木材—无机质生物矿化复合材的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从木材科学的角度出发,探讨了天然木材-无机质生物矿化复合的形成机理,进而运用其形成机理将研究对象从“死细胞”变成“活材料”,通过对人工林树种进行生物矿化的模拟实验从而起到对木材进行功能性改良的目的。本文主要对天然木材-无机质生物矿化复合材中硅石含量,天然木材-无机质生物矿化复合材周围环境条件,天然木材-无机质生物矿化复合材形成机理,竹材-无机质生物矿化复合材,硅酸钠胁迫下苗木生理生化反应,硅酸钠胁迫下木材-无机质生物矿化复合材等几个方面的内容进行了研究,研究结果表明:
     (1)天然木材-无机质生物矿化复合材中二氧化硅的含量的变化规律。在不同轴向分布上,柠檬桉木材和山油柑木材中二氧化硅含量均从树干的基部向树梢部位依次减少;在不同径向分布上,柠檬桉木材中二氧化硅含量是由心材向边材逐渐增加,山油柑木材中二氧化硅含量是由心材向边材逐渐减少。
     (2)天然木材-无机质生物矿化复合材周围环境条件的分析。天然木材-无机质生物矿化复合材中二氧化硅含量与土壤中二氧化硅含量的含量呈正相关关系;天然木材-无机质生物矿化复合材一般生长在酸性或微酸性的土壤中,随着土壤pH值的减小,木材中二氧化硅含量积累的会较多。
     (3)天然木材-无机质生物矿化复合材中硅石的SEM-EDXA分析。木材中硅石及晶体主要存在于射线薄壁细胞、轴向薄壁细胞、分隔纤维细胞以及导管中;木材中的晶体的主要化学成分是CaCO_3晶体和CaC_2O_4晶体,硅石的主要成分是SiO_2,形态主要有粗糙颗粒、光滑颗粒、硅砂、葡萄颗粒、云彩颗粒等;晶体和硅石的尺寸大小从树干基部向树梢部位依次变小。
     (4)天然木材-无机质生物矿化复合材(柠檬桉木材和山油柑木材)中硅石的XRD、FTIR、XPS分析。XRD对分析,硅的物相,主要为无定形的SiO_2(硅胶);FTIR分析,波数在2931-2924 cm~(-1)、1051-1048 cm~(-1)、834 cm~(-1)范围内现Si的谱图;XPS分析,在结合能为284-290 eV,531-534 eV和103 eV附近有强吸收峰分别为C,O和Si元素,天然木材-无机质生物矿化复合材中存在Si-O-C的形式,硅以SiO_2的形式存在木材中并与木材中的有机大分子结合。
     (5)苦龙竹中硅石的SEM-EDXA、XRD、FTIR分析。SEM-EDXA分析苦龙竹中除含有大量的C、O外,还含有Si、Mg、Al、K以及Ca等元素;XRD分析苦龙竹,根据物相可分析竹材中硅石是以无定形态的形式存在;FTIR分析苦龙竹,波数在2921-2900 cm~(-1)、1052-1048 cm~(-1)、852-834 cm~(-1)、771 cm~(-1)范围内现Si的谱图。
     (6)分别采用不同浓度的硅酸钠溶液对三角枫和滇润楠苗木进行生物矿化的模拟实验,在0.0 mmol/L-21.0 mmol/L硅酸钠浓度范围内,可以促进苗木的生长,保护苗木细胞不受伤害;在21.0 mmol/L-35.0 mmol/L硅酸钠浓度范围内,对苗木的生长起到危害作用。
     (7)人工模拟构筑的木材-无机质生物矿化复合的SEM-EDXA分析。可以清楚地看到二氧化硅以及晶体在射线薄壁细胞、导管壁上、导管壁螺纹加厚处、穿孔内、纹孔上以及木纤维中的沉淀情况,其形态有硅砂状、粗糙颗粒、光滑颗粒以及不规则状等。说明人工模拟实验是可行的、是成功的。
The formed mechanism of wood-inorganic biomineralized composition has been investigated from angles of wood science .Using this formed mechanism to become the research subjects from dead material to the living material. It can arrive to improve wood properties. In this paper,the silica contents of natural wood-inorganic biomineralized composition , the ambience comdition of natural wood-inorganic biomineralized composition,the formed mechanism of natural wood-inorganic biomineralized composition,the bamboo/inorganic biomineraliazation composition , the response of nursery stock physiological and biochemical characters under Na_2Si_3 stress and wood-inorganic biomineralized composition under Na2Si3 stress were researched. The research results are as follows:
     (1) The variety regularity of the silica contents of natural wood-inorganic biomineralized composition. The SiO_2 contents decrease in turn from underside of trunk to treetop in different axial distribution of Eucalyptus citriodora and Acronychia pedunculata . In different radial distribution,the SiO_2 contents of Eucalyptus citriodora increase from heartwood to sapwood and the SiO_2 contents of Acronychia pedunculata decrease from heartwood to sapwood .
