聚氨酯杂化复合膜的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对聚氨酯(PU)合成革透湿透汽性差、对外界环境适应性不强及加工过程中使用大量有机溶剂造成污染重、操作复杂的缺陷,尝试在PU中引入亲疏水两性高分子聚合物,采用自由基聚合方法、以湿法加工成膜的方式,合成具有半互穿聚合物网络(semi-IPN)结构的合成革湿法贝斯材料;采用干法成膜方式制备了可用于皮革表面涂饰材料的致密膜材料。通过对亲疏水两性高分子单体聚合条件、分子量大小及其分布的有限调控,获得均匀多孔、透湿透气性能良好的微观组织结构,使其具有以20%DMF为凝固浴制备多孔聚氨酯相似的效果,达到拓展互穿及半互穿聚合物网络技术应用思路和途径的目的,减少皮革化学品加工中的污染。本论文将为互穿及半互穿聚合物网络的制备和应用提供新思路和途径,具有理论意义和潜在的应用价值。
     为了更好地探究聚N-异丙基丙烯酰胺(PNIPAM)在复合聚合物膜材料中的性能特征及其在湿法成膜过程中所受的各种因素的影响,本论文先在DMF/H2O的混合溶剂及DMF/THF(7:3, v/v)混合溶剂为反应介质条件下合成了单纯的PNIPAM水凝胶,并对其内部水分的状态及发生相转变时溶液浊点的变化进行了表征,通过调节溶剂比例、交联剂用量得到不同性能的PNIPAM水凝胶,将与复合膜制备条件相同的PNIPAM与水不同比例混合,在不同温度下测定溶液的浊度,以模拟PNIPAM在复合膜中的存在状态;;接着进行了聚氨酯与聚N-异丙基丙烯酰胺半互穿网络聚合物(PU/PNIPAM semi-IPNs)的制备,研究了PU/PNIPAM比例、交联剂用量、反应时间等合成参数对其产物结构与性能的影响,通过变化NIPAM单体、交联剂N,N’-亚甲基双丙烯酰胺(BIS)的用量和反应时间、成膜介质等条件,制备出不同相态与结构组成的PU/PNIPAM复合膜。通过比较溶剂对PNIPAM在水凝胶状态和与PU半互穿状态的影响,探讨PU与PNIPAM分子链的相互作用。通过傅立叶转换红外光谱(FT-IR)、差示扫描量热法(DSC)、动态机械性能分析(DMA)、X-射线衍射(XRD)、热重分析(TG)、扫描电镜(SEM)和扫描探针显微镜(SPM)等测试手段对PU/PNIPAM semi-IPNs材料的性能进行表征,对湿法成膜的多孔膜的孔隙率、拉伸性能、溶胀性和透湿性能等进行测试,并与致密膜的性能进行了对比。
     FT-IR及DMA结果证明:PU与PNIPAM可以成功互穿,PU与PNIPAM分子链间存在较强氢键作用。DSC和浊点测试证明:溶剂比例不同对水凝胶的溶胀性能和体系中水分的存在状态的影响比较明显;PNIPAM相转变行为受溶剂与水分子间作用力的影响较大,水分比例越大,相转变行为越明显;PU/PNIPAM semi-IPNs膜材料体系中水的存在状态主要受PNIPAM分子链的影响,形成互穿网络的PNIPAM分子链主要与PU形成氢键,因而与水的结合力变弱,表现为水的熔融吸收峰温度降低。同时溶胀性测试亦表明:PU/PNIPAM semi-IPNs膜材料中PNIPAM的相转变温度范围在35-45℃之间。
     DMA测试结果表明:PU大分子链受PNIPAM分子链长度影响,随反应时间增长,PU与PNIPAM互穿程度提高,材料的玻璃化转变温度(Tg)升高。当BIS用量为2%时,PNIPAM分子链较短,当PU与NIPAM比例为4:1时,其提高了PU结晶度,表现为复合膜Tg提高,但随NIPAM比例的增加,形成的PNIPAM分子链破坏了PU的结晶,使得复合膜Tg降低;当BIS用量为5%时,主要破坏PU分子间作用力,使其PU分子链之间的结晶取向发生破坏而使得PU的Tg降低,且随NIPAM比例的增加PU与PNIPAM相分离程度降低,Tg稍有提高;当BIS用量为8%时,随NIPAM比例的提高,二者的相容性增大,PU硬段结晶区破坏程度增大,复合膜Tg降低。XRD测试表明NIPAM的加入促进了材料的结晶,当BIS用量为5%时,膜材料中结晶取向度最高,但结晶层间距离散度最大,随着NIPAM比例的增加,其对膜材料的结晶程度损坏逐渐增大,主要集中在硬段结晶度下降,软段分子链间距增加,结晶区逐渐向无定形区转变;随着BIS用量的增加,PNIPAM在复合膜结构中,逐渐增加了分子链之间的间距,但其结晶度先增大后降低。
     通过膜材料的形貌表征,可以发现PU/PNIPAM复合膜材料成膜速度和孔洞形状受溶剂溶度参数的影响,其中以水和乙醇为成膜介质发生的是成核相分离,而以异丙醇为成膜介质发生的是旋节相分离。乙醇、异丙醇与混合溶剂之间的溶度参数差值比水的小,因而同样条件下,以水为成膜介质得到的多孔膜的孔隙比以乙醇和异丙醇为成膜介质的要大;PNIPAM的存在使得在湿法成膜过程中溶剂与非溶剂的置换速度减慢,因而以水为成膜介质的复合膜的孔隙由指状孔变为圆形孔。通过膜的孔隙率和拉伸性能测定表明:孔隙的存在降低了材料的拉伸性能,但提高了膜材料的溶胀性和透湿性,并且改变了材料的拉伸性能变化规律。对致密膜而言,随着PNIPAM所占比例的增大,膜材料的初始模量逐渐增大,拉伸强度逐渐提高,断裂伸长率却先提高后降低;而对多孔膜而言,当BIS用量为5%时,膜孔隙率最低,材料的力学性能最好。DMA、TG、XRD分析与力学性能分析结果表明:PNIPAM交联网络的引入提高了PU相的结晶度,从而使其热稳定性和力学性能增加。
     为了进一步探明膜材料接触角的变化规律,采用Wenzel和Cassie模型理论对数据进行处理,结合SPM测试结果,可以发现:加热处理后,膜材料中PNIPAM分子链从材料内部向膜表面运动的几率增大,复合膜的亲水性增大;随着反应时间的增长,PNIPAM与PU分子链的互锁结构,使复合膜在纵向上的厚度变小,表面接触角受膜材料表面粗糙度的影响较大;NIPAM与PU比例为3:1、BIS用量为5%的膜材料因PU与PNIPAM分子链上的极性基团达到理想距离状态,分子间作用力最大,因而受到外界因素的影响较少而性能表现异常。通过透湿性测试数据,利用Arrehenius定律得到的复合膜的渗透活化能亦证明了这一点。PNIPAM的引入大幅增加了PU材料的吸水性能,在表面亲水性方面也显著改善。纯PU膜的表面接触角为82.5。,而PU/PNIPAM semi-IPNs的可以达到55。。表面接触角在常温和60℃时的差值可达16。,表现出良好的温敏性。
     溶胀性能测试结果表明:膜材料的溶胀性与交联剂BIS用量及成膜介质性质无关,而与PNIPAM的体积相转变温度有关;复合膜制备反应时间越长,复合膜的溶胀性越低;PU与PNIPAM比例为3:1,BIS用量为5%的复合多孔膜材料溶胀率最高。而对致密膜来说,当PU与PNIPAM比例为2:1,BIS用量为8%时,其溶胀率的温敏性表现最明显,但随反应时间的增长而降低。由膜材料在不同时间、不同温度下的溶胀率曲线可见:随着溶胀时间的增长,初始阶段膜材料的溶胀率并非逐渐提高,而是先升高后降低而后又升高这样波浪式变化,这主要是由于因为PNIPAM在40℃时会发生体积收缩和水分的挤出,但过一段时间后水分子通过扩散作用会填充由于PNIPAM分子链蜷缩形成的自由体积和微孔隙,从而使溶胀率再次提高;水浴温度越高,其溶胀率越大,溶胀温度为60℃时,BIS用量为5%的膜材料的溶胀率最高,8%BIS的次之,2%BIS的最小。利用1n(WR)与t关系做拟合曲线:ln(WR)=-kt+b,可以得到膜材料的退溶胀速率常数。通过退溶胀速率常数可以发现:BIS含量越高,PNIPAM在复合膜中表现出来退溶胀速率越快,但当膜材料被从室温水中移至40℃水中时,膜制备反应时间越长,其退溶胀速率越慢。当膜材料被从室温水中移至60℃水中时,对BIS用量为5%和8%的复合膜来说,反应时间越长,退溶胀速度越快,对BIS用量为2%的复合膜则变化不大。温度越高,同样条件下制备的膜材料的退溶胀速率常数越大,退溶胀速度越快。膜材料具有良好的温敏特性,其溶胀率在20-30℃时骤然从46.77降到8.95。
     利用透湿性测试公式和Arrhenius方程式可以得到膜材料的渗透活化能Ep。透湿性与时间的函数表达式为ln(WVP)=K*(1/T)+B, Ep=8.314K。同样条件下,反应6h的膜材料的Ep值随BIS用量的增大而减少,而反应9h的膜材料的Ep值随BIS用量的增大而增大;当BIS为5%时,反应时间对复合膜的Ep值影响最小,PU与NIPAM比例为2:1的复合膜Ep最低,水汽透过率最高。
     综上所述,PU/PNIPAM semi-IPN材料具有良好的透湿性和温度敏感性和力学性能,具有很好的应用前景。
To improve the bad permeability and the responsiveness to environment of synthetic leather and reduce the large amount of organic solvents used in polyurethane leather manufacturing techniques, the incorporation of amphiphilic macromolecular polymers into polyurethane was adopted and it was synthesized by radical polymerization and cast by wet method to get the porous semi-interpenetrating polymer networks as a base layer of polyurethane leather. By controlling the polymerization conditions of amphiphilic monomer and its molecular weight and distribution, an even porous structure of the semi-IPNs with good permeability of water vapor was obtained. The function of the resulted porous film was similar to the polyurethane base of synthetic leather. This invention opened a new world of the application of IPNs and semi-IPNs in leather industry and made it possible for semi-IPNs putting into practice. Moreover, this environmental friendly application lowered the amount of organic solvents, which provides a new method of leather industry in theoretical and practical fields.
