用户名: 密码: 验证码:
中子辐照6H-SiC的缺陷分析与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC具有优良的抗辐照性,作为宽带隙半导体材料,可用于制备抗辐照电子器件和辐照探测器,作为结构功能材料,SiC陶瓷和复合材料在聚变堆面向等离子体元件的制备方面具有巨大的应用潜力。这些产品在使用过程中因受到载能粒子的辐照而产生大量的缺陷,进而导致各种性能退化。所以充分认识辐照缺陷的形成机制、微观构型及其对宏观物性的影响非常重要。本文利用拉曼光谱和X射线衍射研究了1.72×1019和1.67×1020n/cm2中子辐照的6H-SiC,详细结果如下:
     1.检测到与Si-Si振动有关的189、275、437和539cm-1峰,与Si-C振动有关的610、657和712cm-1峰,和与C-C振动有关的1420cm-1峰。大注量辐照后,还检测到1357和1603cm-1峰,它们分别属于无序石墨的A1g和E2g振动模。这些散射峰证明辐照导致SiC中形成了Si原子团、sp2/sp3C团和石墨团。
     2.辐照导致FTO2/6和FLO0/6光学峰在低波数区域出现了拖尾,这是辐照缺陷引起的声子限制效应。辐照导致FTO2/6和FLO0/6峰向低波数方向发生了不同程度的偏移,造成FLO0/6-FTO2/6劈裂减小,这主要归因于VC和VSi缺陷。
     3.对辐照缺陷进行热稳定性分析,发现Si原子团、sp2/sp3C团和石墨团分别在1100、1000和800℃退火后消失。退火过程中还检测到575cm-1峰,它在800℃退火后首次出现,1400℃退火后消失,应该属于CSiVC缺陷的Si-C振动。
     4.石墨团的产生强烈地依赖于辐照注量和故意掺杂的N杂质。本质上,诱导石墨团产生的是N聚集体而不是NC施主。在中子辐照过程中,N聚集体可以形成CSi(NC)2缔合体,它具有sp2C=C原子对,可起到石墨晶核的作用。
     5.辐照前预退火处理导致石墨团的浓度显著地降低,经过1000℃预退火处理的样品几乎不能产生石墨团。主要原因是:预退火处理导致N聚集体发生分解,辐照过程不能再形成石墨晶核sp2C=C原子对。
     6. X射线衍射法和透射电子显微镜分析法揭示,经过这两种注量辐照的SiC含有的缺陷类型主要是点缺陷、缺陷团和非晶区。
     7.利用X射线衍射法分析了(006)衍射峰的退火回复规律,发现衍射FWHM(半高宽)回复过程分为三个阶段:200-800℃、800-1400℃和1400-1600℃。
     8.利用(006)衍射峰FWHM的退火回复规律,开发出辐照SiC晶体测温技术。通过具体试验证实,这种测温技术可以对工作在900-1600℃范围内的部件进行最高温的测定,相对误差在3%以内。
Silicon carbide (SiC) is a superior irradiation-resistance material. It can be usedfor fabricating the irradiation resistance electronic devices and irradiation detectors.The SiC-based ceramics and composites are the potential materials for the fusionplasma-facing components. During the application in severe irradiation environment,the irradiation induced defects will lead directly to the deterioration of performances.It is essential to recognize the formation mechanism and microstructure of irradiationdefects and the effect of defects on the macroscopic properties. The confocalmicro-Raman spectroscopy and X-ray diffraction were employed to investigate the6H-SiC neutron irradiated up to1.72×1019and1.67×1020n/cm2. The details are asfollows:
     1. The Si-Si related peaks at189,275,437, and539cm-1, the Si-C related peaksat610,657, and712cm-1, and C-C related peak at1420cm-1are recorded. Afterhigh-fluence neutron irradiation, the peaks at1357and1603cm-1are also measured.They agree well with A1gand E2gin disordered graphite. These scattering peaksindicate that irradiation leads to the production of Si clusters, sp2/sp3C clusters andgraphite clusters.
     2. Irradiation results in the appearance of the low-frequency tails of the FTO2/6and FLO0/6optical peaks, which is phonon confinement effect. Irradiation defects alsodiminish unequally the frequency of the FTO2/6and FLO0/6peaks, leading to thereduction of FLO0/6-FTO2/6splitting. The annealing evolution demonstrates that theVCand VSiare responsible mainly for the reduction of the FLO0/6-FTO2/6splitting.
     3. Annealing experiments reflect that the Si clusters, sp2/sp3C clusters andgraphite clusters are removed after1100,1000and800oC annealing treatments,respectively. In addition, an interesting peak at575cm-1is measured during annealingtreatment. It emerges initially after annealing at800oC and vanishes at1400oC. Thisevolution indicates the575cm-1originates from the Si-C vibration of CSiVCcomplex.
     4. The formation of graphite clusters depends strongly on the neutron fluenceand intentionally incorporated N impurity. Essentially, the formation originates fromN aggregation but not from NCdonor. During neutron irradiation, N aggregation cantransform into CSi(NC)2complex, which contains the sp2C=C pair. The sp2C=C paircan act as the graphite nucleus.
     5. Pre-irradiation annealing treatment can decrease the concentration of graphite clusters. After the pre-irradiation annealing treatment at1000oC, the graphite clustersbecome almost undetectable because the N aggregation dissociates into isolated Natoms and then there is no pproduction of sp2C=C pair in SiC during the subsequentirradiation.
     6. The X-ray diffraction measurement and transmission electron microscopyanalysis indicate that there are mainly points, clusters, and amorphous regions in thesamples neutron irradiated up to the two fluences.
     7. The X-ray diffraction was employed to analyze the annealing recovery of theFWHM (full with at the half maximum) of the (006) diffraction peak, which showsthe200-800oC,800-1400oC, and1400-1600oC recovery stages.
     8. Based on the above mentioned recovery stages, the neutron irradiated SiC wasemployed to determine the maximum temperature of the parts running in the range of900-1600°C. The application test results demonstrated that the technique possesses aless than3%of the relative temperature errors.