     (2) Studies on the ambience comdition of natural wood-inorganic biomineralized composition.The SiO_2 contents of natural wood-inorganic biomineralized composition and sorrounding soils are positive correlativity. The natural wood-inorganic biomineralized composition are growing in acidity or tiny acidety soils . The SiO_2 contents increase with soil pH value decreasing. The pH value of natural wood-inorganic biomineralized composition increases with tree height increasing. However,the SiO_2 contents of wood decrease.
     (3) Studies on the natural wood-inorganic biomineralized composition by SEM-EDXA. The silica and crystal of wood are deposited in ray parenchyma,longitudinal parenchyma,septate fiber and vessel. The main chemical elements of crystal is CaCO_3 and CaC_2O_4. The main chemical elements of silica is SiO_2.The shapes of silica are mainly rough grains,smooth grains,aggregate grains,grape grains,cloud grains. The dimensions of silica and crystal change small in turn from underside of trunk to treetop.
     (4) Studies on the natural wood-inorganic biomineralized composition(Eucalyptus citriodora and Acronychia pedunculata wood) by XRD、FTIR、XPS. The phaze of silica is mainly amorphous SiO_2 analyzed by XRD. Si spectras presented to 2931-2924 cm~(-1)、1051-1048 cm~(-1)、834 cm~(-1) analyzed by FTIR .The binding energy of C,O and Si elements presented to 284-290 eV , 531-534 eV and 103 eV. The natural wood-inorganic biomineralized composition existed the form of Si-O-C. The silica exists in wood in SiO_2 form and combines with organic macromolecule .
     (5) Studies on the silicon of Pleioblastus amaru by SEM-EDXA、XRD、FTIR. The silica of Pleioblastus amarus contained C,O,Si,Mg,Al,K and Ca elements analyzed by SEM-EDXA. The phaze of silica in Pleioblastus amarus is mainly amorphous SiO_2 analyzed by XRD. Si spectras presented to 2921-2900 cm~(-1)、1052-1048 cm~(-1)、852-834 cm~(-1)、771 cm~(-1) analyzed by FTIR .
     (6) The Acer buergerianum and Machilus yunnanensis have been stressed by different Na_2SiO_3 concentrations. it can be shown that Na_2SiO_3 concentrations in certain limit can promote the grown of plants from 0.0mmol/L to 21.0mmol/L.,and meanwhile,it can also protect the cell of plants. However,high Na_2SiO_3 concentrations can be harmful to the cell of plants from 21.0mmol/L to 35.0mmol/L.
     (7) The nursery stock stressed by different Na_2SiO_3 concentrations were researched by SEM-EDXA.The silica and crystal are deposited in ray parenchyma,wall of vessel,spiral thickening of vessel wall,vesselperforation,pit and fiber. The shapes are aggregate grains,rough grains,smooth grains and abnormity. It shows that the manual modelling is feasible and successful.