     To make clear of the existence and properties of poly-N-isopropylacrylamide (PNIPAM) in the composite polymer materials and the effects of wet-casting conditions, pure PNIPAM hydrogels were synthesized with N,N'-methylene-bis-acrylamide (BIS) as the crosslinker in two solutions, one—mixed solvents of dimethylformamide (DMF) and water with different ratios, the other—mixed solvents of DMF and tetrahydrofuran (THF). For the later one, the products were mixed with water and tested at different temperatures for turbidity tests. The results of differential scanning calorimeter (DSC) and turbidity tests indicated that the water existence in PNIPAM and its lower phase transition temperature (LCST) were greatly affected by the ratio of solvents. On the basis of PNIPAM hydrogels, PU/PNIPAM semi-IPNs were prepared using DMF and THF as solvents with a ratio of7:3(v/v) under nitrogen atmosphere. The synthetic parameters, such as the ratios of PU and NIPAM, the amount of crosslinker, the reaction time, were investigated to study their effects on material's structure and properties. Later, the materials were casted in different filming mediums selected from water, ethanol and isopropanol to study the mechanism of PU/PNIPAM semi-IPNs filming theory. By comparing the water existence in pure PNIPAM with that in PU/PNIPAM semi-IPNs and studying the solvent effects on PNIPAM hydrogels and PU/PNIPAM semi-IPNs films, the interaction between PU and PNIPAM molecular chains can be deduced. The materials obtained were characterized by Fourier transform infrared spectroscopy(FT-IR), scanning electron microscope (SEM), differential scanning calorimeter (DSC), dynamic mechanical analysis(DMA), Thermal Gravity(TG), X-ray diffraction analysis(XRD) and Scanning Probe Microscopy(SPM). The porosity, mechanical properties, swelling ratios and water vapor permeability of porous films cast by wet method were measured and made comparison with dense membranes.
     PU/PNIPAM semi-IPNs can be formed, which was proved by FT-IR spectra and DMA measurements. FT-IR spectra confirmed the existence of strong hydrogen bond interaction between PU and molecular chains. DSC and turbidity tests showed that:the ratios of water and solvents had great effect on the swelling behavior of PNIPAM and the existence of water in semi-IPNs; the phase transition of PNIPAM was influenced by the interaction of solvents and water, with more significant phase transition behavior in water-dominated solution; the water in PU/PNIPAM semi-IPNs showed exact opposite trends from the water in pure PNIPAM hydrogels. That was due to that most of the polar groups in PNIPAM formed hydrogen bonds with PU, leading to its weak linkages with water. Swelling ratio tests also showed that the phase transition temperature scope of PNIPAM in PU/PNIPAM semi-IPNs are between35℃and45℃.
     The results of dynamic mechanical analysis (DMA) showed that with the increase of reaction time, the interpenetrating degree of PU and PNIPAM improved, making the glass transition temperature (Tg) of materials elevated. The PNIPAM molecular chains are very short when the BIS amount is2%. At that condition, when the ratio of PU and PNIPAM was4:1, the Tg of materials was elevated as PNIPAM promotes the crystallization of molecular chains, but with the content of PNIPAM increasing, it destroyed the crystalline regions of PU, causing the drop of Tg When BIS amount was5%, PNIPAM destroyed the interaction of PU chains, making the Tg lower; and with more PNIPAM incorporated, the phase separation of PU and PNIPAM alleviated and the Tg of materials boosted. When the amount of BIS was8%, with the ratios of NIPAM increasing, the compatibility of PU and PNIPAM improved; the crystalline regions in hard segments of PU were ruined, leading to lower Tg. XRD tests indicated that the introduction of PNIPAM promotes the crystallization of materials; when BIS amount was5%, the crystallization of materials was the highest and the distance between crystalline layers was the longest; with the increasing amount of NIPAM, the destruction of crystalline regions aggregated, and more amorphous regions were formed; the increasing amount of BIS made the crystallization of materials went up first and then down with the maximum at5%BIS.
     SEM showed that the forming of PU/PNIPAM semi-IPNs films and the size of pores are affected by the solubility parameters of solvents. Binodal phase separation and nucleation were happened when water and ethanol were used as coagulation solution, while spinodal phase separation was happened when isopropanol as the medium. The larger gaps of solubility parameters between the filming medium and mixed solvents, the bigger pore size of the films is. Therefore, under the same conditions, the pore size of films formed in water is much larger than that in ethanol and isopropanol. On the other hand, the existence of PNIPAM makes the exchange rate of solvents and nonsolvents slow, leading to the finger-like pores turning to round-like ones.
     The measurement of porosity and physical properties implied that the microporous films exhibits better swelling and water vapor permeability properties, but lower tensile strength compared with dense films. The porosity also changed the tensile strength regulation of materials. To the dense membrane, the initial modulus properties increased and the tensile strength elevated, yet the elongation at breaking points went up and down with the increasing ration of PNIPAM in materials. For microporous films, their porosity was lowest and physical properties were best at5%BIS.
