羊毛角蛋白酶—蛋白酶一浴法防毡缩整理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊毛织物作为一种高档纺织面料,由于其丰满、挺括、保暖性好等特点,长期受到人们青睐。但特殊的鳞片结构使其极易发生毡缩,并给染色、整理等纺织加工带来困难。蛋白酶作用于羊毛纤维,能催化肽键水解,被认为是替代传统的氯化-树脂防毡缩整理工艺的最具潜力的方法。但羊毛鳞片外层由胱氨酸含量极高的角蛋白构成,蛋白酶对其没有降解作用,因此必须对羊毛进行氧化或还原等预处理,存在环境污染问题。
     角蛋白酶是专一性降解角蛋白的一类蛋白酶,由真菌、放线菌或细菌等多种微生物产生,对毛、发、羽、鳞、甲等含角蛋白底物具有降解作用,在饲料、医药、食品、制革等领域应用广泛。
     本文采用一株枯草芽孢杆菌(Bacillus subtilis)产角蛋白酶和蛋白酶一浴法处理羊毛,通过毡缩率、减量率、强力、染色性能、织物风格、抗起毛起球性、白度等指标考察两种酶协同作用对羊毛防毡缩以及其他性能的影响,并结合蛋白多肽释放速率曲线、Allworden反应、SEM、红外光谱、氨基酸分析等手段,对一浴法的协同效应对羊毛的作用机理做了初步研究,并针对一浴法强力损伤过大的缺点,采用MTG修复强力损伤。
     试验结果表明:与羊毛未处理样以及单独酶处理样相比,经角蛋白酶和蛋白酶一浴法处理后的羊毛织物毡缩率明显降低,可达到机可洗的要求,上染速率提高,白度增加,抗起毛起球性能提高,但织物的减量率较大,强力下降,染色K/S值降低。
     水解液中蛋白多肽浓度变化显示一浴法能有效提高蛋白多肽的释放速率,并且蛋白酶对角蛋白酶的结构稳定性没有明显影响;羊毛Allw?rden现象和润湿性测试结果表明鳞片表层类脂已基本去除;SEM结果显示羊毛鳞片已基本剥离;红外光谱数据显示,一浴法能将鳞片层胱氨酸氧化成磺基丙氨酸;氨基酸分析结果表明,处理后羊毛的大部分氨基酸含量下降。说明角蛋白酶能促进蛋白酶对羊毛鳞片的降解,两者一浴法的协同作用能有效去除羊毛鳞片,对羊毛具有明显的改性作用。
     采用MTG能有效修复一浴法的强力损伤,并使织物毡缩率进一步下降,润湿性、染色性能进一步改善。
Wool fabric as a high-grade textile material because of its features, such as plump, crisp and warm, was long favored by people. However, it can easily become felting due to its special scale structure, and lead to difficult dyeing and finishing for textile processing. Protease acting on wool fiber, can catalyze the hydrolysis of the peptide bond, is considered to be the most promising process which can replace the traditional chlorination-resin anti-shrinkage finishing process. However, the outer scales of wool consist of many keratins containing high amount of cystines, and there is no degradation from protease, so it is necessary for oxidation or reduction pretreatment of wool, which leads to environmental pollution.
     Keratinase is a kind of protease having specific degradation ability to keratin. It could be producted from fungis, actinomycete, bacterias or other microorganisms, and can degrade keratin substrates, such as animal hair, person hair, feather, scales and nails. Therefore, it is widely used in the feed, medicine, food, leather and other fields.
     A novel keratinase from Bacillus subtilis with protease was used to treat wool fabrics in a bath in this paper. The synergistic effect of the two enzymes and anti-felting property and other properties of wool were studied according to felting shrinkage, weight loss, strength, dyeing properties, fabric style, anti-fuzzing and pilling, whiteness and so on. Combining with polypeptide release rate curve, wool Allw?rden phenomenon, SEM, infrared spectrum and amino acid analysis, a preliminary study on the mechanism of this synergistic effect of one-bath process on the wool. MTG was used to repair the strength damage of wool in view of the disadvantage that there are too much strength loss after one-bath treatment.