引文
[1] 戴永定,沈继英.生物矿化作用机理[J].动物学杂志.1995,30(5):55-58
    [2] 何艮,麦康森.贝类生物矿化中的生物大分子与分子识别[J].生物化学与生物物理进展, 1999,26(4)
    [3] Stupp S L,Braun P V,Molecular manipulation of microstructures:biomaterials,ceramics,and semiconductors,Science,1997,277:1242-1248
    [4] 李坚,邱坚.生物矿化原理与木材纳米结构复合材料[J].林业科学,2005,41(1):189-193
    [5] 王荔军,郭中满,李铁津,李 敏.生物矿化纳米结构材料与植物硅营养[J].化学进展,1999,11(2):119-128
    [6] 邰子厚.生物无机化学[J].无机化学学报.1994,10(3):229-337
    [7] Mann S. The phenomenology of modulated phases [J].Mater Chem, 1995,(5):935-946
    [8] Heuer A H,Fink D J,Laraia V J,Arias J L,Calvert P D,Kendall K,Messing G L,Blackwell J,Rieke P C,Thompson D H,Wheeler A P,Veis A,Caplan A I. Innovative materials processing. strategies: a biomimetic approach. Science,1992,255:1098- 1105
    [9] 薛中会,武超,戴树玺,杜祖亮.生物矿化研究进展[J].河南大学学报(自然科学版).2003,33(3):21-25
    [10] Crenshaw M A.The soluble matrix from Mercenaria mercenaria shells[J].Biomineralization,1972,6:6-11
    [11] Stephen Mann,Douglas D.Archibald,Jon M.Didymus,Trevor Douglas,Brigid R.Heywood,Fiona C.Meldrum,Nicholas J.Reeves.Crystallization at Inorganic-Organic Interfaces:Biomimerals and Biomimetic Synthesis .Science ,1993,261:1286-1292
    [12] Weiner S,Hood L.Soluble protein of organic matrix of mollusk shells:a potential template for shell formation[J].Science,1975,190(5):987-988
    [13] Marshner H.Mineral nutrition of higher plants.Oxford-IBH,1986:269-342
    [14] Parry D W,Kelso M.The distribution of silicon deposits in the roots of Molinia caerulea (L.) Moench.And Sorghum Bicolor (L.) Moench.Annals of Botanyt,1975,39:995-1001
    [15] Parry D W,Hodson M J,Sangster A G. Some recent advances in studies of silicon in higher plants. Phil Trans R Soc Lond B Biol Sci,1984,304:537-549
    [16] Parry D W,Hodson M J. Silica distribution in the caryopsis and inflorescence bracts of foxtail millet and its possible significance in carcinogenesis. Annals of Botanyt,1982,49:531-540
    [17] Handreck K.A, Jones L.H.P. Uptake of monosilieic acid by. Trf]olium. incarnatum. L. Australian J Biol Sci,1967,20:483-485
    [18] [日]高井康雄等著.(敖光明等译).植物营养与技术[M].北京: 农业出版社,1988
    [19] 袁可能.植物营养的土壤化学[M].北京:科学出版社,1983
    [20] 藏惠林.土壤,1987,(3):123
    [21] Kondo R.,Childs C.,and Atkinson I. Opal Phytoliths of New Zealand:Lincoln (Manaaki Whenua Press),1994
    [22] 腰希申,许煌灿,曾炳山.棕榈藤的电镜观察I-藤基部分的电镜观察[J].林业科学,1998,34(3):104-109
    [23]周崟,姜笑梅.中国裸子植物材的木材解剖学及超微构造[M].北京:中国林业出版社,1994
    [24] Amos G L.Siclica in timbers[M].CSIRO Bulletin.1952,267
    [25] Richter H G.Occurrence,morphology and taxonomic implication of crystalline and siliceous inclusions in the secondary xylem of the Lauraceae and related families[J].Wood Science and Technology,1980,14:35-44