     The test results of dynamic mechanical analysis (DMA), Thermal Gravity (TG), X-ray diffraction analysis (XRD) and the mechanical properties of materials implied that the introduction of PNIPAM elevates the crystallization of PU, making it more strong and stable to heat.
     To make clear of the reasons for the change of contact angle of materials, Wenzel and Cassie model were adopted. Combined with the results of SPM, it can be found that contact angle was affected by the properties of surface polymer and the roughness of the surface. The hydrophilicity of PU/PNIPAM semi-IPNs was improved after heating and its thickness became smaller with the semi-IPNs reaction time longer, leading to the decrease of surface roughness. The strong interaction of polar moleculars between molecular chains of PU and PNIPAM (weight ratio3:1, 5%BIS) makes the phase change of PNIPAM difficult, thus leading to little change of contact angle. Those phenomena can also be proved by water vapor permeability tests and the Ep values of PU/PNIPAM semi-IPNs. The introduction of PNIPAM greatly improved the water adsorption ability of PU materials, and made the materials more hydrophilic. For PU, the surface contact angle was82.5°, while for PU/PNIPAM semi-IPNs it can reach at55°. The contact angle disparity was16°between room temperature and60℃.
     Swelling ratios tests implied that the swelling properties are related with the volume phase transition temperature of PNIPAM, but have little relationships with BIS amount and coagulation solution; the longer reaction time of semi-IPNs, the lower swelling ratios of semi-IPN films. To dense membrane, the thermosensitivity of membranes with PU/PNIPAM ratio at2:1and BIS8%are the most significant ones, but turn to less distinct with longer reaction time. The swelling curves at different temperature with the time showed that the swelling of films changes like waves at the initial time from0to240mins and then become stable after300mins. The wave-like change of swelling ratio was due to the fact that the shrinkage of PNIPAM molecular chain impels the water inside but leaves room for free water to come in later. According to the experimental results of water retention(WR) with time, the equation of fitting curves of ln(WR) with t is:ln(WR)=-kt+b, among which k is the rate of water retention. It can be seen from k values that the dehydration speed turns faster with the BIS amount; when put into40℃water, the dehydration of films becomes slower with the reaction time of semi-IPNs, yet turns opposite side when put into60℃water; the higher the temperature of swelling water solution, the higher the dehydration rate of films. The swelling ratios dropped from46.77to8.95within a narrow temperature gap, from which it can be seen that PNIPAM imparts the materials thermosensitivity,
     According to water permeability formulae and the Arrhenius equation, the permeability active energy (Ep) can be calculated. The relationships of water permability and time can be described as ln(WVP)=K*(1/T)+B, and Ep=8.314K. The Ep values decreased with BIS amount for films with6hours reaction time, and visa versa for films with9hours reaction time; the effect of reaction time on Ep values was the lest when BIS amount was5%and the water vapor permeability for films with PU:NIPAM at2:1were the highest.
     In all, PU/PNIPAM semi-IPNs have good water vapor permability and thermosensitivity, and exhibits good mechanical properties at the same time, showing great potential for application.
引文
[1]付明源,孙酣经编.聚氨酯弹性体及其应用(第二版)[M].北京:化学工业出版社,1999
    [2]朱昌民编著.聚氨酯合成材料[M].南京:江苏科学技术出版社,2002
    [3]赵孝彬,杜磊,张小平,等.聚所酯弹性体及其微相分离[J].高分子材料科学与工程,2002,18(2):16-20
    [4]李文波,周晨,曹成波,等.医用聚氨酯材料研究新进展[J].中国生物医学工程学报,2011,30(1):130-134
    [5]顾玉平.聚氨酯人造皮革及合成皮革制品[J].化学世界,1991,11:528,495
    [6]侯养全,尹波,杨国虎.氨纶熔纺可行性探讨[J].合成纤维工业,1999,22(2):17-19
    [7]李瑶君,聚氨酯弹性纤维[J].聚氨酯工业,1991,3:3-6
    [8]王炜,华载文.聚氨酯防水透气涂层织物的进展[J].印染,1998,24(10):47-50
    [9]潘茑,王善元.Gore-texl防水透湿层压织物的概述[J].中国纺织大学学报.1998,24(5):110-115
    [10]MengSheng Y. Blending Chitin to improve permeability of PU coated fabrics [J]. Journal of Coated Fabrics,1996, (10):87-102
    [11]Drinkmann, M. Structure and processing of sympatex laminates [J]. Journal of Coated Fabrics,1992,21(1):199-211.
    [12]http://www.diaplex.com/extremehp.html, The intelligent material DiAPLEX.2007, Mitsubishi International Corporation.
    [13]Mondal S., Hu J.L. Structural characterization and mass transfer properties of nonporous segmented polyurethane membrane:Influence of hydrophilic and carboxylic group [J]. Journal of Membrane Science,2006,274(1-2):219-226.
    [14]Mondal S., Hu J.L. Structural characterization and mass transfer properties of nonporous-segmented polyurethane membrane:Influence of the hydrophilic segment content and soft segment melting temperature [J]. Journal of Membrane Science,2006,276(1-2):16-22.
    [15]Ding X..M., Hu J.L., Tao X.M., Hu C.R. Preparation of temperature-sensitive polyurethanes for smart textiles [J]. Textile Research Journal 2006,76(5):406-413.
    [16]Zhu, Y., Hu J. L., Yeung K. W., Liu Y. Q., Liem, H M. Influence of ionic groups on the crystallization and melting behavior of segmented polyurethane ionomers [J]. Journal of Applied Polymer Science,2006,100(6):4603-4613.
    [17]Mondal S, Hu J.L., Yong Z. Free volume and water vapor permeability of dense segmented polyurethane membrane [J]. Journal of Membrane Science,2006,280(1-2):427-432.
    [18]Mondal S., Hu J.L. Structural characterization and mass transfer properties of polyurethane block copolymer:influence of mixed soft segment block and crystal melting temperature [J]. Polymer International,2006,55(9):1013-1020.
    [19]Mondal S., Hu J.L. Segmented shape memory polyurethane and its water vapor transport properties [J]. Designed Monomers and Polymers,2006,9(6):527-550.
    [20]Mondal S., Hu J.L. A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating [J]. Journal of Applied Polymer Science,2007,103(5):3370-3376.
    [21]Mondal S., Hu, J.L. Structural characterization and mass transfer properties of dense segmented polyurethane membrane:Influence of hard segment and soft segment crystal melting temperature [J]. Polymer Engineering and Science,2008,48(2):233-239.
    [22]Ding X. M., Hu J. L., Tao X. M., Hu, C. P., Wang G. Y. Morphology and water vapor permeability of temperature-sensitive polyurethanes [J]. Journal of Applied Polymer Science, 2008,107(6):4061-4069.
    [23]Mondal S., Hu J.L., Water vapor permeability of cotton fabrics coated with shape memory polyurethane [J]. Carbohydrate Polymer,2007,67:282-287.
    [24]查刘生,吴明元,杨建军.水性聚氨酯羊毛防缩剂SMM-2的应用[J].印染助剂,1999,16(2):22-24
    [25]查刘生,吴明元,杨建军,等.热反应型水性聚氨酯羊毛防缩剂性能与应用[J].毛纺科技,1995(2):60-63
    [26]查刘生,吴明元.热反应型聚氨酯羊毛防缩机理探讨[J].纺织学报,1996,17(3):28-31.