引文
[1] P.G. Neudeck, Progress in silicon carbide semiconductor electronics technology.Journal of Electronic Materials,1995,24(4):283-288
    [2] J.B. Casady and R.W. Johnson, Status of siliconcarbide (SiC) as a wide-band gapsemiconductor for high-temperature applications: A review. Solid-StateElectronics,1996,39(10):1409-1422
    [3] S. Nigam, Jihyun Kim, F. Ren, et al. High energy proton irradiation effects onSiC Schottky rectifiers. Applied Physics Letters,2002,81(13):2385-2387
    [4] F. Nava, A. Castaldini, A. Cavallini, et al. Radiation Detection Properties of4H-SiC Schottky Diodes Irradiated Up to1016n/cm2by1MeV Neutrons. IEEETransactions on Nuclear Science,2006,53(5):2977-2982
    [5] Muhammad Usman, Anders Hallén, Reza Ghandi, et al. Effect of3.0MeVhelium implantation on electrical characteristics of4H-SiC BJTs. PhysicaScripa,2009, T141:014012
    [6] Li Xing-Ji, Geng Hong-Bin, Lan Mu-Jie, et al, Radiation effects on MOS andbipolar devices by8MeV protons,60MeV Br ions and1MeV electrons. Chin.Phys. B,2010,19(5):056103
    [7] M. Bruzzi, S. Lagomarsino, F. Nava, et al. Characterisation of epitaxial SiCSchottky barriers as particle detectors. Diamond and Related Materials,2003,12:1205-1208
    [8] F. Nava, E. Vittone, P. Vanni, et al. Radiation tolerance of epitaxial siliconcarbide detectors for electrons and γ-rays. Nuclear Instruments and Methods inPhysics Research A,2003,514:126–134
    [9] V. Ka ukauskas, R. Jasiulionis, V. Kalendra, et al. Influence of irradiation by24GeV protons on the properties of4H–SiC radiation detectors. Diamond&Related Materials,2007,16:1058–1061
    [10] Krishna C. Mandal, Characterization of Semi-Insulating4H Silicon Carbide forRadiation Detectors. IEEE Transactions on Nuclear Science,2011,58(4):1992-1999
    [11]徐世江,高温气冷堆包覆燃料颗粒SiC包覆层的强度和许用应力,核动力工程,1996,17(1):62-67
    [12]刘马林,刘兵,邵友林,等,高温气冷堆燃料颗粒SiC包覆层性质研究,原子能科学技术,2012,46(9):1188-1122
    [13]于海蛟,周新贵,张炜,等,聚变堆结构材料SiC/SiC的研究进展,材料导报,2009,23(12):104-108
    [14] S. Ueda, S. Nishio, Y. Seki, et al, A fusion power reactor concept using SiC/SiCcomposites, Journal of Nuclear Materials,1998,258-263:1589-1593
    [15] A. Hasegawa, A. Kohyama, R.H. Jones, et al, Critical issues and current status ofSiC/SiC composites for fusion, Journal of Nuclear Materials,2000,283-287:128-137
    [16] P. Yvon, F. Carré, Structural materials challenges for advanced reactor systems,Journal of Nuclear Materials,2009,385:217–222
    [17] A.I. Ryazanov, A.V. Klaptsov, A. Kohyama, et al, Radiation swelling of SiCunder neutron irradiation, Journal of Nuclear Materials,2002,307–311:1107–1111
    [18] S. Sciortinoa, F. Hartjesc, S. Lagomarsino, et al, Effect of heavy proton andneutron irradiations on epitaxial4H-SiC Schottky diodes,2005, NuclearInstruments and Methods in Physics Research A,2005,552:138–145
    [19] George Newsome, Lance L. Snead, Tatsuya Hinoki, et al, Evaluation of neutronirradiated silicon carbide and silicon carbide composites, Journal of NuclearMaterials,2007,371:76–89
    [20] D.J. Brink, J.B. Malherbe, and J. Camassel, Neutron irradiation effects in SiC,Nuclear Instruments and Methods in Physics Research B,2009,267:2716-2718
    [21] Ekrem Almaz, StephenStone, ThomasE.Blue, et al, The effects of neutronirradiation and low temperature annealing on the electrical properties of highlydoped4H silicon carbide,2010, Nuclear Instruments and Methods in PhysicsResearch A,2010,622:200–206
    [22] Saishun Yamazaki, Katsumi Yoshida, and Toyohiko Yano, Recovery behavior ofpoint defects after low-dose neutron irradiation of sintered SiC by thermaldiffusivity and swelling, Journal of Nuclear Materials,2011,417:425–429
    [23] Takashi Sawabe, Masafumi Akiyoshi, Katsumi Yoshida, et al, Estimation ofneutron-irradiation-induced defect in3C–SiC from change in XRD peak shiftand DFT study, Journal of Nuclear Materials,2011,417:430–434
    [24]陈治明,李守智,宽带隙半导体电力电子器件及其应用,北京:机械工业出版社,2008
    [25] L. Liu, J.H. Edgar, Substrates for gallium nitride epitaxy, Materials Science andEngineering,2002, R37:61–127
    [26] M. Iwami, Silicon carbide: fundamentals, Nuclear Instruments and Methods inPhysics Research A,2001,466:406–411
    [27] W.Y. Ching, Yong-Nian Xu, Paul Rulis, et al, The electronic structure andspectroscopic properties of3C,2H,4H,6H,15R and21R polymorphs of SiC,Materials Science and Engineering A,2006,422:147–156
    [28] http://www.ioffe.ru/SVA/NSM/Semicond/SiC/bandstr.html#Basic
    [29]尚也淳,张义门,张玉明,SiC抗辐照特性的分析,西安电子科技大学学报,1999,26(6):807-810
    [30] J. Wong, T. Diaz de la Rubia, M.W. Guinan, et al, The threshold energy fordefect production in SiC: a molecular dynamics study, Journal of NuclearMaterials,1994,212-215:143-147
    [31] G. Lucas, L. Pizzagalli, Comparison of threshold displacement energies in β-SiCdetermined by classical potentials and ab initio calculations, Nuclear Instrumentsand Methods in Physics Research B,2005,229:359–366