    [26] 姜笑梅,张立非,刘鹏.拉丁美洲热带木材[M].北京:中国林业出版社,1999
    [27] 王恺,傅峰.当代木材加工技术发展态势[J].木材工业,1997,11(5):14-17
    [28] 叶克林,陶伟根.新世纪我国木材科学与技术展望[J].木材工业,2001,15(1):6-9
    [29] K.Ogiso,S.Saka. Wood-inorganic composites prepared by the sol-gel processⅡ .Effects of ultrasonic treatments on preparation of wood-inorganic composites. Mokuzai gakkaishi,1993,39(3):301-307
    [30] K.Ogiso,S.Saka. Wood-inorganic composites prepared by the sol-gel process Ⅳ.Effects of chemical bends between wood and inorganic substances on property enhancement. Mokuzai gakkaishi,1994,40(10):1100-1106
    [31] S.Saka,M.Sasaki,M.Tanahashi.Wood-inorganic composites prepared by the sol-gel processⅠ . Wood-inorganic composites with porous structure. Mokuzai gakkaishi,1992,38(11):1043-1049
    [32] S.Saka,Y.Yakake.Wood-inorganic composites prepared by the sol-gel process III. Chemical-modified wood-inorganic composites. Mokuzai gakkaishi,1993,39(3):308-314
    [33] 李坚,邱坚. 纳米科技及其在木材科学中的应用前景(II) [J].东北林业大学学报,2003,31(2):1-4
    [34] 邱坚.李坚.纳米科技及其在木材科学中的应用前景(Ⅰ ) [J].东北林业大学学报 2003,31(1):1-5
    [35] 孙立,莫小洪,程之强等.用化学方法制备木材/二氧化硅纳米复合材料[J].中国建材科技,1998,7(3):23-25
    [36] 王西成,田 杰.陶瓷化木材的复合机理[J].材料研究学报,1996,10(4):435-440
    [37] 成俊卿,杨家驹,刘鹏.中国木材志[M].北京:中国林业出版社,1992
    [38] GB/T2677.2-93
    [39] 张耀丽,徐永吉,陈亚飞.苏里南商用木材的灰分及二氧化硅含量分析[J].南京林业大学学报:自然科学版,2003,27(4):85-88
    [40] Torelli N,Cufur K.Mexican tropical hard woods comparative study of ash silica content[J].Holz als Roh-und werkstoff,1995,53(1):61-62
    [41] M G Canti.Aspects of the chemical and microscopic characteristics of plant ashes found inarchaeological soils[J].Catena,2003,54:339-361
    [42] Syers J K ,Birnie A C ,Mitchell B D.The calcium oxalate context of some lichens growing on limestone[J].Lichenologist,1967,3:409-414
    [43] Cheavin W H S.The crystals and cystoliths found in plant cells[J].The Microscope,1938,2:155-158
    [44] Ellis. “Cellular Ultrastructure of Woody Plants”.W.A.Cote Jred.Syracuse Univ Press,1965:181-189
    [45] 刘元,吴义强,朱林峰.阔叶树木中矿质元素的分布[J].中南林学院学报,2001,21(4):44-49
    [46] 百岛则幸.化学的立场からみた年轮中の阳イオン分布[R].第三回树木年轮研究会报告书,1989:45-51
    [47] 刘元.针叶树木中矿质元素的分布[J]. 世界林业研究,2001,1(1):15-21
    [48] Okada N,et al ..Trace elements in the stems of trees VI.Comparisons of radial distributions among softwood stems. Mokuzai Gakkaishi,1993,39(10):1111-1118
    [49] 片山幸士.树木の年轮形成年次と矿质元素[R].第一回树木年轮研究会报告书,1987:49-59
    [50] 冈田直纪.树木年轮中の矿质元素[R].第二回树木年轮研究会报告书,1988:31-36
    [51] Okada N,et al. .Trace elements in the stems of treesⅡ .Influence of ageand vertical position on tadial distribution in Sugi(Cryptomeria japonica D.Don).Mokuzai Gakkaishi,1988,34(11):847-880