    [27]陶旭晨,李磊,李莉莉.聚氨酯类羊毛防缩整理剂的制备和应用性能研究[J].毛纺科技,2008,12:10-12
    [28]查刘生,吴明元,杨建军.热反应型水性聚氨酯用于羊毛防缩整理的研究[J].印染助剂,1995,12(2):7-11
    [29]杨刚,闫克路.精纺毛织物的防毡缩整理综述[J].上海纺织科技,2001,29(2):42-44
    [30]杨刚,闫克路,戴瑾瑾.精纺毛织物的防毡缩和形态记忆整理[J].毛纺科技,2000,6:24-27
    [31]杜韩静,卢霜,邓东海,等.抗起毛起球整理剂DM-3761应用探讨[J].染整技术,2007,29(6):39-40,49
    [32]段新峰,孙占永.环保型抗起毛起球整理剂KD-1的合成与应用研究[J].河北化工,2008,31(12):10-11,23
    [33]段新峰.抗起毛起球剂KD-1[J].印染,2008(24):35-37
    [34]袁友飞,毛志平,毛庆辉,等.涤棉针织物抗起毛起球剂CWPU的合成及其性能fJ].印染,2007,(5):9-11
    [35]施剑,毛志平,潘强,等.涤棉针织物抗起毛起球整理[J].印染助剂,2006,23(6):27-30
    [36]徐静,黄翔宇,季春晓.抗起毛起球腈纶的开发与应用前景[J].合成纤维,2005,10:37-39
    [37]朱建平.新型水系聚氨酯抗静电剂的制备和应用[J].印染助剂,1998,15(4):16-18
    [38]周向东,李纯清,桂陆军.封端型水系聚氨酯抗静电剂的研制及应用[J].纺织学报,2002,24(4):13-15
    [39]周向东,李纯清,伍建国.封端型水系聚氨酯抗静电剂的研制及对涤纶织物的抗静电整理[J].印染助剂,2003,20(3):15-18
    [40]鲍俊杰,汪乐春,刘都宝,等.水性聚氨酯抗静电剂的研制[J].中国胶粘剂,2007,16(3)34-36
    [41]陈湘国, 杨卓鸿, 张扬,等.低甲醛水性聚氨酯抗皱整理剂的制备与应用[J].纺织导报,2008,10:106-108
    [42]丁颖,沈勇,王黎明,等.聚氨酯对棉织物免烫整理的影响[J].印染,2005,(21):1-3
    [43]孙小燕,汪江节,陈建兵,等.热反应型水性聚氨酯整理剂合成及性能优化研究[J].池州师专学报,2005,19(3):56-58
    [44]张力,王树元,汤英俊.热反应性水系聚氨酯整理剂的合成及应用[J].天津化工,1997,(3):21-23
    [45]孙文章,蔡再生,林君亮.水性聚氨酯整理剂对真丝绸的抗皱整理[J].丝绸,2002(1):15-17
    [46]孙瑞凌,王蓉,孙宏伟.Ciba VU—VUK在全棉免烫整理中的应用[J].印染助剂,2000,17(1):22-24
    [47]张瑞萍,杨静新,朱国华,等.纳米ZnO在织物抗皱整理中的应用[J].纺织导报,2005,(12):83-87
    [48]倪阳,吕满庚,孔中平,等.丙烯酸改性水性聚氨酯皮革涂饰剂研究进展[J].聚氨酯业.2008,23(1):9-12
    [49]Wang F., Hu J.Q., Tu. W.P. Study on microstructure of UV-curable polyurethane acrylate films[J]. Progress in Organic Coatings,2008,62(3):245-250
    [50]Anand Prabu A., Alagar M. Mechanical and thermal studies of intercross-linked networks based on siliconized polyurethane-epoxy/unsaturated polyester coatings [J]. Progress in Organic Coatings,2004,49(3):236-243
    [51]李光亮.有机硅高分子化学[M].北京:科学出版社,1998.
    [52]Wang H., Shen Y., Fei G., et al. Micromorphology and phase behavior of cationic polyurethane segmented copolymer modified with hydroxysilane[J]. Journal of Colloid and Interface Science.2008,324(4):36-41
    [53]陈建兵,王宁,王武生,等.聚丁二烯二醇改性水性聚氨酯膜材料结构及性能研究[J].涂料工业.2007,37(9):1-5
    [54]Jiang W., Huang Y., Gu G, et al. A novel waterborne polyurethane containing short fluoroalkyl chains:Synthesis, characterization and its application on cotton fabrics surface[J]. Applied Surface Science,2006,253(4):2304-2309
    [55]Ho Young Jeong, Min Hee Lee, Byung Kyu Kim. Surface modification of waterborne polyurethane[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2006,290(1-3):178-185
    [56]黄茂福.PU/PA互穿网络涂料印花粘合剂的研究[J].印染,2004,24:1-5
    [57]杨建军,张建安,吴庆云,等.酮肼交联型丙烯酸酯-聚氨酯涂料印花用黏合剂[J].纺织学报,2008,29(2):68-72
    [58]El-Molla M. M. Synthesis of polyurethane acrylate oligomers as aqueous UV-curable binder for inks of ink jet in textile printing and pigment dyeing [J]. Dyes and Pigments,2007,74(2): 371-379
    [59]Rahman M. M., Kim Eun-Young, Kwon Ji-Yun, et al. Cross-linking reaction of waterborne polyurethane adhesives containing different amount of ionic groups with hexamethoxymethyl melamine[J]. International Journal of Adhesion and Adhesives,2008,28(1-2):47-54
    [60]M. Percz-Liminana, Francisca Aran-Ais, Ana M. Torro-Palau, etc. Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups[J]. International Journal of Adhesion and Adhesives,2005,25(6):507-517
    [61]宋卫国,丁婷,朱文华.热塑性聚氨酯(TPU)薄膜的现状及展望[J].矿业科学技术,2008,36(1):25-28
    [62]左兰,陈大俊.形状记忆聚氨酯的研究进展[J].高分子材料科学与工程,2004,20(6):37-41
    [63]詹忠贤,朱长春.浅析形状记忆聚氨酯弹性体[J].聚氨酯工业,2005,20(3):32-35
    [64]聂桂平,丁超.智能材料与产品设计[J].东华大学学报,2008,34(4):362-365
    [65]Pelton R. Temperature-sensitive aqueous microgels[J]. Advanced Colloid Interface Science, 2000,85(1):1-33
    [66]Katono I., Maruyama A., Sanui K., et al. Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butylmethacrylate) and poly(acrylic acid) [J]. Journal of Controlled Release,1991,16:215-228
    [67]Rice C V. Phase-transition thermodynamics of N-isopropylacrylamide hydrogels[J]. Biomacromolecules,2006,7(10):2923-2925.
    [68]Maeda T., Yamamoto K., Aoyagi T. Importance of bound water in hydration-dehydration behavior of hydroxylated poly(N-isopropylacrylamide).[J]. J Colloid Interface Sci.2006,302(2): 467-474.