     Experimental results showed that, compared with specimens untreated or only treated by individual enzyme, the felting shrinkage of wool fabric treated with keratinase and protease in a bath dropped significantly, which had reached machine washable requirements, and dyeing rate, whiteness, anti-fuzzing and pilling performance increased, but the fabric weight loss was larger, strength and K/S reduced.
     UV spectrum of the hydrolyte solution showed that one-bath process could effectively improve the polypeptide release rate, and protease had no obvious effect on the structural stability of keratinase. Wool Allw?rden phenomena and wetting test results showed that the lipid on scales had been basically removed. The result of SEM showed that wool scales had been basically stripped. Infrared spectrum analysis indicated that one-bath process could oxidize cystine to cysteic acid. Amino acid analysis showed that the majority of the amino acid content of wool decreased after treatment. These results indicated that keratinase could promote protease to degrade wool scales, and the synergistic effect of the two enzymes was able to remove wool scales effectively, as well as a significant modification on wool.
     MTG could repair strength loss of the wool fabric after one-bath treatment, and gave a further decline in felting shrinkage of fabric, also let wettability and dyeing performance be further improved.
引文
1.田志荣,赵先丽.羊毛防防缩整理剂WSP在精纺毛织物中的应用[J].毛纺科技, 2000(4): 37-40.
    2.李影,丁宵霖.生物酶在羊毛织物防毡缩工艺中的应用[J].江南大学学报(自然科学版), 2002,1(3):269-271.
    3.张华莹,张瑞萍,蔡再生.羊毛的蛋白酶/转谷氨酰胺酶防缩整理工艺研究[J].印染助剂, 2008,25(3):27-30.
    4.周爱晖,范雪荣,王平,等.氧化与氯化预处理对羊毛酶法防毡缩整理的影响[J].印染助剂,2009,26(1):11-14.
    5. FAN Zenglu.Enzymatic treatment of wool[J].Journal of Donghua University,2001(2):112- 115.
    6.樊增禄.羊毛的蛋白酶处理防毡缩研究[D]:[博士学位论文].上海:东华大学,1998.
    7. Feughelman M. Mechanical properties and structure of alpha–keratin fibres: wool, human hair and related fibres[M]. Sydney: University of New South Wales Press. 1997:1–14.
    8.刘炳宏.生态法羊毛织物防毡缩整理[D]:[硕士学位论文].北京:北京服装学院,2008.
    9.崔莉.微生物谷氨酰胺转氨酶稳定性及对羊毛纤维改性机制的研究[D]:[博士学位论文].无锡:江南大学纺织服装学院,2007.
    10.张茜.羊毛织物生态防毡缩整理的研究[D]:[硕士学位论文].天津:天津工业大学,2006.
    11.金郡潮,戴瑾瑾.氧等离子体处理羊毛活性染料染色的研究[J].纺织学报, 2002,1(23):5-7.
    12.张华莹.转谷氨酰胺酶在羊毛生物改性中的应用及研究[D]:[硕士学位论文].上海:东华大学,2008.
    13.周爱晖.不同预处理对羊毛酶法防毡缩及其他性能的影响[D]:[硕士学位论文].无锡:江南大学,2008.
    14.李霞.MTG酶处理改善羊毛织物毡缩性的研究[D]:[硕士学位论文].无锡:江南大学,2007.
    15. K R Makinson.Shrinkproofing of Wool[M].New York:Marcel Dekker,1979.150.
    16.孔繁超,吕淑霖,袁柏耕.毛织物染整理论与实践[M].北京:纺织工业出版社,1990.128.
    17.王菊生,孙铠.染整工艺原理(第二册)[M].北京:中国纺织出版社,2003.240-248.