    [52] Welle B J H.On the occurrence of silica grains in the secondary xylem of the chrysobalanaceae. IAWA Bull. 1976,2:19-29
    [53] Pizzolate P. Histochemical recognition of calcium oxalate.J Histochem Cytochem,1964,12:333-336
    [54] PANY D W,HODSON M J,SANGSTER A G.Some recent advances in studies of silicon in higher plants[J].Phil.Trans.R.Soc.Lond.Biol.Sci,1984,304:37-549
    [55] 夏石头,萧浪涛,彭克勤.高等植物中硅元素的生理效应及其在农业生产中的应用[J].植物生理学通讯,2001,37(4):356-360
    [56] Marschner H. Mincral nutrition of higher plan. San Diego:Academic Press Inc,1995,417-427
    [57] 侯彦林,郭伟,朱永官.非生物胁迫下硅素营养对植物的作用及其机理[J].土壤通报,2005,36(3):426-429
    [58] TAKAHASHIE,MAJF,MIYAKEY.The possibility of silicon as an essential element for higher plants[J].Comments Agric.Food Chem.,1990,2:99-122
    [59] 纪秀娥,张美善,于海秋,白宝璋.植物的硅素营养[J].农业与技术,1998,11-13
    [60] 陈报章,刘广民,葛兆帅,吕厚远.植物硅酸体及其在环境考古学中的应用[J].徐州师范学院学报(自然科学版),1994,12(3):48-53
    [61] 王荔军,李敏,李铁津,王运华,张福锁.植物体内的纳米结构 SiO2[J]. 科学通报,2001,46(8):625-632
    [62] 何电源.土壤和植物中的硅[J].土壤学进展,1980,(5):1-10
    [63] 高尔明,赵全志.水稻施用硅肥增产的生理效应研究[J].耕作与栽培,1998,17 (5):20-28
    [64] 梁永超,张永春,马同生.植物的硅素营养[J].土壤学进展,1993,21(3):7-14
    [65] 叶春.土壤可溶性硅与水稻生理及产量的关系[J].农业科技译丛(浙江),1992,(1):24-27
    [66] OKUDA A,TAKAHASHIE.The role of silicon,in:The Mineral Nutrition of the Rice Plant[M].The Johns Hopkins Press,1965:123-146
    [67] 中国林学院南京土壤研究所.土壤理化分析.上海科学技术出版社[M],1978:237-244
    [68] Lewin J,ReinainB E F.Ann Rev Plant Physiol,1969,20:289-304
    [69] 邹邦基,何雪晖.植物的营养[M].北京:农业出版社,1985
    [70] 常志隆.植物的硅素营养及硅肥的推广应用[J].潍坊学院学报,2004,4(2):25-26
    [71] Masson G. The amounts of inorganic elements in cooperage oak [J].Holzforschung,1997,51(6):497-502
    [72] 种田健造.矿质成分の树干内分布[R].第三回树木年轮研究会报告书,1989,31-36
    [73] 梁宏温.马占相思木材酸碱性质与抽提物含量及其相关性[J]. 南京林业大学学报(自然科学 版),2004,28(2):64-66
    [74] 黄洛华,秦特夫,周勤. 十种人工林木材 pH 值和酸、碱缓冲容量的研究[J].木材工业,1999,16-19
    [75] Simpson T L,Volcani B E,Silicon and siliceous structure in biological systems,Springer,New York,1981:532-545
    [76] Perry S.Proc.R.Soc.Land B Biol.Sci.,1984,224:439
    [77] 唐志华,王强.钙硅生物矿化的结构特征及其矿化机制[J].广东微量元素科学,2000,12(7):7-11
    [78] 王永吉,吕厚远.植物硅酸体研究及应用[M].北京:海洋出版社,1993:111-118
    [79] 吕厚东,李荣华,徐庆梅.植物硅酸体分析与中学药鉴定[J].时珍国药研究,1997,8(5):28-30
    [80] Rovner I.Potential of opal phylitothys for use in paleoeco-logical reconstruction[J].Quaternary Research,1971,1:256-261
    [81] Epstein E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci.USA,1994,91:11-17
    [82] S Saka,David A.I. Goring.The Distribution of Inorganic Constituents in Black Spruse Wood as Determined by TEM-EDXA.Mokuzai Gakkaishi,1983,29(10):648-656
    [83] S Saka,Reiko Mimori.The Distribution of Constituents in White Birch Wood as Determined by SEM-EDXA.Mokuzai Gakkaishi,1994,40(1):88-94