    [32]郝跃,彭军,杨银堂,碳化硅宽带隙半导体技术,北京:科学出版社,2000
    [33]王晓浩,唐飞,王文弢,用于恶劣环境的碳化硅微机电系统,北京:科学出版社,2010
    [34]杨银堂,贾护军,段宝兴,碳化硅半导体材料与器件,北京:电子工业出版社,2012
    [35]施尔畏,碳化硅晶体生长与缺陷,北京:科学出版社,2012
    [36] Lyle Patrick and W.J. Choyke, Photoluminescence of Radiation Defects inIon-Implanted6H SiC, Physical Review B,1972,5(8):3253-3259
    [37] T.A.G. Eberlein, R. Jones, P.R. Briddon, Z1/Z2Defects in4H-SiC, PhysicalReview Letter,2003,90(22):225502
    [38] T.A.G. Eberlein, R. Jones, S. berg, et al, Density functional theory calculationof the DI optical center in SiC, Physical Review B,2006,74(14):144106
    [39] Jérémie Lefèvre, Jean-Marc Costantini, Stéphane Esnouf, Thermal stability ofirradiation-induced point defects in cubic silicon carbide, Journal of AppliedPhysics,2009,106(8),083509
    [40] T. Hornos, N. T. Son, E. Janzén, et al, Theoretical study of small silicon clustersin4H-SiC, Physical Review B,2007,76(16):165209
    [41] A. Gali, P. Dea′k,E. Rauls, et al, Correlation between the antisite pair and the DIcenter in SiC, Physical Review B,2003,67(15):155203
    [42] M.V. B. Pinheiro, E. Rauls, U. Gerstmann, et al, Silicon vacancy annealing andDIluminescence in6H-SiC, Physical Review B,2004,70(24):245204
    [43] X.D. Chen, S. Fung, C.C. Ling, Deep level transient spectroscopic study ofneutron-irradiated n-type6H–SiC, Journal of Applied Physics,2003,94(5):3004-3010
    [44] G. Pensl and W.J. Choyke, Electrical and optical characterization of SiC, PhysicaB,1993,185:264-283
    [45] C.C. Ling X.D. Chen, G. Brauer, et al, Deep-level defects in n-type6H siliconcarbide induced by He implantation, Journal of Applied Physics,2005,98(4):043508
    [46] A. Polity, S. Huth, and M. Lausmann, Defect characterization inelectron-irradiated6H-SiC by positron annihilation, Physical Review B,1999,59(16):10603-10606
    [47] A.A. Rempel and H.-E. Schaefer, Irradiation-induced atomic defects in SiCstudied by positron annihilation, Applied Physics A,1995,61:51-53
    [48] A. Kawasuso, F. Redmann, R. Krause-Rehberg, et al, Vacancies and deep levelsin electron-irradiated6H SiC epilayers studied by positron annihilation and deeplevel transient spectroscopy, Journal of Applied Physics,2001,90(7):3377-3382
    [49] M. Gong, S. Fung, C. D. Beling, et al, Electron-irradiation-induced deep levels inn-type6H–SiC, Journal of Applied Physics,1999,85(11):7604-7608
    [50] X.D. Chen, C.L. Yang, M. Gong, et al, Low Energy Electron Irradiation InducedDeep Level Defects in6H-SiC: The Implication for the Microstructure of theDeep Levels E1/E2, Physical Review Letters,2004,92(12):125504
    [51] S. Arpiainen, K. Saarinen, P. Hautoj rvi, et al, Optical transitions of the siliconvacancy in6H-SiC studied by positron annihilation spectroscopy, PhysicalReview B,2002,66(7):075206
    [52] A. Koizumi, V. P. Markevich, N. Iwamoto, et al, E1/E2traps in6H-SiC studiedwith Laplace deep level transient spectroscopy, Applied Physics Letters,2013,102(3):032104
    [53] Manabu Ishimaru and Kurt E. Sicakfus, Dose dependence of microstructuralevolution in oxygen-ion-implanted silicon carbide, Applied Physics Letters,1999,75(10):1392-1394
    [54] N. Mestres, F. Alsina, F.J. Campos, et al, Confocal Raman Microprobe of LatticeDamage in N+Implanted6H-SiC, Materials Science Forum,2000,338-342:663-666
    [55] J. Conrad, T. R dle, T Weber, et al, Irradiation effects in SiC studied via RBSC, Raman scattering and surface profiling, Nuclear Instruments and Methods inPhysics Research B,1996,118:748-752
    [56] A. Pérez-Rodríguez, Y. Pacaud, L. Calvo-Barrio, et al, Analysis of ion beaminduced damage and amorphization of6H SiC by raman scattering, Journal ofElectronic Materials,1996,25(3):541-547
    [57] A. Gentils, F. Linez, A. Canizarès, et al, Influence of ion energy on damageinduced by Au-ion implantation in silicon carbide single crystals, Journal ofMaterials Science,2011,46:6390-6395
    [58] E.Z. Jin and L.S. Niu, Crystalline to amorphous transition in silicon carbideunder neutron irradiation, Vacuum,2012,86:917-923
    [59] L.L. Snead and J.C. Hay, Neutron irradiation induced amorphization of siliconcarbide, Journal of Nuclear Materials,1999,273:213-220
    [60] Xavier Kerbiriou, Jean-Marc Costantin, Maxime Sauzay, Amorphization anddynamic annealing of hexagonal SiC upon heavy-ion irradiation Effects onswelling and mechanical properties, Journal of Applied Physics,2009,105(7):073513
    [61] H. Inui, H. Mori, H. Fujita, Electron-irradiation-induced crystalline toamorphous transition in a-SiC single crystals, Philosophical Magazine Part B,1990,61(1):107-124
    [62] H. Inui, H. Mori, A. Suzuki, et al, Electron-irradiation-inducedcrystalline-to-amorphous transition in β-SiC single crystals, PhilosophicalMagazine Part B,1992,65(1):1-14