    [69]吴明红,包伯荣,陈捷,等.热敏性水凝胶的研究及其应用[J].核技术,2002,25(12):1029-1033
    [70]田晓冬,温度敏感性高分子材料的合成以及在分离膜材料中的应用[D].北京化工大学,2009.5
    [71]胡晖.聚N-异丙基丙烯酰胺类聚合物的合成与表征[D],东华大学,2001.3
    [72]Liqin Cao, Liuping Chen. Influence of reaction parameters on synthesis of temperature-sensitive materials in supercritical carbon dioxide by precipitation polymerization[J]. Polymer Bulletin,2006,57(5):651-659
    [73]蔡红,张政朴,孙平川,等.壳聚糖与N-异丙基丙烯酰胺接枝共聚凝胶的辐射合成及性能研究[J].高分子学报,2005,5:709-713
    [74]李延顺,于跃芹.温度和pH值对智能水凝胶溶胀行为的影响[J].胶体与聚合物,2009,27(4):9-12
    [75]Alejandra Ortega, Emilio Bucio, Guillermina Burillo. Radiation polymerization and crosslinking of (N-isopropylacrylamide) in solution and in solid state[J]. Polymer Bulletin,2007, 58:565-573
    [76]谢锐,褚良银,陈文梅,等.聚N-异丙基丙烯酰胺接枝核孔膜微观结构及其温敏响应特性[J].化工学报.2005,56(11):2212-2218
    [77]刘崎,朱智勇,杨小敏,等.PVDF-g-NIPAM温敏膜的辐射合成及性能研究[J].辐射研究与辐射工艺学报,2006,24(2):97-100
    [78]林先凯,冯霞,陈莉ATRP法合成接枝共聚物PVDF-g-PNIPAM及其分离膜的研究[J].高等学校化学学报,2010,31(2):402-405
    [79]俞坚磊,刘今强,李永强,等.温敏棉织物的制备及其性能分析[J].棉纺织技术,2008,36(7):389-392
    [80]Pan K., Ren R., Dan Yi, et al. Synthesis of Controlled Thermoresponsive PET Track-Etched Membranes by ATRP Method[J]. Journal of Applied Polymer Science,2011,122(3):2047-2053
    [81]Carlos Ignacio, Igor A. S. Gomes, Rodrigo L. Orefice. Polyurethane membranes with tunable surface properties for biomedical applications [J]. Journal of Applied Polymer Science,2011, 121(6):3501-3508
    [82]Tanaka T. Collapse of Gels and the critical endpoint[J]. Physical Review Letters,1978.40(2): 820-828.
    [83]Fu G., Soboyejo W.O. Swelling and diffusion characteristics of modified poly (N-isopropylacrylamide) hydrogels[J]. Materials Science and Engineering:C,2010,30(1):8-13
    [84]Ni C., Zhu X., Wang Q., et al. Studies on LCST of poly(N-isopropylacrylamide-co-acrylic acid-co-N-diacetone acrylamide) [J]. Chinese Chemical Letters,2007,18(1):79-SO
    [85]Fumihiko Tanaka, Tsuyoshi Koga, Hiroyuki Kojima, et al. Hydration and phase separation of temperature-sensitive water-soluble polymers[J]. Chinese Journal of Polymer Science,2011, 29(1):13-21
    [86]Jude I. Ngadaonye, Martin O. Cloonan, Luke M. Geever, et al. Synthesis and characterization of thermo-sensitive terpolymer hydrogels for drug delivery applications[J]. Journal of Polymer Research,2011.18(6):2307-2324
    [87]刘晓华,王晓工,刘德山.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅱ.热力学行为及水的状态研究[J].高分子学报,2002,5(3):258-362
    [88]Suwa K., Yamoto K., Akashi M., et al. Effects of salts on the temperature and pressure responsive properties of poly(N-vinylisobutyramide) aqueous solutions[J]. Colloid&Polymer Science,1998,276(6):529-533
    [89]余锡胜.温度敏感性水凝胶的合成、性能及其萃取分离应用的研究[D].清华大学,1989
    [90]宋江莉,王秀芬.荧光探针研究聚N-异丙基丙烯酰胺水凝胶的相转变[J].北京化工大学学报(自然科学版),2003,30(4):48-51
    [91]You Han Bae, Teruo Okano, Sung Wan Kim. "On-off" thermo-control of solute transport. I Temperature dependence of swelling of N-isopropylacryiamide networks modified with hydrophobic components in water [J]. Parmaceutical Research,1991,8(4):531-536
    [92]Mahriah E. Alf, T. Alan Hatton, Karen K. Gleason. Novel N-isopropylacrylamide based polymer architecture for faster LCST transition kinetics [J]. Polymer,2011,52(20):4429-4434
    [93]毛华华,关银燕,齐再前,等.含疏水链节的聚N-异丙基丙烯酰胺共聚物的温敏性[J].功能高分子学报,2008,21(4):432-436
    [94]鲁智勇,刘强,周礼,等.疏水改性聚N-异丙基丙烯酰胺的性能及对溶液组成的依赖性[J].高分子材料科学与工程,2005,21(4):160-163,167
    [95]Sasaki Shigeo, Okabe Satoshi. Effects of ions on the solubility transition and the phase-seperation of N-isopropylacrylamide in water [J]. The Journal of Physical Chemistry, B, 2011,115(4):12905-12910
    [96]Takahashi Atsushi, Sakohara Shuji. Thermosensitive properties of semi-IPN gel composed of amphiphilic gel and thermosensitive polymer in buffer solution [J]. Journal of Applied Polymer Science,2011,122(3):1530-1537
    [97]Hirotsu Shunsuke, Hirokawa Yoshitsugu, Tanakma Toyoichi. Volume-phase transitions of ionized N-isopropylacrylamide gels [J]. Journal of Chemical Physics,1987,87(2):1392-1395
    [98]肖君,崔英德,范会强,等.pH敏感性水凝胶的制备与作用原理[J].河南化工,2003,8:5-7
    [99]秦爱香,吕满庚,刘群峰,等.快速响应的聚(N-异丙基丙烯酞胺)水凝胶的合成及性能[J].高分子材料科学与工程,2006,22(5):54-57
    [100]Nagase Kenichi, Mizutani Akimoto Aya, Kobayashi Jun, et al. Effect of reaction solvent on the preparation of thermo-responsive stationary phase through a surface initiated atom transfer radical polymerization [J]. Journal of Chromatography A,2011,1218(48):8617-8628
    [101]华耀和.互穿聚合物网络讲座(连载一)[J].聚氨酯工业,1994(4):44-47
    [102]闩超,王汝敏,程雷,等.互穿聚合物网络的研究与应同进展[J].中国胶粘剂,2009,18(10):52-56
    [103]华耀和.互穿聚合物网络讲座(连载二)[J].聚氨酯工业,1994(5):42-46
    [104]Lipatov Y.S., Alekseeva T.T. Phase-Separated Interpenetrating Polymer Networks, Advances in polymer science[B], German:Springer-Verlag.2007.208
    [105]褚良银,谢锐,巨晓洁.智能膜材料研究新进展[J].化工进展,2011,30(1):167-171
    [106]杜春慧,吴春金,吴礼光.智能型高分子膜的制备及应用研究进展[J].现代化工,2010,30(3):27-32
    [107]Sema Ekici. Intelligent poly (N-isopropylacrylamide)-carboxymethyl cellulose full interpenetrating polymeric networks for protein adsorption studies[J]. Journal of Materials Science, 2010,46(9):2843-2850
    [108]于跃芹,李延顺,祝纯净,等.PNIPAM/CMC半互穿网络水凝胶的合成及性质[J].高分子材料科学与工程,2011.27(2):13-15
    [109]Yi G., Huang Y., Xiong F., et al. Preparation and swelling behaviors of rapid responsive semi-IPN NaCMC/PNIPAM hydrogels[J]. Journal of Wuhan university of technology-material science edition,2011,26(6):1073-1078
    [110]石艳丽,许雅菁,张高奇,等.羧甲基壳聚糖/聚(N-异丙基丙烯酰胺)半互穿网络水凝胶的制备及溶胀性能研究[J].东华大学学报(自然科学版),2005,31(6):6-10
    [111]张高奇,查刘生,周美华,等.海藻酸钠/聚(N-异丙基丙烯酰胺)半互穿网络水凝胶的制备及性能研究[J].功能高分子学报,2004,17(1):41-45
    [112]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)/聚(N-异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究[J].高分子学报,1998,1(1):39-42
    [113]Zhang J., Peppas N.A. Morphology of poly(methacrylic acid)/poly(N-isopropyl acrylamide) interpenetrating polymeric networks[J]. Journal of Biomaterials Science,2002,13(5):511-525
    [114]吉静.明胶-聚异丙基丙烯酰胺水凝胶的pH温度敏感性[J].功能高分子学报,2003:16(3):353-356
    [115]黄首伟,王秀芬,庄慧.(NIPAM)类三元共聚及IPN水凝胶的合成与温敏性能的研究[J].北京化工大学学报(自然科学版),2009,36(S1):59-63
    [1]咐建宏,张为公,梁大开.智能材料结构的研究现状及未米发展[J].材料导报,2006,20(11):6-9
    [2]褚良银,谢锐,巨晓洁.智能膜材料研究新进展[J].化工进展,2011,30(1):167-171
    [3]姚康德,许美萱,成国祥等编著.智能材料[B].天津:天津大学出版社,1996
    [1]Daniel Wandera S. Ranil Wickramasinghe Scott M.,Husson. Stimuli-responsive membranes[J]. [2]Zrmal of Membrane Science,2010,357(1-2):6-35
    [3]Melnig V., Apostu M. O., Tura V., et al. Optimization of polyurethane membranes: Morphology and structure studies [J]. Journal of Membrane Science,2005,267:58-67.