    [84] Hiroshi Matsunaga,Junjt Matsumura,Kazuyuki Oda,Yohei Tohei Takechi.Microdistribution of copper in Cryptomeria japonica Sapwood Treated with CuAz Preservative.木材学会志,2002,48(3):199-206
    [85] 邱坚.木材生物矿物形态学和形成机理[D].东北林业大学博士后论文,2006
    [86] Scurfield G,Anderson C A,Segnit E R.Silica in woody stems.Aust JBot,1974,22:211-229
    [87] Butterfieid BG.Meylan B A. Three dimensional stucture of wood-an ultrastructural approach.Chapman and Hall London NY,1980
    [88] Kuhne H U,Leukens J S.Walchli O.Scanning electron microscope observations on mold fungi causing grey stain. Holz Roh-u Werkstoff,1970,(28):223-229
    [89] 房江育.水稻中纳米硅的生物矿化及硅的细胞学作用[D].甘肃农业大学博士论文,2003
    [90] 邱坚. 木材/ SiO2 气凝胶纳米复合材的研究[D].东北林业大学博士论文,2004
    [91] 王荔军. 在细胞壁上构筑的纳米结构 SiO2 赋予植物抗逆的作用机制[D].中国农业大学博士论文,2002
    [92] Montgomery D J,Parry W D.The ultrastructure and analytical microscopy of silicon deposition in the intercellular spaces of the roots of Molinia caerulea (L.) Moench.Annals of Botanyt,1979,44:79-84
    [93] Sangster A G.Intracellular silica deposition in mature and senescent leaves of Sieglingiadecumbens (L.) Bernh.Annals of Botanyt,1970,34:557-570
    [94] Sangster A G,Parry W D.Endodermal silicification in mature,nodal roots of Sorghum bicolor (L.) Moench.Annals of Botanyt,1976,40:373-379
    [95] Barber D A,Shone M G T.The aborption of silica from aqueous solution by plant. Journal of Experimental Botany,1965,17:569-578
    [96] 郭中满,王荔军,陈霞,王策,李铁津.生物矿化合成纳米针状 SiO2[J].高等学校化学学报,2000,21:847-848
    [97] Perry.C.C,William R J P,Fry S C.Phytochemistry,1986,34:678
    [98] Hecky R E,Mopper K,Kilham P,Degens E T. The amino acid and sugar composition of diatom cell-walls. Mar.Biol,1973,19:323
    [99] Sullivan C W,J. Phycol.,1980,16:321
    [100] Swift,D.M,A.P. Wheeler. Evidence of an organic matrix from diatom biosilica. J. Phycol,1992,28:202-209
    [101] Kr?ger N,Bergsdorf C,Sumper M. A new calcium binding glycoprotein family constitutes a major diatom cell wall component. EMBO J. 13,1994, 4676-4683
    [102] 邱 坚,李 坚. 超临界干燥制备木材-SiO2 气凝胶复合材料及其纳米结构[J]. 东北林业大学学报,2005,33(3):3-4
    [103] Stephen.J. Jeremy.Principles of bioinorganic chemistry1994(席振峰等译),北京大学出版社,1994
    [104] Sangster A G,Can. J. Bot.,1977,56:1074
    [105] Sangster A G,Amer. J. Bot.,1978,65:929
    [106] Kaufman P B,Dayanandan P,Franklin C I,Takeoka Y J. Structure and function of silica bodies in the epidermal system of grass. shoots. Ann. Bot.,1985,55 : 487-507
    [107] Motomura H,Fujii T,Suzuki M.Distribution of silicified cells in the leaf blades of Pleioblastus chino (franchet et savatier) Makino (Bambusoideae).Annals of Botany,2000,85:751-757