    [63] W.J. Weber, L.M. Wang, N. Yu, et al, Structure and properties ofion-beam-modified (6H) silicon carbide, Materials Science and Engineering A,1998,253:62–70
    [64] T. Henkel,V. Heera, R. K gler,,In situ laser reflectometry study of theamorphization of silicon carbide by MeV ion implantation, Journal of AppliedPhysics,1998,84(6):3090-3097
    [65] R. Devanathan F. Gao, and W.J. Weber, Amorphization of silicon carbide bycarbon displacement, Applied Physics Letters,2004,84(19):3909-3911
    [66] Manabu Ishimaru, In-Tae Bae, and Yoshihiko Hirotsu1, Electron-beam-inducedamorphization in SiC, Physical Review B,2003,68(14):144102
    [67] In-Tae Bae, Manabu Ishimaru, and Yoshihiko Hirotsu, Structural changes of SiCunder electron-beam irradiation: Temperature dependence, Nuclear Instrumentsand Methods in Physics Research B,2006,250:315–319
    [68] A. H fgen, V. Heera, F. Eichhorn, et al, Annealing and recrystallizationofamorphous silicon carbide produced by ion implantation, Journal of AppliedPhysics,1998,84(9):4769-4774
    [69] Akira Uedono, Shoichiro Tanigawa, Takeshi Ohshima, et al, Crystallization ofan amorphous layer in P+-implanted6H-SiC studied by monoenergetic positronbeams, Journal of Applied Physics,2000,87(9):4119-4125
    [70] L.L. Snead, S.J. Zinkle, J.C. Hay, et al, Amorphization of SiC under ion andneutron irradiation, Nuclear Instruments and Methods in Physics Research B,1998,141:123-132
    [71] L.L. Snead and S.J. Zinkle, Structural relaxation in amorphous silicon carbide1,Nuclear Instruments and Methods in Physics Research B,2002,191:497–503
    [72] A. F hl, R.M. Emrick, and H.D. Carstanjen, A Rutherford backscattering studyof Ar-and Xe-implanted silicon, Nuclear Instruments and Methods in PhysicsResearch B,1992,65:335-330
    [73] In-Tae Bae, Manabu Ishimaru, and Yoshihiko Hirotsu, Solid phase epitaxy ofamorphous silicon carbide: Ion fluence dependence, Journal of Applied Physics,2004,96(3):1451-1457
    [74] Shinsuke Harada, Manabu Ishimaru, and Teruaki Motooka, Recrystallization ofMeV Si implanted6H-SiC, Applied Physics Letters,1996,69(23):3534-3536
    [75] E. Wendler, A. Heft, and W. Wesch, Ion-beam induced damage and annealingbehaviour in SiC, Nuclear Instruments and Methods in Physics Research B,1998,141:105-117
    [76] F. Gao, Y. Zhang, M. Posselt, et al, Atomic-level simulations of epitaxialrecrystallization and amorphous-to-crystalline transition in4H-SiC, PhysicalReview B,2006,74(10):104108
    [77] L.L. Snead and J.C. Hay, Neutron irradiation induced amorphization of siliconcarbide, Journal of Nuclear Materials,1999,273:213-220
    [78] W.J. Weber, N. Yu, L.M. Wang, et al, Temperature and dose dependence ofion-beam-induced amorphization in α-SiC, Journal of Nuclear Materials,1997,244:258-265
    [79] V. Heera, F. Prokert, N. Schell, et al, Density and structural changes in SiC afteramorphization and annealing, Applied Physics Letters,1997,70(26),3531-3533
    [80] Q. Xu, T. Yoshiie, and M. Okada, Positron annihilation of vacancy-type defectsin neutron-irradiated4H–SiC, Journal of Nuclear Materials,2009,386–388:169–172
    [81] W.J. Weber, W.Jiang, and S. Thevuthasan, Accumulation, dynamic annealing andthermal recovery of ion-beam-induced disorder in silicon carbide, NuclearInstruments and Methods in Physics Research B,2001,175-177:26-30
    [82] Y. Zhang, W.J. Weber, W. Jiang, et al, Damage evolution and recovery on both Siand C sublattices in Al-implanted4H–SiC studied by Rutherford backscatteringspectroscopy and nuclear reaction analysis, Journal of Applied Physics,2002,91(10):6388-6395
    [83] Zhouwen Rong, Fei Gao, and William J. Weber, Monte Carlo simulations ofdefect recovery within a10keV collision cascade in3C–SiC, Journal of Appliedphysics,2007,102(10):103508
    [84]张伶俐,邓爱红,Shan Y Y等,电子辐照前后的n型6H-SiC低温正电子捕获的研究,四川大学学报,2004,41(2):348-353
    [85]王鸥,丁元力,钟志亲等,6H-SiC辐照特性的低温光致发光研究,光散射学报,2004,16(1):66-79
    [86] Z.Q. Zhong, D.X. Wu, M. Gong, et al, Primary photoluminescence in as-neutron(electron)-irradiated n-type6H-SiC, Journal of Applied Physics,2006,99(9):093511
    [87]牟维兵,龚敏,SiC-pn结二极管α粒子辐射效应,强激光与粒子束,2010,22(1):199-202
    [88]张林,肖剑,邱彦章,等,Ti/4H-SiC肖特基势垒二极管抗辐射特性的研究,2011,60(5):56106
    [89]胡志良,贺朝会,4H-SiC NMOS电子、质子辐照数值模拟,强激光与离子束,2011,23(5):1387-1390
    [90]张林,肖剑,邱彦章,等,Ni/4H-SiC SBD电离辐照探测器的实验研究,电子科技大学学报,2012,40(3):467-470
    [91]张林,张义门,张玉明,等,Ni/4H-SiC肖特基势垒二极管的γ射线辐照效应,物理学报,2009,58(4):2737-2741
    [92]尚也淳,张义门,张玉明,电子辐照下的SiC少子寿命退火模型,半导体学报,2000,21(2):169-173
    [93]尚也淳,张义门,张玉明,中子辐照下的6H-SiC pn结电特性分析,半导体学报,2000,21(7):691-696
    [94]尚也淳,张义门,张玉明,6H-SiC JFET输出特性及其中子辐照模型,核电子学与探测技术,2000,20(6):424-428
    [95]尚也淳,张义门,张玉明等,6H-SiC MOS结构电特性及其辐照效应的研究,电子与信息学报,2003,25(3):389-394
    [96] Zhang lin, Zhang Yimen, Zhang Yuming, et al, Neutron radiation effect on4H-SiC MESFETs and SBDs, Journal of Semiconductors,2010,31(11):114006
    [97]张勇,张崇宏,周丽宏等,氦离子注入4H-SiC晶体的纳米硬度研究,物理学报,2010,59(6):4130-4135
