at high zinc [J]. J Plant Nutr,2009,33:1788-1798.
    Kidd P S, Llugany M, Poschenrieder C, et al. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize(Zea mays L) [J]. J Exp Bot,2001,52:1339-1352.
    Kiekens L. Zinc. In:Heavy Metals in Soils [M], ed. B. J. Alloway, pp.1990,284-305, Glasgow, Scotland:Blackie Academic and Professional.
    Kim S J, Robinson D and Robinson C. An Arabidopsis thaliana cDNA encoding PS II-X, a 4.1 kDa component of Photosystem Ⅱ:a bipartite presequence mediates SecA/DpHindependent targeting into thylakoids [J]. FEBS Lett,1996,390: 175-178.
    Koulil R, Zygadlo A, Arteni A A, et al. Structural characterization of a complex of photosystem I and light-harvesting complex II of a rabidopsis thaliana [J]. Biochemistry,2005,44:10935-10940.
    Kramer U, Grime G W, Smith J A C, et al. Miero-PIXE as a technique for study niekel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum [J]. Nucl Instr Meth Physics Res B,1997,130:346-350.
    Kupper H, Kupper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants [J]. J Exp Bot,1996,47:259-266.
    Langer I, Krpata D, Fitz W J, et al. Zinc accumulation potential and toxicity threshold determined for a metal-accumulating Populus canescens clone in a dose-response study [J]. Environ Pollut,2009,157:2871-2877.
    Law, M Y, Charles S A, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts, the effect of hydrogen peroxide and of paraquat [J]. Biochem J,1983,210:899-903.
    Lee S K, Kader A A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops [J]. Postharvest Biol Technol,2000,20:207-220.
    Levine A, Tenhaken R, Dixon R, et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response [J]. Cell,1994,79:583-593.
    Liang Y C, Chen Q, Liu Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L) [J]. J Plant Physiol,2003,160:1157-1164.
    Liang Y C, Ding R X. Influence of silicon on microdistribution of mineral ions in roots of salt-stressed barley as associated with salt tolerance in plants [J]. Sci China Ser C,2002,45:298-308.
    Liang Y C, Shen Q R, Shen Z G. Effect of silicon on salinity tolerance of two barley cultivars [J]. J Plant Nutr,1996,19:173-183.
    Liang Y C, Sun W C, Si J, et al. Effect of foliar- and root-applied silicon on the enhancement of induced resistance in Cucumis sativus to powdery mildew [J]. Plant Pathol,2005a,54:678-685.
    Liang Y C, Sun W C, Zhu Y G, et al. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants:A review [J]. Environ Pollut,2007,147: 422-428.
    Liang Y C, Wong J W C, Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil [J]. Chemosphere,2005b,58:475-483.
    Liang Y C, Yang C G, Shi H H. Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum [J]. J Plant Nutr,2001,24: 229-243.
    Liang Y C, Zhang W H, Chen Q, et al. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley(Hordeum vulgare L.) [J]. Environ Exp Bot,2006,57:212-219.
    Liang Y C, Zhang W H, Chen Q, et al. Effects of silicon on tonoplast H+-ATPase and H+-PPase activity, fatty acid composition and fluidity in roots of salt-stressed barley(Hordeum vulgare L.) [J]. Environ Exp Bot,2005c,53:29-37.
    Liang Y C, Zhu J, Li Z J, et al. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars [J]. Environ Exp Bot,2008,64: 286-294.
    Liang Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress [J]. Plant Soil,1999,209:217-224.
    Liang Y C. Effects of silicon on leaf ultrastucture, chlorophyll content and photosynthetic activity of barely under salt stress [J]. Pedosphere,1998,8: 289-296.
    Lidon F C, Henriques F S. Effects of copper on the nitrate to ammonia reduction mechanism in rice plants [J]. Photosynthetica,1992,26:371-380.
    Lin C W, Chang H B, Huang H J. Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots [J]. Plant Physiol Biochem,2005,43:963-968.
    Livak K J, Schmittqen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method [J]. Methods,2001,25: 8-402.
    Lopez-Delgado H, Dat J F, Foyer C H, et al. Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2 [J]. J Exp Bot,1998,49:713-720.
    Lunde C, Jensen P E, Haldrup A, et al. The PSI-H subunit it of photosystem I is essential for state transitions in plant photosynthesis [J]. Nature,2000,408: 613-615.
    Ma C C, Li Q F, Gao Y B, et al. Effects of silicon application on drought resistance of cucumber plants [J]. Soil Sci Plant Nutr,2004a,50:623-632.
    Ma J A. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses [J]. Soil Sci Plant Nutr,2004b,50:11-18.