    (?)朱长乐、刘茉娥等编著.膜科学技术[M].浙江大学出版社.1992
    (?)俞三传,高从堦.浸入沉淀相转化法制膜[J].膜科学与技术,2000,20(5):36-41
    (?)姚响,庹新林.相转换法制备聚氨酯微孔膜过程中的非溶剂效应[J].功能高分子学报,2009,22(2):114-118
    [9]高长有,胡小红,管建均,等.热致相分离技术制备聚氨酯多孔膜的条件控制[J].高分子学报,2001,3:351-356
    10]张萍丽,刘静伟.相变材料在纺织服装中的应用[J].上海纺织科技,2002,30(5):47-48
    [11]贾剑飞,刘琼,范晓东,等.温敏性聚(N-异丙基丙烯酰胺)/聚氨酯-β-环糊精互穿网络水凝胶的溶胀特性[J].功能高分子学报,2002,3:281-285
    [12]张美珍,柳百贤,谷晓昱编著,聚合物研究方法[B].北京:中国轻工业出版社,2000.6
    [13]GB/T 1040-92,塑料拉伸性能测试标准[S]
    [14]Zhao Y., Kang J., Tan T. W. Salt-, pH- and temperature-responsive semi-interpenetrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid)[J]. Polymer.2006, 47(22):7702-7710.
    [15]Zhang G., Zha L., Zhou M., et al. Rapid deswelling of sodium alginate/ poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels in response to temperature and pH changes[J]. Colloid and polymer science,2005,283(4):431-438
    [16]ASTM E96/E96M-05, Standard test methods for water vapor transmission of materials: water method[S]
    [17]Yi Chen, Yan Liu, Haojun Fan, et al. The polyurethane membranes with temperature sensitivity for water vapor permeation [J]. Journal of membrane science,2007,287:192-197
    [1]李彪,姜永梅,刘洋,等.聚(N-异丙基丙烯酰胺)/聚丙烯酰胺无机/有机互穿网络水凝胶的制备及表征[J].高分子学报,2009,5:419-424
    [2]Chang-Jing Cheng, Liang Yin Chu, Jie Zhang, et al. Effect of freeze-drying and rehydrating treatment on the thermo-responsive characteristics of poly(N-isopropylacrylamide) microsphere[J]. Colloid Polym Sci.2008,286; 571-577.
    [3]Virendra Kumar, C.V. Chaudhari, Y.K.Bhardwaj, et al. Radiation induced synthesis and swelling characterization of thermo-responsive N-isopropylacrylamide-co-ionic hydrogels[J]. European Polymer Journal,2006,42(2):235-246
    [4]Zhang J., Rahila Bhat, Klaus D. Jandt. Temperature-sensitive PVA/PNIPAM semi-IPN hydrogels with enhanced responsive properties [J]. Acta Biomaterialia,2009,5:488-497
    [5]Tanaka T. Collapse of Gels and the critical endpoint[J]. Physical Review Letters,1978,40(2): 820-828
    [6]张青松.新型聚(N-异丙基丙烯酰胺)类温敏性微凝胶的合成与表征[D].2007.11
    [7]陈兆伟,丁斯婷,杨成,等.pH与温度快速响应性P(NIPA-co-AA)凝胶的制备与表征[J].高分子材料科学与工程,2006,22(3):190-194
    [8]刘文涛,张鸿儒,李智慧,等.多孔聚N-异丙基丙烯酰胺水凝胶的制备与缓释性能[J].高分子通报,2010,12:67-71
    [9]陈兆伟,陈明清,刘晓亚等.温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成与表征[J].功能高分子学报,2004,17(1):46-50
    [10]赵祯霞,李忠,夏启斌,等PNIPAM共聚水凝胶的微波合成和性能[J].材料研究学报,2008,22(4):405-410
    [11]Xue Li, Xian-Zheng Zhang, Yan-Feng Chu, et al. Fast responsive poly(N-isopropylacrylamide) hydrogels prepared in phenol aqueous solutions[J]. European Polymer Journal,2006,42(10):2458-2463
    [12]王欣宇,朱秀芳,韩颖超,等.温度敏感高分子水凝胶的合成及性能研究[J].硅酸盐通报,2007,26(4):673-679
    [13]Ramon Coronado, Sara Pekerar, Arnaldo T. Lorenzo, et al. Characterization of thermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid[J]. Polymer Bulletin,2010,67(1):101-124
    [14]Kazutoshi Haraguchi, Stimuli-responsive nanocomposite gels[J]. Colloid&Polymer Science, 2011,289(5-6):455-473
    [15]H.M. Crowther, B. Vincent. Swelling behavior of poly-N-isopropylacrylamide microgel particles in alcoholic solutions[J]. Colloid & Polymer Science,1998,276(1):46-51
    [16]Zhang X., Zhuo R., Yang Y. Using mixed solvent to synthesize temperature sensitive poly(-isopropylacrylamide) gel with rapid dynamics properties[J]. Biomaterial.2002,23(5): 1313-1318
    [17]Fumihiko Tanaka, Tsuyoshi Koga, Francoise M. Winnik. Competitive hydrogen bonds and cononsolvency of poly(N-isopropylacrylamide)s in mixed solvents of water/methanol[C]. Tokyo,Japan:Tokita M, Nishinari K.,2009:1-7
    [18]Hideaki Tokuyama, Noriaki Ishihara, Shuji Sakohara. Effects of synthesis-solvent on swelling and elastic properties of poly(N-isopropylacrylamide) hydrogels[J]. European Polymer Journal. 2007,43(12):4975-4982
    [19]Boutris C., Chatzi E.G., Kiparissides C. Characterization of LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques[J]. Polymer, 1997,38(10):2567-2570
    [20]Luke M.Geever, Declan M. Devine, Michael J.D.Nugent, et al. Lower critical solution temperature control and swelling behavior of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide[J]. European Polymer Journal,2006,42(10):2540-2548
    [21]Tomohiro Maeda, Kazuya Yamamoto, Takao Aoyagi. Importance of bound water in hydration-dehydration behavior of hydroxylated poly (N-isopropylacrylamide) [J]. Journal of Colloid and Interface Science,2006,302(2):467-474.