    [98]张洪华,张崇宏,李炳生等,碳化硅中氦离子高温注入引入的缺陷及其退火行为的光谱研究,物理学报,2009,58(5):3302-3308
    [99]徐超亮,张崇宏,李炳生等,Kr离子注入SiC的拉曼光谱研究,原子核物理评论,2011,28(2):209-214
    [100]周丽宏,张崇宏,杨义涛等,离子辐照后4H-SiC晶体退火前后的光谱研究,核技术,2007,30(4):314-317
    [101]周丽宏,张崇宏,宋银等,铅离子辐照注碳4H_SiC的红外光谱特性研究,原子核物理评论,2006,23(2):221-223
    [102] C. C. Ling, C. D. Beling, and S. Fung, Isochronal annealing studies of n-type6H-SiC with positron lifetime spectroscopy, Physical Review B,2000,62(12):8016-8022
    [103] C.C. Ling, X.D. Chen, M. Gong, et al, Electron energy dependence on inducingthe photoluminescence lines of6H-SiC by electron irradiation, Physica B,2006,376-377:374-377
    [104] C Y Zhu, C C Ling, G. Brauer, et al, Vacancy-type defects in6H–silicon carbideinduced by He-implantation a positron annihilation spectroscopy approach,Journal of Physics D: Applied Physics,2008,41:195304
    [105] Yu Liu, Guang Wang, ShunChong Wang,et al, Defect Induced Magnetism inNeutron Irradiated6H-SiC Single Crystals, Physical Review Letters,2011,106(8):087205
    [106]刘培生,晶体点缺陷基础,北京:科学出版社,2010
    [107]赵敬师,位错理论基础,北京:国防工业出版社,1989
    [108]潘金生,范毓殿,核材料物理基础,北京:化学工业出版社,2007
    [109]郁金南,材料辐照效应,北京:化学工业出版社,2007
    [110]杨文斗,反应堆材料学,北京:原子能出版社,2000
    [111]曹建中,半导体材料辐照效应,北京:科学出版社,1993
    [112] S. Greulich-Weber, M. Spaeth, E.N. Kalabukhova, et al, On the microscopicstructures of shallow donors in6H SiC: Studies with EPR and ENDOR, SolidState Communications,1995,93(5):393-397,
    [113] P.G. Baranov, B.Ya. Ber, I.V. Ilyin, et al, Peculiarities of neutron-transmutationphosphorous doping of30Si enriched SiC crystals: Electron paramagneticresonance study, Journal of Applied Physics,2007,102(6),063713
    [114] Enze Jin, Li-Sha Niu, Driving mechanism of neutron irradiation inducedamorphization in silicon carbide, Physica B,2011,406:601-608
    [115]万荣发,金属材料辐照损伤,北京:科学出版社,1993
    [116] S. Kondo, Y. Katoh, and L.L. Snead, Microstructural defects in SiC neutronirradiated at very high temperatures, Journal of Nuclear Materials,2008,382:160-169
    [117] R.J. Price, Neutron irradiation-induced voids in β-silicon carbide, Journal ofNuclear Materials,1973,48:47-51
    [118] S. Kondo, Y. Katoh, and L.L. Snead, Unidirectional formation of tetrahedralvoids in irradiated silicon carbide, Applied Physics Letters,2008,93(16):163110
    [119]郁金南,辐照下微观结构的演化(I),核科学与工程,1989,9(3):237-250
    [120]郁金南,辐照下微观结构的演化(II),核科学与工程,1989,9(4):336-363
    [121] S. Nakashima and K. Kisoda, Raman determination of structures of long-periodSiC polytypes, Journal of Applied Physics,1994,75(10):5354-5360
    [122]冯敏,王玉芳,郝建民等,拉曼光谱方法研究SiC晶体的晶型,光散射学报,2003,15(3):158-161
    [123]韩荣江,王继扬,徐现刚等,显微激光拉曼光谱法鉴别SiC晶体的多型体结构,人工晶体学报,2004,33(6):877-881
    [124]郭啸,刘学超,忻隽等,拉曼面扫描表征氮掺杂6H-SiC晶体多型分布,无极材料学报,2012,27(6):609-614
    [125]彭燕,宁丽娜,高玉强等,4H-SiC晶体表面形貌和多型结构变化研究,人工晶体学报,2010,39(3):559-563
    [126] M. Hundhausen*, R. Püsche, J. R hrl, et al, Characterization of defects insilicon carbide by Raman spectroscopy, Physica Status Solidi (b),2008,245:1356-1368
    [127] Shenghuang Lin, Zhiming Chen, Lianbi Li, et al, Investigation of micropipes in6H–SiC by Raman scattering, Physica B,2012,407:670–673
    [128] S. Nakashima, Y. Nakatake, H. Harima, et al, Detection of stacking faults in6H-SiC by Raman scattering, Applied Physics Letters,2000,77(22):3612-3614
    [129] S. Nakashima, T. Kitamura, T. Kato, et al, Determination of free carrier densityin the low doping regime of4H SiC by Raman scattering, Applied PhysicsLetters,2008,93(12):121913
    [130] S. Nakashima, H. Harima, N. Ohtani, et al, Raman characterization of localelectrical properties and growth process in modulation-doped6H-SiC crystals,Journal of Applied Physics,2004,95(7):3547-3552
    [131] Yan Peng, Xiangang Xu, Xiaobo Hu, et al, Raman spectroscopic study of theelectrical properties of6H SiC crystals grown hydrogen-assisted physical vaportransport method, Journal of Applied Physics,2010,107(9):093519
    [132] J.C. Burton, L. Sun, M. Pophristic, et al, Spatial characterization of doped SiCwafers by Raman spectroscopy, Journal of Applied Physics,1998,84(11):6268-6273
    [133]王光红,施成营,冯敏等,拉曼光谱研究n型4H-和6H-SiC晶体的载流子浓度,光散射学报,2007,19(2):108-113
    [134] R. Püsche, M. Hundhausen, L. Ley, et al, Temperature induced polytypeconversion in cubic silicon carbide studied by Raman spectroscopy, Journal ofApplied Physics,2004,96(10):5569-5575
    [135] J. Chen, S.C. Lien, Y.C. Shin, et al, Occurrence of Polytype Transformationduring Nitrogen Doping of SiC Bulk Wafer, Materials Science Forum,2009,600-603:39-42
    [136] M.A. Capano, B.C. Kim, A.R. Smith, et al, Residual strains in cubic siliconcarbide measured by Raman spectroscopycorrelated with x-ray diffraction andtransmission electron microscopy, Journal of Applied Physics,2006,100(8):083514