    Ma J F, Tamai K, Yamaji N, et al. A silicon transport in rice [J]. Nature,2006,440: 688-691.
    Ma J F, Yamaji N, Mitani N, et al. An efflux transporter of silicon in rice [J]. Nature, 2007,448:209-212.
    Ma J F, Takahashi E. Effect of silicon on the growth and phosphorus uptake of rice [J]. Plant Soil,1990,126:115-119.
    Macfarlane G R. Chlorophyll a fluorescence as a potential biomarker of Zn stress in the grey mangrove, Avicennia marina (Forsk.) Vierh [J]. Bull Environ Contamin Toxic,2003,70:0090-0096.
    Madhava Rao K V, Sresty T V S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses [J]. Plant Sci,2000,157:113-128.
    Maksymiec W. Signaling responses in plants to heavy metal stress [J]. Acta Physiol Plant,2007,29:177-187.
    Marschner H, ScienceDirect. Mineral nutrition of higher plants [M]. Academic Press San Diego,1995.
    Meetam M, Keren Nir, Ohad I, et al. The PsbY protein is not essential for oxygenic photosynthesis in the cyanobacterium Synechocystis sp. PCC6803 [J]. Plant Physiol,1999,121:1267-1272.
    Metwally A, Finkemeier I, Georgi M, et al. Salicylic acid alleviates the cadmium toxicity in barley seedings [J]. Plant Physiol,2003,132:272-281.
    Mitani N, Ma J F, Iwashita T. Identification of the silicon form in xylem sap of rice (Oryza sativa L.) [J]. Plant Cell Physiol,2005,46:279-283.
    Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants [J]. Trends Plant Sci,2004,9:490-498.
    Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci, 2002,7:405-410.
    Monni S, Bucking H, Kottke I. Ultrastruetural element loealization by EDXS in Empetrum nigrum [J]. Mieron,2002,33:339-351.
    Morrissy A S, Morin R D, Delaney A, et al. Next-generation tag sequencing for cancer gene expression profiling [J]. Genome Res,2009,19:1825-1835.
    Mullins M, Hardwick K, Thurman D. Heavy metal location by analytical electron microscopy in conventionally fixed and freeze-substituted roots of metal tolerant and non-tolerant ecotypes. Proceedings of International Conference on Heavy Metal in the Environment, Athens, Vol.1. CEP, Consultants, Edinburgh,1985: 43-46.
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol,1981,22:867-880.
    Naver H, Haldrun A, Scheller H V. Cosuppression of photosystem I subunit PSI-H in Arabidopsis thaliana [J]. J Biol Chem,1999,274,10784-10789.
    Neumann D, Zur Nieden U. Silicon and heavy metal tolerance of higher plants [J]. Phytochemistry,2001,56:685-692.
    Neumann D, Zurnieden U, Schwieger W, et al. Heavy metal tolerance of Minuartia verna [J]. J Plant Physiol,1997,151:101-108.
    Neumann D, Nieden U Z, Liehtenberger O, et al. How does Armeria maritima tolerate high hevvy metal concentrations [J]. J Plant Physiol,1995,146:704-717.
    Noctor G, Foyer C H. Ascorbate and glutathione:keeping active oxygen under control [J]. Ann Rev Plant Biol,1998,49:249-279.
    Nwugo C C, Huerta A J. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium [J]. Plant Soil,2008, 311:73-86.
    Parameswaran A, Majeti N, Vara P. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.:a free floating freshwater macrophyte [J]. Plant Physiol Biochem,2003,41:391-397.
    Pittman J K. Managing the manganese:molecular mechanisms of manganese transport and homeostasis [J].2005, New Phytol,167:733-742.
    Pompella A, Maellaro E, Casini A F, et al. Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice [J]. Amer J Pathol, 1987,129:295-301.
    Qi X T, Cui Q H, Luo Y, et al. Zn stress-induced inhibition of bean PvSR2-GUS fusion gene splicing is gene-specific in transgenic tobacco [J]. J Plant Physiol, 2009,166:1223-1227.
    Qu Y N, Zhou Q, Yu B J. Effects of Zn2+ and niflumic acid on photosynthesis in Glycine soja and Glycine maxseedlings under NaCl stress [J]. Environ Exp Bot, 2009,65:304-309.
    Remus-Borel W, Menzies J G, Belanger R R. Silicon induces antifungal compounds in powdery mildew-infected wheat [J]. Physiol Mol Plant Pathol,2005,66: 108-115.