    18.虞学锋,王鸿博.低温氧等离子体处理对羊毛织物性能的影响[J].江南大学学报(自然科学版), 2007,6(3):354-356.
    19.王懽,陈苏,张建春.电晕放电对毛织物表面性能的影响[J].纺织学报,2002 (2):30-32.
    20. Kan Chi-wai. Surface characterization of low-temperature plasma treated wool[J].Autex Research Journal, 2003, 4:194-215.
    21.章杰.纺织助剂的新“绿色壁垒”[J].纺织导报,2004 (5):84-92.
    22.张华莹,张瑞萍,蔡再生.羊毛的蛋白酶/转谷氨酰胺酶防缩整理工艺研究[J].印染助剂, 2008,25(3):27-30.
    23. Jo?o Cortez, Phillip L.R. Bonner, Martin Griffin. Application of transglutaminases in the modification of wool textiles[J]. Enzyme and Microbial Technology,2004(34):64–72.
    24. Suzana Jus,Marc Schroeder.The influence of enzymatic treatment on wool fibre properties using PEG-modified proteases[J].Enzyme and Microbial Technology, 2007(40):1705-1711.
    25.蒋挺大.壳聚糖[M].北京:化学工业出版社,2001.1-63.
    26. George A.F. Roberts, Frances A. Wood. A study of the influence of structure on the effectiveness of chitosan as an anti-felting treatment for wool[J]. Journal of Biotechnology, 2001(89):297–304.
    27.李霞,高卫东,卢雨正.羊毛防缩整理工艺的现状及展望[J].纺织导报,2006 (9):64-67.
    28. Nickerson,W.J.Biochem.Biophys[J].Acta,1963 (77):87-99.
    29. El-Refai H A, Abdel Naby M A, Gaballa A, et al. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity[J]. Process Biochemistry, 2005,40(7): 2325-2332.
    30. Park G-T, Son H-J. Keratinolytic activity of Bacillus megaterium F7-1,a feather-degrading mesophilic bacterium[J]. Microbiological Research, 2007 (2):1-8.
    31.蔡成岗.角蛋白酶生产菌株选育、发酵与分离纯化研究[D]:[博士学位论文].杭州:浙江大学, 2007.
    32.蔡成岗,郑晓东.以羽毛、人发为枯草芽胞杆菌KD-N2液体发酵碳、氮源生产角蛋白酶模型的建立[J].农业生物技术学报, 2009,17(2):328-333.
    33. Khardenavis A A,Kapley A,Purohit H J.Processing of poultry feather by alkaline keratin hydrolyzing enzyme from Serratia sp.HPC 1383[J].Waste Management,2009(29):1409-1415.
    34. Daroit D J,Corrêa A P F,Brandelli A.Keratinolytic potential of a novel Bacillus sp. P45 isolated from the Amazon basin fish Piaractus mesopotamicus[J].International Biodeterioration & Biodegradation,2009:1-6.
    35.张奇,孙丹,杨文博,等.芽孢杆菌L4所产角蛋白酶的纯化工艺、理化性质及其应用研究[J].离子交换与吸附, 2009, 25(5):448- 455.
    36. Gradi?ar H, Kern S, Friedrich J. Keratinase of Doratomyces microsporus[J].Applied Microbiology and Biotechnology, 2000,53(2):196-200.
    37. Gushterova A, Vasileva-Tonkova E, Dimova E, et al. Keratinase production by newlyisolated Antarctic actinomycete strains[J]. World Journal of Microbiology and Biotechnology, 2005,21:831-834.
    38. Williams C M, Richter C S, MacKenzie J M, et al. Isolation,identification and characterization of a feather-degrading bacterium[J].Applied and Environmental Microbiology,1990,56(6):1509-1515.
    39. Novel J J,Nickerson W.Decomposition of native keratin by Streptomyces fradiae[J].J Bacteriol,1959,77:251-263.
    40. Bockle B,Galunsky B,Muller R.Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530[J].Applied and Environmental Microbiology,1995 (61):3705-3710.