    [137] H. Mukaida, H. Okumura, J.H. Lee, et al, Raman scattering of SiC Estimationof the internal stress in3C-SiC on Si, Confocal micro-Raman characterizationof lattice damage in high energy aluminum implanted6H-SiC, Journal ofApplied Physics,1987,62(1):254-257
    [138] F.J. Campos, N. Mestres, J. Pascual, et al, Confocal micro-Ramancharacterization of lattice damage in high energy aluminum implanted6H-SiC,Journal of Applied Physics,1999,85(1):99-104
    [139] F.J. Campos, N. Mestres, F. Alsina, et al, Confocal micro-Raman scattering andRutherford backscattering characterization of lattice damage in aluminumimplanted6H–SiC, Diamond and Related Materials,1999,8:357–360
    [140] J. Cabrero, F. Audubert, R. Pailler, et al,Thermal conductivity of SiC afterheavy ions irradiation, Journal of Nuclear Materials,2010,396:202–207
    [141] S. Sorieul, J.-M. Costantini, L. Gosmain, et al, Raman spectroscopy study ofheavy-ion-irradiated α-SiC, Journal of Physics: Condensed Matter,2006,18:5235-5251
    [142]张光寅,蓝国祥,王玉芳,晶格振动光谱学(第二版),北京:高等教育出版社,2001
    [143]韩茹,杨银堂,柴常春,n-SiC的电子拉曼散射及二级拉曼谱研究,物理学报,2008,57(5):3182-3187
    [144]杨序刚,吴琪琳,拉曼光谱的分析与应用,北京:国防工业出版社,2008
    [145] F. Gao, and W.J. Weber, Cascade overlap and amorphization in3C SiC: Defectaccumulation, topological features, and disordering, Physical Review B,2002,66(2):024106
    [146] Sergey V. Ovsyannikov, Vsevolod V. Shchennikov Jr, Vladimir V.Shchennikov, et al, Raman characterization of hydrogen ion implanted silicon“High-dose effect”, Physica B,2008,403:3424–3428
    [147] T.A. Harriman, D.A. Lucca, J.-K. Lee, et al, Ion implantation effects in singlecrystal Si investigated by Raman spectroscopy, Nuclear Instruments andMethods in Physics Research B,2009,267:1232–1234
    [148] Vasily Lavrentiev, Jiri Vacik, Vladimir Vorlicek, et al, Raman scattering insilicon disordered by gold ion implantation, Physica Status Solidi (b),2010,247:2022-2026
    [149] N. Chaabane, A. Debelle, G. Sattonnay, et al, Investigation of irradiation effectsinduced by self-ion in6H-SiC combining RBS/C, Raman and XRD, NuclearInstruments and Methods in Physics Research B,2012,286:108–113
    [150] Bernard A. Weinstein,and G.J. Piermarini, Raman scattering and phonondispersion in Si and GaP at very high pressure, Physical Review B,1975,12(4):1172-1186
    [151] Z.C. Feng, S.J. Chua, K. Tone, et al, Recrystallization of carbon–aluminum ioncoimplanted epitaxial silicon carbide-evidenced by room temperature opticalmeasurements, Applied Physics Letters,1999,75(4):472-474
    [152] W. Jiang, Y. Zhang, M.H. Engelhard, et al, Behavior of Si and C atoms in ionamorphized SiC Weber, Journal of Applied Physics,2007,101(2):023524
    [153] A.C. Ferrari, and J. Robertson, Interpretation of Raman spectra of disorderedand amorphous carbon, Physical Review B,2000,61(20):14095-14107
    [154] F. Tuinstra and J.L. Koenig, Raman Spectrum of Graphite, The Journal ofChemical Physics,1970,53(3):1126-1130
    [155] C. Serre, L. Calvo-Barrio, A. Pérez-Rodríguez, et al, Ion-beam synthesis ofamorphous SiC films Structural analysis and recrystallization, Journal ofApplied Physics,1996,79(9):6907-6913
    [156] H. Weishart, V. Heera, F. Eichhorn, et al, Diamond formation by carbonimplantation into cubic silicon carbide, Diamond and Related Materials,2004,13:627–632
    [157] Yuewu Pan, Pinwen Zhu, Xin Wang, Preparation and characterization ofone-dimensional SiC–CNT composite nanotubes, Diamond and RelatedMaterials,2011,20:310-313
    [158] Tatiana Perova, Karl Maile, Abram Lyutovich, et al, Investigation into thestructure and composition of carbon/carbon-SiC composites. In: Thomas J.Glynn, eds. Proceedings of Optics and Photonics Technologies and Applications,2003:758-769
    [159]阎研,黄福敏,张树霖等,SiC纳米棒光学声子的喇曼光谱,半导体学报,2001,22(6):726-728
    [160] Akhilesh K. Arora, M. Rajalakshmi, T.R. Ravindran, et al, Raman spectroscopyof optical phonon confinement in nanostructured materials, Journal of RamanSpectroscopy,2007,38:604-617
    [161]白莹,兰燕娜,朱会丽等,多孔硅拉曼光谱随激发功率变化的研究,光学学报,2005,25(12):1715-1717
    [162] Stefan Rohmfeld, Martin Hundhausen, and Lothar Ley, Raman scattering inpolycrystalline3C-SiC: Influence of stacking faults, Physical Review B,1998,50(15):9858-9862
    [163] S. Nakashima,T. Mitani, J. Senzaki, et al, Deep ultraviolet Raman scatteringcharacterization of ion-implanted SiC crystals, Journal of Applied Physics,2005,97(12):123507
    [164] Victor G. Plotnichenko, Vitaly O. Nazaryants, Elena B. Kryukova, et al,Refractive index spectral dependence, Raman spectra, and transmission spectraof high-purity28Si,29Si,30Si, andnatSi single crystals, Applied Optics,2011,50(23):4633-4641
    [165] H. Richter, Z.P. Wang, and L. Ley, The one phonon Raman spectrum inmicrocrystalline silicon, Solid State Communications,1981,39:625-629
    [166] Gerald Burns, F.H. Dacol, C.R. Wie, et al, Phonon shifts in ion bombardedGaAs: Raman Measurements, Solid State Communications,1987,62(7):449-454