    [108] Motomura H,Mita N,Suzuki M. Silica accumulation in long-lived leaves of Sasa vetchii (Carriere) Render(Poaceae -Bambusoideae).Annals of Botany,2002,90:149-152
    [109] 崔德杰.硅钾肥对不同水分条件下冬小麦光合作用日变化的影响[J].土壤通报,1999,30(1):38-39
    [110] 陈 平,张伟锋,王永锐.硅和砷对水稻植株生长的影响. 王永锐水稻文集.广州:中山大学出版社出版,1999:17-21
    [111] 汪传炳,茅国芳,姜忠涛.上海地区水稻硅素营养状况及硅肥效应[J].上海农业学报,1999,15(3):65-69
    [112] 宫海军,陈坤明,王锁民,张承烈.植物硅营养的研究进展[J]. 西北植物学报,2004,24(12):2385-2392
    [113] 杨雅杰.硅对提高水稻抗逆性机理的镜检分析[J].黑龙江农业科学,2001,4:1-4
    [114] 孙毅,高玉山,任军,闻孝贡.硅肥的抗旱增产作用[J].国土与自然资源研究,2002,1:48-49
    [115] Liang Y C,Shen Q R,Shen Z G. Effects of silicon on salinity tolerance of two barley cultivars.J. Plant Nutr,1996,19(1):173-183
    [116] Liang Y C. Effects of Si on leaf ultrastructure,chlorophyll content and photosynthetic activity in barley under salt stress. Pedosphere,1998,8:289-296
    [117] Liang Y C. Effects of silicon on enzyme activity, and sodium,potassium and calcium concentration in barley under salt stress. Plant and Soil,1999,209(2):217-224
    [118] Ahmad R,Zaheer S H,Ismail S. Role of silicon in salt tolerance of wheat (Triticum aestivum L.) Plant Sci,1992,85:43-50
    [119] Bradbury M,Ahmad R. The effect of silicon on the growth of Prosopis juliflora growing in saline soil. Plant Soil,1990,125:7174
    [120] Matoh T,Kairusmee P,Takahashi E. Salt-induced damage to rice plants and alleviation effect of sillicate. Soil Sci Plant Nutr,1986,32(2):295-304
    [121] 梁永超,丁瑞兴,刘谦.硅肥对大麦耐盐性的影响及其机制[J].中国农业科学,1999,32(6):75-83
    [122] 朱小平,王义炳,李家全.水稻硅素营养特性的研究[J].土壤通报.1995.26(5):232-233
    [123] 张金凤.盐胁迫下 8 个经济林树种苗木的反应特性的研究[D].山东农业大学硕士学位论文,
    [124] 2004 李国雷.盐胁迫下 13 个树种反应特性的研究[D].山东农业大学硕士学位论文,2004
    [125] 陶晶.东北主要杨树抗盐机理及抗性品种选育的研究[D].东北林业大学博士学位论文,2002
    [126] 林栖凤主编.耐盐植物研究[M].科学出版社,2004:341
    [127] 陆建良,梁月荣,张凌云.考马斯亮蓝法在茶汤可溶性蛋白含量分析中的应用和改良[J].茶叶,2002,28(2):89-93
    [128] 宫海军,陈坤明,陈国仓,王锁民,张承烈.硅对小麦生长及其抗氧化酶系统的影响[J].土壤通报,2003,34(1):55-57
    [129] 徐呈祥,刘兆普,刘友良.硅在植物中的生理功能[J].植物学生理学通讯,2004,40(6):753-757
    [130] Bolwer C,Montagu M C.Superoxide Dismutase and stress tolerance.Plant Physiol,1992,98(1):83-85
    [131] 许祥明,叶和春,李国凤.植物抗盐机理的研究进展[J].应用与环境生物学报,2000,6(4):379-387
    [132] 徐呈祥等.硅对盐胁迫下金丝小枣生长与生理的效应[J].西北农林科技大学学报(自然科学版),2005,33(5):142-146
    [133] 王洪春.植物抗性生理[J].植物生理学通讯,1981,(6):72-81
    [134] 戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响[J].中国农学通报,2003,19(3):97-101
    [135] 张明艳.杜仲对盐胁迫反应的研究[D].甘肃农业大学硕士学位论文,2000
    [136] 李清芳,周秀杰,马成仓.硅对小麦幼苗几项生理生化性质的影响[J].淮北煤师院学报,2001,22(4):37-40
    [137] 王锁民等.渗透调节在碱茅属幼苗适应盐逆境中的作用初探[J].草业学报,1993,2(3)
    [138] 姜卫兵等.无花果耐盐生理指标的探讨[J].江苏农业科学,1991,7(3):29-33
    [139] 王荔军,王运华,张福锁,杨文胜,李铁津.在细胞壁上构筑自组装的生物矿化结构[J].化学学报,2002,60(6):1144-1146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700