    Roddy S M, Do L T, Chynwat V. Sit-directed mutagenesis of the subunit psaC establishes a surface-exposed domain interacting with the photosystem I core binding site [J]. Biochemistry,1996,35:11832-11838.
    Rodrigues F A, Benhamou N, Datnoff L E, et al. Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance [J]. Phytopathology,2003,93: 535-546.
    Rogalla H, Romheld V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L [J]. Plant Cell Environ,2002,25:549-555.
    Romero-Aranda M R, Jurado O, Cuartero J. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status [J]. J Plant Physiol,2006,163:847-855.
    Saldanha A J. Java Treeview--extensible visualization of microarray data [J]. Bioinformatics,2004,20:3246-3248.
    Samuels A L, Glass A D M, Ehret D L, et al. The effects of silicon supplementation on cucumber fruit:changes in surface characteristics [J]. Ann Bot,1993,72: 433-440.
    Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants [J]. Environ Exp Bot,1999,41:105-130.
    Schuster S C. Next-generation sequencing transforms today's biology [J]. Nat Methods,2008,5:16-18.
    Schutzendubel A, Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization [J]. J Exp Bot,2002,53: 1351-1365.
    Schutzendubel A, Schwanz P, Teichmann T, et al. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots [J]. Plant Physiol,2001,127:887-898.
    Seebold K W, Kucharek T A, Datnoff L E, et al. The influence of silicon on components of resistance to blast insusceptible, partially resistant, and resistant cultivars of rice [J]. Phytopathology,2001,91:63-69.
    Sgherri C L M, Loggini B, Puliga S, et al. Antioxidant system in Sporobolus stapfianus:changes in response to desiccation and rehydration [J]. Phytochemistry,1994,35:561-565.
    Sharma P N, Kumar N, Bisht S S. Effect of zinc deciency on chlorophll content, photosynthesis and water relations of cauli-ower plants [J]. Photosynthetica, 1994,30:353-359.
    Sharma P N, Tripathi A, Bisht S S. Zinc requirement for stomatal opening in cauliflower [J]. Plant Physiol,1995,107:751-756.
    Shi G R, Cai Q S, Liu C F et al. Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes [J]. Plant Growth Regul,2010,1:45-52.
    Shi Q H, Bao Z Y, Zhu Z J, et al. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase [J]. Phytochemistry,2005,66:1551-1559.
    Shin R, Schachtman D P. Hydrogen peroxide mediates plant root cell response to nutrient deprivation [J]. PNAS,2005,101:8827-8832.
    Simpson D J, Wettstein D V. The structure and function of the thylakoid membrane [J]. Carlsberg Res Commun,1989,54:55-65.
    Song A L, Li P, Li Z J, et al. The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice [J]. Plant Soil,2011,344: 319-333.
    Song A L, Li Z J, Zhang J, et al. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity [J]. J Hazard Mater,2009, 172:74-83.
    Song Y G, Liu B, Wang L F. Damage to the oxygen-evolving complex by superoxide anion, hydrogen peroxide, and hydroxyl radical in photoinhibion of photosystem Ⅱ [J]. Photosyn Res,2006,90:67-78.
    Straczek A, Sarret G, Manceau A, et al. Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn [J]. Environ Exp Bot,2008,63: 80-90.
    Sultan M, Schulz M H, Richard H, et al. A global view of gene activity and alternative splicing deep sequencing of the human transcriptome [J]. Science, 2008,321:956-960.
    Sushant K, Scott L. Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress [J]. J Plant Physiol,2010,168:699-705.
    Tuba Z, Saxena D K, Srivastava K, et al. Chlorophyll a fluorescence measurements for validating the tolerant bryophytes for heavy metal (Pb) biomapping [J]. Res Comm,2010,98:1505-1508.
    Vallee B L, Auld D S. Zinc coordination, function and structure of zinc enzymes and other protein [J]. Biochemistry,29:5647-5659.
    Velikova V, Yordanov I, Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines [J]. Plant Sci,2000,151:59-66.
    Wang Y S, Yang Z M. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L [J]. Plant Cell Physiol,2005,46: 1915-1923.
    Wanger F. The signifance of silicon acid for the growth of certain cultivated plants, their nutrient economy, their susceptibility to genuine mildews [J]. Phytopathology,1940,12:419-427.
    Watanabe S, Shimoi E, Ohkama N et al. Identification of several rice genes regulated by Si nutrition [J]. Soil Sci Plant Nutr,2004,50:1273-1276.
    Wu F, Zhang G, Dominy P. Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity [J]. Environ Exp Bot 2003,50:67-78
    Wu Y X, Tiedemann A V. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley(Hordeum vulgare L.) exposed to ozone [J]. Environ Pollu,2002,116:37-47.