    [167] K. Kuriyama, Takashi Kato, Satoru Tajima, et al, Local lattice distortionrelating to phosphorus antisite defect in phosphorus-ion-implanted GaP layer,Applied Physics Letters,1995,66(22):2995-2997
    [168] K. Kuriyama, Y. Miyamoto, and M. Okada, Redshift of the longitudinal opticalphonon in neutron irradiated GaP, Journal of Applied Physics,1997,85(7):3499-3502
    [169] K. Bouziane, M. Mamor, M. Elzain, et al, Defects and magnetic properties inMn-implanted3C-SiC epilayer on Si(100) Experiments and first-principlescalculations Mn-implamted3C-SiC, Physical Review B,2008,78(19):195305
    [170] F. Gao and W.J. Weber, Cascade overlap and amorphization in3C SiC: Defectaccumulation, topological features, and disordering, Physical Review B,2002,66(2):024106
    [171] J. Chen, P. Jung, and H. Klein, Production and recovery of defects in SiC afterirradiation and deformation, Journal of Nuclear Materials,1998,258-263:1803-1808
    [172] F. Gao and W.J. Weber, Recovery of close Frenkel pairs produced by lowenergy recoils in SiC Weber, Journal of Applied Physics,2003,94(7):4348-4356
    [173] Atsuo Kawasuso, Hisayoshi Itoh, Sohei Okada, et al, Annealing processes ofvacancy type defects in electron irradiated and as grown6H-SiC studied bypositron lifetime spectroscopy, Journal of Applied Physics,1996,80(10):5639-5645
    [174] Z. Zolnai, N.T. Son, C. Hallin, et al, Annealing behavior of the carbon vacancyin electron-irradiated4H-SiC, Journal of Applied Physics,2004,96(4):2406-2408
    [175] Th. Lingner, S. Greulich-Weber, J.-M. Spaeth, et al, Structure of the siliconvacancy in6H-SiC after annealing identified as the carbon vacancy–carbonantisite pair, Physical Review B,2001,64(24):245212
    [176] Z. Zolnai, N.T. Son, B. Magnusson, et al, Annealing Behaviour of Vacancy-andAntisite-Related Defects in Electron-Irradiated4H-SiC, Material ScienceForum,2004,457-460:473-476
    [177]胡笨芙,高桥平七郎,竹山太郎,电子辐照Fe-Cr-Ni奥氏体合金的空洞体胀与诱起晶界偏析的研究,金属学报,1988,24(3):A180-A186
    [178]万发荣,高桥平七郎,褚武扬等,Fe-10%Cr铁素体合金中氢对辐照诱起偏析的影响,物理学报,1996,45(3):464-469
    [179] A.O. Evwaraye, S.R. Smith, W.C. Mitchel, et al, Boron acceptor levels in6H-SiC bulk samples, Applied Physics Letters,1997,71(9):1186-1188
    [180] U. Gerstmann, E. Rauls, Th. Frauenheim, et al, Formation and annealing ofnitrogen related complexes in SiC, Physical Review B,2003,67(20):205202
    [181] Shunsuke Muto and Tetsuo Tanabe, Local structures and damage processes ofelectron irradiated α-SiC studied with transmission electron microscopy andelectron energy-loss spectroscopy, Journal of Applied Physics,2003,93(7):3765-3775
    [182] Takuro Tomita, Tatsuya Okada, Hiroyuki Kawahara, et al, Microscopicanalysis of carbon phases induced by femtosecond laser irradiation onsingle-crystal SiC, Applied Physics A,2010,100,113-117
    [183] Makoto Yamaguchi, Shigeru Ueno, Ryota Kumai, et al, Raman spectroscopicstudy of femtosecond laser-induced phase transformation associated with rippleformation on single-crystal SiC, Applied Physics A,2010,99:23-27
    [184] L.G. Can ado, K. Takai, T. Enoki, et al, General equation for the determinationof the crystallite size La of nanographite by Raman spectroscopy, AppliedPhysics Letters,2006,88(16):163106
    [185] R. Weing rtner, P.J. Wellmann, M. Bickermann, et al, Determination of chargecarrier concentration in n-and p-doped SiC based on optical absorptionmeasurements, Applied Physics Letters,2002,80(1):70-72
    [186] C. F. Young, K. Xie, E. H. Poindexter, et al, Electron paramagnetic resonanceof nitrogen pairs and triads in6H-SiC: Analysis and identification, AppliedPhysics Letters,1997,70(14):1858-1860
    [187] H.-J. Rost, J. Doerschel, K. Irmscher, et al, Influence of nitrogen doping on theproperties of4H–SiC single crystals grown by physical vapor transport, Journalof Crystal Growth,2003,257,75-83
    [188] D.M. Hansen, G. Chung and M.J. Loboda, A Study of Nitrogen Incorporationin PVT Growth of n+4H SiC, Materials Science Forum,2006,527-529:59-62
    [189] A. Reznik, V. Richter, and R. Kalish, Kinetics of the conversion of brokendiamond (sp3) bonds to graphitic (sp2) bonds, Physical Review B,1997,56(13):7930-934
    [190] Jiangtao Hu, Peidong Yang, and Charles M. Lieber, Nitrogen driven sp3to sp2transformation in carbon nitride materials, Physical Review B,1998,57(6),R3158-R3188
    [191] M. Yoshikawa, K. Iwagami, T. Matsunobe, et al, Resonant Raman scatteringfrom N-doped and Si-doped diamondlike amorphous carbon films, PhysicalReview B,2004,69(4):045410(R)
    [192] R. Rurali, P. Godignon, J. Rebollo, et al, First principles study of n-typedopants and their clustering in SiC, Applied Physics Letters,2003,82(24):4298-4300
    [193] C.F. Young, K. Xie, E.H. Poindexter, et al, Electron paramagnetic resonanceof nitrogen pairs and triads in6H-SiC: Analysis and identification, AppliedPhysics Letters,1997,70()14:1858-1860