    41. Letourneau F,Soussotte V,Bressollier P,et al.Keratinolytic activity of Streptomyces sp.SK1-02:a new isolated strain[J]. Lett Appl Microbiol,1998,26:77-80.
    42. Ignatova Z,Gousterova A,Spassov G,et al.Isolation and partial characterization of extracellular keratinase from a wool degrading thermophilic actinomycete strain Thermoactinomyces candidus[J].Can J Microbiol,1999,45:217-222.
    43. Gousterova A,Braikova D,Goshev I,et al.Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis[J].Lett Appl Microbiol,2005,40:335-340.
    44.王晶.一株新的羽毛角蛋白降解菌的鉴定、研究与应用[D]:[硕士学位论文].上海:东华大学,2006.
    45. Bockle B,Muller R.Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers[J]. Applied and Environmental Microbiology,1997,63(2):790-792.
    46. Malviya H K, Rajak R C, Hasija S K. Synthesis and regulation of extracellular keratinase in there fungi isolation from the grounds of a gelatin factory,Jabalpur,India[J]. Mycopathologia,1992 (120):1-4.
    47. Kunert J.Biochemical mechanism of keratin degradation by the actinomycete Streptomyces adidae and the fungus micros Porumypseum[J].Journal of Basic Microbiology,1989,29(9):597-604.
    48.冯景贤.论羽毛粉蛋白饲料的开发与利用[J].饲料工业,1995,12(16):42-43.
    49.涂国全,叶亚建,张宝,等.链霉菌分解角蛋白的生化机制研究Ⅱ角蛋白分解过程中含硫化合物变化规律的初步探讨[J].江西农业大学学报,1998,20(1):1-5.
    50.涂国全,张宝,叶亚建,等.链霉菌分解角蛋白的生化机制研究Ⅱ含硫化合物对角蛋白酶作用机理和角蛋白降解的生化机制初步研究[J].江西农业大学学报,1998,20(l):6-11.
    51.涂国全,孙宇晖,郭美锦,等.链霉菌分解角蛋白的生化机制研究[J].江西农业大学学报,1998,20(2):164-169.
    52. Steinknaus K H.Nutritional significance of fermented foods[J].Food Research International,1994,27:259-267.
    53.鲁时瑛,周楠迪,堵国成等.谷氨酰胺转氨酶的分离纯化及酶学性质[J].无锡轻工大学学报,2002,21(6):564-568.
    54. Ando H,Adachi M,Umeda K,et al.Purification and characterization of a novel transglutaminase derived from micro-organisms[J].Agricultural Biological Chemistry, 1989,53:2613-2617.
    55. Motoki M,Kiyama A,Nonaka M,et al.Novel transglutaminase manufacture for preparation of protein gelling compounds[J].Japanese Patent,JP0217471.1989.
    56. Cortez J,Bonner P L R,Griffin M.A method for enzymatic treatment of textiles such as wool[P].World Patent,WO,0204739.2002-01-17.
    57. Cortez J,Bonner P L R,Griffin M.Application of transglutaminases in the modification of wool textiles[J].Enzyme and Microbial Technology,2004(34):64-72.
    58. Cortez J,Anghieri A,Bonner P L R,et al.Transglutaminase mediated grafting of silk proteins onto wool fabrics leading to improved physical and mechanical properties[J].Enzyme and Microbial Technology,2007 (40):1698-1704.
    59.李影,丁霄霖.转谷氨酰胺酶处理羊毛织物[J].无锡轻工大学学报,2002,21(6):651-654.
    60.侯学锋.谷氨酰胺转氨酶在修复和降低羊毛纤维损伤中的应用研究[D]:[硕士学位论文].天津:天津工业大学,2006.