    Zhu Z J, Wei G Q, Li J, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.) [J]. Plant Sci,2004,167:527-533.
    Zsoldos F, Vashegyi A, Pecsvaradi A, et al. Influence of silicon on aluminium toxicity in common and durum wheats [J]. Agronomie,2003,23:349-354.
    蔡德龙,小林均.硅肥对水稻镉吸收影响初探[J].地域研究与开发,2000,19:69-71.
    陈怀满.土壤-植物系统的重金属的污染[M].北京:科学出版社,1996:71-125.
    陈利锋,叶茂炳,陈永幸,等.抗坏血酸与小麦抗赤霉病性的关系[J].植物病理学报,1997,27(2):113-118.
    陈同斌,黄泽春,黄宇营,等.砷超富集植物中元素的微区分布及其与砷富集的关系[J].科学通报,2003,48(11):1163-1165.
    陈阳,王贺.硅盐互作下小獐毛植物体内元素分布及生理特性的研究[J].植物生态学报,2003,27:189-195.
    陈云风.局部高温变化对水稻结实性影响分析[J].宜春学院学报,2005,27:103-105
    崔德杰,王月福.冬小麦硅钾肥施用效应的研究[J].土壤通报,1999,30:121-122.
    戴伟民,张克勤,段彬伍,等.测定水稻硅含量的一种简易方法[J].中国水稻科学,2005,19:460-462.
    丁海东,齐乃敏,朱为民,等.镉,锌胁迫对番茄幼苗生长及其脯氨酸与谷胱甘肽含量的影响[J].中国生态农业学报,2006,14:53-55.
    杜彩琼,林克惠.硅素营养研究进展[J].云南农业大学学报,2002,17:192-196.
    杜新民,张永清.施锌对石灰性褐土上小白菜光合作用及保护酶活性的影响[J].西北植物学报,2008,28(6):1203-1207.
    房江育,王贺,张福锁.硅对盐胁迫烟草悬浮细胞的影响[J].作物学报,2003,29:610-614.
    冯东昕,李宝栋.可溶性硅在植物抵御病害中的作用[J].植物病理学报,1998,28(4):293-297.
    高柳青,杨树杰.硅对小麦吸收镉锌的影响及其生理效应[J].中国农学通报,2004,20:246-249.
    宫海军,陈坤明,王锁民,等.植物硅营养的研究进展[J].西北植物学报,2004,24:2385-2392.
    胡京枝,徐丽敏,韩燕来.喷施锌肥对空心菜的生育及含锌量的影响[J].河南农业科学,2000,6:29-30.
    计汪栋,施国新,杨海燕,等.铜胁迫对竹叶眼子菜叶片生理指标和超微结构的影响[J].应用生态学报,2007,18:2727-2732.
    李德明,郑听,张秀娟.重金属对植物生长发育的影响[J].安徽农业科学,2009,37(1):74-75.
    李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22:503-507.
    李文彬,王贺,张福锁.高温胁迫条件下硅对水稻花药开裂及授粉量的影响[J].作物学报,2005,31:134-136.
    李永庚,于振文,张秀杰,等.小麦产量与品质对灌浆不同阶段高温胁迫的响应[J].植物生态学报,2005,29(3):461-466.
    李志刚,叶正钱.供锌水平对水稻生长和锌保累和分配的影响[J].中国水稻科学,2003,17:61-66.
    梁永超,丁瑞兴.硅对大麦根系中离子的微域分布的影响及其与大麦耐盐性的关系[J].中国科学C辑:生命科学,2002a,32(2):113-121
    梁永超,孙万春.硅和诱导接种对黄瓜炭疽病的抗性研究[J].中国农业科学,2002b,35(3):267-271
    刘树堂,韩效国.硅对冬小麦抗逆性影响的研究[J].莱阳农学院学报,1997,14:21-25.
    陆景陵.植物营养学(上册)[M].北京:北京农业大学出版社,1994.
    罗虹,刘鹏,李淑.硅,钙对水土保持植物荞麦铝毒的缓解效应[J].水土保持学报,2005,19(3):101-104.
    罗虹,刘鹏,李淑.硅,钙对水土保持植物荞麦铝毒的缓解效应[J].水土保持学报,2005,19:101-104.
    罗立新,孙铁珩.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,1998,18:495-499.
    秦淑琴,黄庆辉.硅对水稻吸收镉的影响[J].新疆环境保护,1997,19:51-52.
    邵邻相,黄伯钟,丁淑静.锌,锰,铁和铜离子对水稻幼苗生长及SOD活性的影响[J].种子,2001,6:16-17.