    [194] U. Gerstmann, E. Rauls, S. Greulich-Weber, et al, Nitrogen Donor Aggregationin4H-SiC g-Tensor Calculations, Materials Science Forum,2007,556-557:391-394
    [195] M.E. Zvanut and J. van Tol, Nitrogen-related point defect in4H and6H SiC,Physica,2007,401-402:73-76
    [196] A.V. Duijn-Arnold, R. Zondervan, and J. Schmidt, Electronic structure of the Ndonor center in4H-SiC and6H-SiC, Physical Review B,2001,64(8):085206
    [197] Dong Hyuk SHIN and Svitlana I. VLASKINA, Effect of Annealing on theImpurities of6H–SiC Single Crystals, Japanese Journal of Applied Physics,1999,38: L861-L863
    [198] D. berg, A. Hallén, P. Pellegrino, et al, Nitrogen passivation byimplantation-induced point defects in4H–SiC epitaxial layers, Applied SurfaceScience,2001,184:263–267
    [199] Stephanie R. Sails, Derek J. Gardiner, Michael Bowden, et al, Monitoring thequality of diamond films using Raman spectra excited at514.5nm and633nm,Diamond and Related Materials,1996,5:589-591
    [200] K.W.R. Gilkes, H.S. Sands, D.N. Batchelder, et al, Direct observation of sp3bonding in tetrahedral amorphous carbon using ultraviolet Raman spectroscopy,Applied Physics Letters,1997,70(15):1980-1982
    [201] Peter Ehrhart, Investigation of radiation damage by X-ray diffraction, Journal ofNuclear Materials,1994,216:170-198
    [202] G. Sattonnay, M. Lahrichi, A. Benyagoub, et al, Structural modificationsinduced by swift heavy ions in cubic stabilized zirconia: An X-ray diffractioninvestigation, Nuclear Instruments and Methods in Physics Research B,2007,257:476–479
    [203] A. Debelle, L. Thomé, A. Boulle, et al, Response of cubic zirconia irradiatedwith4-MeV Au ions at high temperature: An X-ray diffraction study, NuclearInstruments and Methods in Physics Research B,2012,277:14–17
    [204] Geeta P Nair, K S Chandrasekaran, A M Narsale, et al, Sample curvature anddislocation density studies on ion-implanted GaAs by x-ray diffraction,Semiconductor Science and Technology,2003,18:404-408
    [205] H. Maeta, K. Haruna, Lu Bang, et al, X-ray diffraction studies of self-ionirradiated synthetic single crystal diamond, Nuclear Instruments and Methods inPhysics Research B,1993,80/81:1477-1479
    [206] P. Musumeci, F. Roccaforte, and R. Reitano, Angular distortion of Si clusters ina-SiC, Europhysics Letters,2001,55(5):674-678
    [207] V. Heera, J. Stomenos, R. K gler, et al, Amorphization and recrystallization of6H-SiC by ion-beam irradiation, Journal of Applied Physics,1995,77(7):2999-3009
    [208] T. Iseki, T. Yano, and H. Miyazaki, X-ray line broadening in neutron irradiatedsilicon carbide, Journal of Nuclear Materials,1992,191-194:588-591
    [209] T. Yano, H. Miyazaki, M. Akiyoshi, et al, X-ray diffractometry andhigh-resolution electron microscopy of neutron-irradiated SiC to a fluence of1.9×1027n/m2, Journal of Nuclear Materials,1998,253:78-86
    [210] Toyohiko Yano, Masafumi Akiyoshi, Kohki Ichikawa, et al, Physical propertychange of heavily neutron-irradiated Si3N4and SiC by thermal annealing,Journal of Nuclear Materials,2001,289:102-109
    [211] Y. Katoh, N. Hashimoto, S. Kondo, et al, Microstructural development in cubicsilicon carbide during irradiation at elevated temperatures, Journal of NuclearMaterials,2006,351:228-240
    [212] N.T. Son, P.N. Hai, and E. Janzén, Carbon vacancy-related defect in4H and6HSiC, Physical Review B,2001,63(20):201201
    [213] Hisayoshi Itoh and Naohiro Hayakawa, Electron spin resonance inelectron-irradiated3C-SiC, Journal of Applied Physics,1989,66(9):4529-4531
    [214] C.C. Ling, C.D. Beling, and S. Fung, Isochronal annealing studies of n-type6H-SiC with positron lifetime spectroscopy, Physical Review B,2000,62(12):8016-8022
    [215] W. Jiang, W.J. Weber, S. Thevuthasan, et al, Accumulation and recovery ofdisorder on silicon and carbon sublattices in ion-irradiated6H–SiC, Journal ofNuclear Materials,2001,289:96-101
    [216] W.J. Weber, W. Jiang, and S. Thevuthasan, Defect annealing kinetics inirradiated6H–SiC, Nuclear Instruments and Methods in Physics Research B,2000,166-167:410-414
    [217] Tetsuya Suzuli, Toyohiko Yano, Tsutomu Mori, et al, Neutron irradiationdamage of silicon carbide, Materials Engineering,1994,27:314-324
    [218] Alex A. Volinsky and L.G. Cinzbursky, Irradiated cubic single crystal SiC as ahigh temperature sensor, Mat. Res. Soc. Symp. Proc. Vol.,2004,792:R5.3.1-R5.3.6
    [219] Alex A. Volinsaky, V.A. Nikoleanko, V.A. Morozov, et al, Irradiated SingleCrystals for High Temperature Measurements in Space Application, Mater. Res.Soc. Symp. Proc.,2005,851: NN1.4.1-NN1.4.6
    [220] I.V. Bachuchin, O.O. Zabusov, V.A. Morozov,et al, Temperature measurementwith irradiated materials, Atomic Energy,2011,110:178-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700