    61. Alastair A,Michèle P L.In The protein protocols handbook (Second Edition)[M]. Eds.: Walker, J. M, Humana Press,Totowa,2002.3-6.
    62. Riessen S,Antranikian G. Isolation of Thermoanaerobacter keratinophilus sp. nov.,a novel thermophilic,anaerobic bacterium with keratinolytic activity[J]. Extremophiles,2001,
    5:399-408.
    63.周文龙.酶在纺织中的应用[M].北京:中国纺织出版社,2006.214.
    64.徐升云,邢建伟,马齐,等.羊毛酶法防毡缩机理的研究[J].毛纺科技,2005 (8):14-16.
    65. Shen J, Bishop D, Heine E,et al. Some factors affecting the control of proteolytic enzymes reations on wool[J].J.Text.Inst,1990,90(3):404-411.
    66.闵杰.金黄杆菌来源的角蛋白酶的分离纯化和酶学性质研究[D]:[硕士学位论文].杭州:浙江大学, 2008.
    67.金咸穰.染整工艺实验[M].北京:中国纺织出版社,1987.59-64.
    68.王妮,管映亭.酶防缩处理后羊毛染色性能的研究[J].毛纺科技,1999 (6):31-35.
    69.黄燕萍,狄群英.羊毛改性对染色性能的影响[J].印染,2005 (24):8-10.
    70.葛凤燕,张华莹,蔡在生.蛋白酶/转谷氨酰胺酶改性羊毛织物染色性能的研究[J].印染助剂,2008,25(10):31-34.
    71.樊增禄,戴瑾瑾,朱泉.酶对羊毛染色性能的影响[J].毛纺科技,2001 (3):20-23.
    72.郭娟琛,孙艳,杨建忠.毛织物风格的客观评价与分析[J].纺织科技进展,2008 (4):55-56.
    73.周建萍,陈晟.KES织物风格仪测试指标的分析及应用[J].现代纺织技术,2005(6):37-40.
    74.曹静,王鸿博,马庆红.纯棉色织物超柔整理[J].印染,2007 (14):28-30.
    75.王琛.羊毛角蛋白溶液的制备及其在毛织物抗起毛起球整理中的应用[D]:[硕士学位论文].上海:东华大学,2007.
    76.李珣.羊毛无氯剥鳞技术研究[D]:[硕士学位论文].上海:东华大学,2008.
    77. Cegarra J.The state of the art in textile biotechnology[J].JSDC,1996,112(11):326-329.
    78.周文龙,李茂松,袁骏,等.蛋白酶处理后羊毛的表面特性研究[J].纺织学报, 2002,23(5):31-32.
    79.周文龙,孙铠.羊毛鳞片表层类脂结构对羊毛特性的影响[J].毛纺科技,2001 (1):17-21.
    80.周文龙,孙铠.用Wilhelmy原理测定羊毛表面亲水性的研究[J].纺织学报, 2001,22(3):11-13.
    81. Yamamura S,Morita Y,Hasan Q,et al.Keratin degradation:a cooperative action of two enzymes from Stenotrophomonas sp.[J].Biochemical and Biophysical Research Communications,2002(294):1138-1143.
    82.樊增禄,戴瑾瑾,朱泉.蛋白酶对羊毛的作用机理研究[J].纺织学报,2002,23(1):19-21
    83. Min S K,Tae J K.Dimensional and surface properties of plasma and silicone treated wool fabric[J].TRJ, 2002,72(2):113-120.
    84.邵建中,刘今强,郑今欢,等.过一硫酸盐羊毛表面改性机理的红外光谱研究[J].纺织学报, 2001,22(5):285-287.
    85.卢雨正,高卫东,王鸿博,等.利用MTG酶提高精纺羊毛织物易护理性能[J].毛纺科技,2004 (7)5-7.
    86. Sakamoto H,Kumazawa Y,Motoki M.Strength of protein gels prepared with microbial transgultaminase as related to conditions[J].Food Science,1994,59:866-871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700