    [22]Lele K.L., Hirve M. M., Badiger M.V., et al. Prediction of bound water content in poly(N-isopropylacrylamide) gel[J]. Macromolecules,1997,30(1):157-159
    [1]李彪,姜永梅,刘洋,等.聚(N-异丙基丙烯酰胺)/聚丙烯酰胺无机/有机互穿网络水凝胶的制备及表征[J].高分子学报,2009,5:419-424
    [2]Chang-Jing Cheng, Liang Yin Chu, Jie Zhang, et al. Effect of freeze-drying and rehydrating treatment on the thermo-responsive characteristics of poly(N-isopropylacrylamide) microsphere[J]. Colloid Polym Sci.2008,286:571-577.
    [3]Virendra Kumar, C.V. Chaudhari, Y.K.Bhardwaj, et al. Radiation induced synthesis and swelling characterization of thermo-responsive N-isopropylacrylamide-co-ionic hydrogels[J]. European Polymer Journal,2006,42(2):235-246
    [4]Zhang J., Rahila Bhat, Klaus D. Jandt. Temperature-sensitive PVA/PN1PAM semi-IPN hydrogels with enhanced responsive properties [J]. Acta Biomaterialia,2009,5:488-497
    [5]Tanaka T. Collapse of Gels and the critical endpoint[J]. Physical Review Letters,1978,40(2): 820-828
    [6]张青松.新型聚(N-异丙基丙烯酰胺)类温敏性微凝胶的合成与表征[D].2007.11
    [7]陈兆伟,丁斯婷,杨成,等.pH与温度快速响应性P(NIPA-co-AA)凝胶的制备与表征[J].高分子材料科学与工程,2006,22(3):190-194
    [8]刘文涛,张鸿儒,李智慧,等.多孔聚N-异丙基丙烯酰胺水凝胶的制备与缓释性能[J].高分子通报,2010,12:67-71
    [9]陈兆伟,陈明清,刘晓亚等.温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成与表征[J].功能高分子学报,2004,17(1):46-50
    [10]赵祯霞,李忠,夏启斌,等PNIPAM共聚水凝胶的微波合成和性能[J].材料研究学报,2008,22(4):405-410
    [11]Xue Li, Xian-Zheng Zhang, Yan-Feng Chu, et al. Fast responsive poly(N-isopropylacrylamide) hydrogels prepared in phenol aqueous solutions[J]. European Polymer Journal,2006, 42(10):2458-2463
    [12]王欣宇,朱秀芳,韩颖超,等.温度敏感高分子水凝胶的合成及性能研究[J].硅酸盐通报, 2007,26(4):673-679
    [13]Ramon Coronado, Sara Pekerar, Amaldo T. Lorenzo, et al. Characterization of ihermo-sensitive hydrogels based on poly(N-isopropylacrylamide)/hyaluronic acid[J]. Polymer Bulletin,2010,67(1):101-124
    [14]Kazutoshi Haraguchi, Stimuli-responsive nanocomposite gels[J]. Colloid&Polymer Science, 2011,289(5-6):455-473
    [15]H.M. Crowther, B. Vincent. Swelling behavior of poly-N-isopropylacrylamide microgel particles in alcoholic solutions[J]. Colloid & Polymer Science,1998,276(1):46-51
    [16]Zhang X., Zhuo R., Yang Y. Using mixed solvent to synthesize temperature sensitive poly(-isopropylacrylamide) gel with rapid dynamics properties[J]. Biomaterial.2002,23(5): 1313-1318
    [17]Fumihiko Tanaka, Tsuyoshi Koga, Francoise M. Winnik. Competitive hydrogen bonds and cononsolvency of poly(N-isopropylacrylamide)s in mixed solvents of water/methanol[J]. Progress in Colloid Polymer Science.2009,136:1-8
    [18]Hideaki Tokuyama, Noriaki Ishihara, Shuji Sakohara. Effects of synthesis-solvent on swelling and elastic properties of poly(N-isopropylacrylamide) hydrogels[J]. European Polymer Journal. 2007,43(12):4975-4982
    [19]C. Boutris, E.G. Chatzi, C. Kiparissides. Characterization of LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques[J]. Polymer, 1997,38(10):2567-2570
    [20]Luke M.Geever, Declan M. Devine, Michael J.D.Nugent, et al. Lower critical solution temperature control and swelling behavior of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide[J]. European Polymer Journal,2006,42(10):2540-2548
    [21]Tomohiro Maeda, Kazuya Yamamoto, Takao Aoyagi. Importance of bound water in hydration-dehydration behavior of hydroxylated poly (N-isopropylacrylamide) [J]. Journal of Colloid and Interface Science,2006,302:467-474.
    [22]Lele K.L., Hirve M. M., Badiger M.V., et al. Prediction of bound water content in poly(N-isopropylacrylamide) gel[J]. Macromolecules,1997,30:157-159
    [1]赵孝彬,杜磊,张小平,等.聚氨酯弹性体及其微相分离[J].高分子材料科学与工程,2002,18(2):16-20
    [2]Mehdi Barikani, Khalid Mahmood Zia, Ijaz Ahmad Bhatti, et al. Molecular engineering and properties of chitin based shape memory polyurethanes [J]. Carbohydrate Polymers,2008, 74:621-626
    [3]Zhang Z.,.Wicks Douglas A., Hoyle Charles E., et al. Newly UV-curable polyurethane coatings prepared by multifunctional thiol- and ene-terminated polyurethane aqueous dispersions mixtures: Preparation and characterization[J]. Polymer,2009,50:1717-1722
    [4]Cao X., Deng R., Zhang, L. Structure and Properties of Cellulose Films Coated with Polyurethane/Benzyl Starch Semi-IPN Coating [J]. Industrial & Engineering Chemistry Research, 2006,45(12):4193-4199
    [5]Vuillequez A., Moreau J., Garda M.R., et al. Polyurethane methacrylate/silicone interpenetrating polymer networks synthesis, thermal and mechanical properties [J]. Journal of polymer research,2008,15(2):89-96
    [6]Cao X., Wang Y., Zhang L. Effects of ethyl and benzyl groups on the miscibility and properties of castor oil-based polyurethane/starch derivative semi-interpenetrating polymer networks [J]. Macromolecular Bioscience,2005,5(9):863-871
    [7]Gao S.. Zhang L., Cao J.. Synthesis and characterization of poly(ester urethane)/nitrokonjac glucomannan semi-interpenetrating polymer networks[J]. Journal of Applied Polymer Science, 2003,90(8):2224-2228
    [8]Lu Y., Zhang L., Zhang X., et al. Effects of secondary structure on miscibility and properties of semi-IPN from polyurethane and benzyl konjac glucomannan[J]. Polymer,44(21):6689-6696
    [9]Zeng M., Zhang L., Zhou Y. Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films [J]. Polymer,2004,45(10):3535-3545
    [10]You Han Bae, Sung Wan Kim. Hydrogel delivery systems based on polymer blends, block copolymers or interpenetrating networks [J]. Advanced drug delivery Reviews,1993, 11(1-2):109-135
    [11]Peng H.T., Martineau L., Shek P. N. Hydrogel-elastomer composite biomaterials:3. Effects of gelatin molecular weight and type on the preparation and physical properties of interpenetrating polymer networks [J]. Journal of material science:Material in medicine,2008,19:997-1007
    [12]Zhang J., Rahila Bhat, Klaus D. Jandt. Temperature-sensitive PVA/PNIPAM semi-IPN hydrogels with enhanced responsive properties [J]. Acta Biomaterialia,2009,5:488-497
    [13]Guo B., Gao Q. Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide) semi-IPN hydrogel for oral delivery of drugs[J]. Carbohydrate research,2007,342(16):2416-2422
    [14]Marcus Liew Kai Hoa, Meihua Lu, Yong Zhang.Preparation of porous materials with ordered hole structure[J],Advances in colloid and interface science,2006,121(1-3):9-23