    邵云,鲁旭阳,李春喜,等.Zn2+胁迫下不同品种小麦籽粒萌发及幼苗Zn含量特征的研究[J].西北农业学报,2006,15(5):34-37.
    施木田,陈如凯.锌对苦瓜叶片碳代谢及相关酶活性的影响研究[J].中国生态农业学报,2004,12:56-58.
    史庆华,朱祝军,李娟,等.高锰胁迫与低pH对黄瓜根系氧化胁迫和抗氧化酶的复合效应[J].中国农业科学,2005,38:999-1004.
    束良佐,刘英慧.硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响[J].厦门大学学报:自然科学版,2001,40:1295-1300.
    孙力,杨元根,白薇阳,等.黔西北土法炼锌区典型植物体内重金属积累研究[J].地球与环境,2006,34(2):61-66.
    王晨,王海燕,赵琨,胡文.硅对镉,锌,铅复合污染土壤中黑麦草生理生化性质的影响[J].生态环境,17(6):2240-2245.
    王景安,张福锁,李春俭.缺锌对番茄、甜椒生长发育及矿质代谓的影响[J].土壤通报,2001,32:177-179.
    王晓云,程炳篙,张国珍.锌对生姜叶片解剖结构、叶绿体亚显微结构及光合速率的影响[J].山东农业大学学报,1995,26(1):119-122.
    魏国强,朱祝军,李娟,等.硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的研究[J].应用生态学报,2004a,15(11):2147-2151.
    魏国强,朱祝军,钱琼秋,等.硅对瓠瓜酚类物质代谢的影响及与抗白粉病的关系[J].植物保护学报,2004b,31(2):185-189.
    魏国强,朱祝军,钱琼秋,等.硅对黄瓜白粉病抗性的影响及其生理机制[J].植物营养与肥料学报,2004c,10(2):202-205.
    魏义长,白由路,杨俐萍,等.测土推荐施锌对水稻产量结构及土壤有效养分的影响[J].中国水稻科学,2007,21:197-202.
    习金根,孙光明,王一承,等.不同锌水平对剑麻幼苗生长发育及生理代谢的影 响[J].中国麻叶科学,2007,29(2):79-82.
    徐呈祥,马艳萍,胡恒康.硅对盐胁迫下金丝小枣生长与生理的效应[J].西北农林科技大学学报,2005b,33(5):143-146.
    徐呈祥,徐锡增.硅对盐胁迫下金丝小枣叶绿素荧光参数和气体交换的影响[J].南京林业大学学报(自然科学版),2005a,29:25-28.
    徐春丽,肖家欣,齐笑笑,等.锌胁迫对“不知火”和“椪柑”的生理指标及锌分布的影响[J].生态学杂志,2010,29(2):319-323.
    徐勤松,施国新,杜开和,等.Cd2+处理对菹草叶片保护酶活性和细胞超微结构的毒害影响[J].水生生物学报,2003,27:584-589.
    许大全.气孔不均匀关闭与光合作用的非气孔限制[J].植物生理学通讯,1995,31:246-252.
    杨超光,豆虎,梁永超,等.硅对土壤外源镉活性和玉米吸收镉的影响[J].中国农业科学,2005,38:116-121.
    杨利,马朝红,范先鹏,等.硅对水稻生长发育的影响[J].湖北农业科学,2009,48:990-991.
    杨艳芳,梁永超,娄运生,等.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系[J].中国农业科学,2003,36:813-817.
    杨艳芳,梁永超,娄运生,等.硅对小麦过氧化物酶、超氧化物歧化酶和木质素的影响及与抗白粉病的关系[J].中国农业科学,2003,36(7):813-817
    张翠珍,泉维洁.小麦吸硅特点及应用效果的研究[J].山东农业科学,1998,83(4):29-31.
    张国良,戴其根,张洪程.施硅增强水稻对纹枯病的抗性[J].植物生理与分子生物学学报,2006,32(5):600-606.
    张兴梅,邱忠祥.春小麦硅肥效应的研究[J].土壤肥料,1997,84(1):39-41.
    章秀福,王丹英,方福平,等.中国粮食安全和水稻生产[J].农业现代化研究,2005,26:85-88.
    赵宇瑛,韩慧军.叶面喷锌对富士苹果树光合速率的影响[J].湖北农学院学报,2002,22(4):324-326.
    周秀杰,赵红波,马成仓.硅提高作物抗逆性[J].安徽农业科学,2006,12:2769-2771.
    朱新广,张其德NaCl对光合作用影响的研究进展[J].植物学通报,1999,16:332-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700