    [15]Zoppi R.A., Contant S., Duek E.A.R, et al. Porous poly(L-lactide) films obtained by immersion precipitation process:morphology, phase separation and culture of VERO cells[J]. Polymer,1999,40(12):3275-3289
    [16]Engela E., Mcleary, Jacobus C. Jansen. Basic views on the preparation of porous ceramic membrane layers:a comparison between amorphous and crystalline layers, leading to a new method for the preparation of microporous continuous layers [J]. Topics in catalysis,2004,29 (1-2): 85-92
    [1]Park C., Choi W., Lee.J. Effects of hardness and thickness of polyurethane foam midsoles on bending properties of the footwear[J]. Fibers and polymers,2007,8(2):192-197
    [2]Daniel Guillen, Antoni Ginebreda, Mira Petrovic, et al. Additives in the leather industry, The handbook of Environmental Chemistry[B], Springer-Verlag Press. Berlin,2012,18:35-55
    [3]Zhou H., Zeng J., Fan H., et al. Thermal sensitive polyurethane membranes with desirable switch temperatures[J]. Macromolecular research,2010,18(11):1053-1059
    [4]Chen Y., Fan H., Liu R., et al. Nano-SiO2 in-situ hybrid polyurethane leather coating with enhanced breathability[J]. Fibers and Polymers,2010,11(2):241-248
    [5]Yun J., Yoo H., Kim H. Preparation and properties of waterbome polyurethane-urea/poly(vinyl alcohol) blends for high water vapor permeable coating materials[J]. Macromolecular research, 2007.15(1).22-30
    [6]刘燕,周虎,范浩军,等.不同致孔剂对PU合成革涂层透湿性的影响[J].中国皮革2008,19:28-32,37
    [7]陈玉波,徐卫林,左丹英.壳聚糖微粉对聚氨酯多孔膜结构和性能的影响[J].高分子材料科学与工程,2009,25(7):49-52
    [8]邓春雨,黄开勋,徐卫林.TiO2/羊毛粉体复合改性聚氨酯膜及其性能[J].纺织学报,2006,27(4):83-86
    [9]章娴君,聚氨酯微孔膜的防水透湿性及电镜分析[J].西南师范大学学报(自然科学版),1997,22(3):289-295
    [10]林玲,除卫林,欧阳晨曦,等.聚氨酯均质微孔膜的制备及结构控制的研究[J].膜科学与技术,2008,28(1):40-45
    [11]Dieter Langbein, Interface tension and contact angle, Springer tracts in Modem physics[B], Springer-Verlag Berlin Heidelberg:Germany, B2002,178:21-39
    [12]程帅,董云开,张向军,规则粗糙固体表面液体表面浸润性对表观接触影响的研究[J].机械科学与技术,2007,26(7):822-827
    [13]Wang J.. Yu Y., Chen D.. Research progress on the ultra hydrophobic surface topography effect[J]. Chinese science bulletin.2006,5l(19):2297-2300
    [14]Bharat Bhushan, Yong Chae Jung. Michael Nosonovsky. Lotus effect:surfaces with roughness-induced superbydrophobicity. self-cleaning and low adhesion, Springer handbook of nanotechnology Part F [B].2010:1437-1524
    [15]施政余,李梅,赵燕,等.润湿性可控智能表而的研究进展[J].材料研究学报,2008,22(6):561-571
    [16]Kamusewitz H., Possart W. Wetting and scanning force microscopy on rough polymer surfaces:Wenzel's roughness factor and the thermodynamic contact angle[J]. Applied Physics A materials science&processing,2003,76:899-902
    [17]Park.J., Ha M., Choi H., et al. A study on the contact angles of a water droplet on smooth and rough solid surfaces [J]. Journal of mechanical science and technology,2011.25(2):323-332
    [18]Zheng L., Wu X., Lou Z., et al. Superhydrophobicity from microstructured surface[J]. Chinese science bulletin,2004,49(17):1779-1787
    [19]Durigon P.E.R., Petri D.F.S., Drings H., et al. Characterization and modification of polymer blend films[J]. Colloid&Polymer Science,2001,279(10):1013-1019
    [20]Yang C, He F., Hao P. The apparent contact angle of water droplet on the micro-structured hydrophobic surface [J]. Science China chemistry,2010,53(4):912-916
    [21]Peters A. M., Pirat C. Sbragaglia M.,et al. Cassie-Baxter to Wenzel state wetting transition: scaling of the front velocity [J]. The European physical journal E:soft matter and biological physics,2009,29(4):391-397
    [22]李小兵,刘莹.微观结构表而接触角模型及其润湿性[J].材料导报,2009,23(12):101-103
    [23]Min J., Wang L.. Membrane sorption property effects on transmembrane permeation[J]. Chinese science bulletin,2011,56(22):2394-2399
    [24]Kelkar A.J., Paul D. R. Water transport in a series of polyacrylates [J]. Journal of membrane science,2001,181:199-212
    [25]Aleksandra Wolinska-Grabczyk, Andrzej Jankowski. Gas transport properties of segmented polyurethanes varying in the kind of soft segments [J]. Separation and purification technology, 2007,57:413-417
    [26]Hu T., Min J., Song Y.. Analysis of the effects of mass transfer on heat transfer in the progress of moisture exchanger across a membrane [J]. Chinese science bulletin,2010,55:1221-1225
    [27]Bitter J. G. A. Transport mechanisms in membrane separation processes [B]. Plenum Press: New York,1991
    [28]曾跃民.形状记忆聚氨酯性能表征及其在纺织上的应用[D].上海:东华大学博士论文,2004.10
    [29]M Modesti, C. Dall' Acqua, A. Lorenzetti, et al. Mathematical model and experimental validation of water cluster influence upon vapour permeation through hydrophilic dense membrane[J]. Journal of membrane science,2004,229(1-2):211-223
    [30]Lin C., Liao K., Su C, et al. Smart temperature-controlled water vapor permeable polyurethane film[J]. Journal of membrane science,2007,299:91-96
    [31]Iskender Yilgor, Emel Yilgor. Hydrophilic polyurethaneurea membranes:influence of soft block composition on the water vapor permeation rates[J]. Polymer.1999,40:5575-5581
    [32]Wang Z.F., Wang B., Qi N., et al. Free volume and water vapor permeability properties in polyurethane membranes studied by positrons[J]. Materials chemistry and physics, 2004.88:212-216
    [33]吴奇,汪晓辉,高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变(上)[J].高分子通报,1998,3:9-16
    [34]吴奇,汪晓辉,高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变(下)[J].高分子通报,1998,4:1-9
    [35]张青松,新型聚N-异丙基丙烯酰胺类温敏性微凝胶的合成与表征[D].东华大学博士论文,2007
    [36]Joanna Pietrasik, Magdalena Gaca, Marian Zaborski, et al. Studies of molecular dynamics of carboxylated acrylonitrile-butadiene rubber composites containing in situ synthesized silica particles [J]. European Polymer Journal,2009,45(12):3317-3325
    [37]Sagrario Beltran, Herbert H.Hooper, Harvey W. Blanch, et al. Swelling equilibria for ionized temperature-sensitive gels in water and in aqueous salt solutions[J]. The Journal of chemical and physics,1990,92(3):2061-2066
    [38]赵培仲,王源升,朱金华,等.聚氨酯弹性体的微相分离对其溶胀和溶解行为的影响[J].高分子材料科学与工程,2008,24(1):71-74
    [39]Zhang G.Q, Zha L.S., Zhou M.H., et al. Rapid deswelling of sodium alginate/ poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels in response to temperature and pH changes[J]. Colloid polymer science,2005,283(4):431-438

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700