地下建筑结构实用抗震分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下建筑结构由于震害较少且抗震性能优于地上建筑结构,使得其抗震问题没有得到充分的重视,抗震设计理论一直滞后于地上建筑结构。但是,1995年阪神地震中地下结构的严重破坏给传统观念带来了巨大的冲击,地下建筑结构在地震作用下也有可能发生严重的破坏。地下结构往往非常重要,并且一但破坏后难于修复,损失重大。近年来,城市地下建筑结构发展迅速,然而地下建筑结构的抗震设计理论还不够完善,还有很多问题亟待研究。在地下建筑结构抗震设计理论研究越来越无法适应工程实践需要的背景下,本文以地下建筑结构为研究对象,采用理论分析和数值模拟的研究方法,对地下建筑结构的地震反应问题展开了研究,分析了地下建筑结构的地震反应特性与影响因素,改进了地下结构抗震等效侧力法的计算方法,并提出了空间地下建筑结构的三维简化抗震设计计算方法
     本文的主要工作和取得的成果有:
     (1)总结了地下结构震害历史及特征,系统评述了地下结构抗震问题研究方法、现有的地下结构抗震分析与设计方法及其存在的问题,比较了这些方法各自的优缺点和适用性。
     (2)讨论了地下结构埋深、结构材料性质、土层刚度等因素对地下结构地震反应的影响,并对地下建筑结构与地面建筑结构进行了对比。通过对比地下结构与地面结构的地震反应以及地下结构在不同地基条件时的地震反应可知,在地下结构抗震计算中,应采用能够考虑土体与地下结构之间相互作用的约束条件。
     (3)在已有基床系数计算公式的基础上,建立了反应位移法和等效侧力法等简化计算方法中地基弹簧系数的经验计算公式,以有限元分析结果为数据基础,对公式的系数进行拟合,并将公式拓展用于成层土体,并选取算例验证了建议公式的合理性和准确性。解决了需要通过有限元法多次计算才能确定地基弹簧系数的问题。
     (4)归纳总结了地下结构抗震简化计算方法中较为广泛应用的等效侧力法和反应位移法的具体实施步骤、存在的主要问题以及目前的使用情况。在等效侧力法的基础上进行了改进,包括地震荷载的计算公式、土层摩擦力计算公式以及约束条件的施加方法等。并进行了大量的计算分析,验证了改进后等效侧力法的可靠性和适用性。
     (5)在理论分析的基础上,提出了地下建筑结构的三维抗震简化计算方法,研究了将地下结构平面模型的地震荷载和弹簧约束扩展应用于地下结构空间模型的具体实施方法,并建议了三维简化计算方法中法向和切向地基弹簧系数的经验计算公式。与三维有限元时程分析结果进行对比,验证了该方法的可靠性和适用性。三维抗震简化计算方法的提出,可以解决当空间地下建筑结构不能满足平面应变的假定条件时必须采用三维有限元时程分析进行抗震设计的问题。
Studies on seismic design theories for underground structures has lagged behind ground structures for the sake of minor damages and superior seismic performances of underground structures with respect to ground structures. Nonetheless, in Kebo earthquake (1995) serious damges occurred in underground structures, which overturned the tranditional concept. It was discovered that underground structures could encounter serious damages under large earthquake and their recoveries were of high degree of difficulty. Recently, with the repid development of underground structures, advanced seismic design theories are required and munerious problems are urgent for solutions. With the consideration of higher requirement of seismic design theories of underground structures, the dissertation focuses on seismic problems of underground structures. With this in mind, seismic response characteristics and correspongding influencing factors of underground structures are studied by virtue of theoretical analysis and numerical simulations; along the line, the calculation method for equivalent lateral forces is improved; and last but not least a three-dimensional simplified calculation method is proposed for seismic design of underground structures.
     The major research work and main achievements of this dissertation are detailed as follows:
     (1) Based on a sketchy summary of damages of underground structures in recent earthquakes, damage characteristics of underground structures are concluded. Also a systematic review on the existing seismic analysis and design methods and the problems encountered are provided. Moreover, the merits and drawbacks of these methods and their applicabilities are compared.
     (2) Impact of factors including buried depth, structural material properties and soil stiffness on seismic response of underground structures are discussed. Meanwhile, the seismic response of ground and underground structures are compared. It is indicated that interaction between soil and underground structure should be considered in the constraint condition of simplified seismic calculation method.
     (3) Based on the formula of coefficient of subgrade reaction, empirical formulas are proposed within the framework of the displacement reponse method and the equivalent lateral force method. The relevant coefficients of the proposed formulas are fitted according to the results calculated from finite element analysis. Besides, implementations of the proposed formulas are carried out on layered soil cases, in order to validate their rationality and accuracy.. The empirical formulas renders a favourable access to determine the spring constant of groundwork which otherwise requires several circles of finite element analysis.
     (4) The solution procedures of the equivalent lateral force method and the displacement response method are provided respectively, which are widely-used in seismic analysis of underground structures. And the main problems and the current application of these methods are presented as well. Moreover, the displacement response method is improved, including the calculation formulas of seismic load and soil shear force and the setup of constraint conditions, Lastly, numerical analysis are conducted to examine the riability and the applicability of the modified displacement response method.
     (5) Based on theoretical analysis, a three-dimensional simplified seismic calculation method is proposed for seismic design of underground structures. Furthermore, the method to expand the seismic load and spring constraints of plane model to three-dimensional model is studied, and empirical formulas are proposed for the normal and tangential spring constants of the groundwork. Through comparison with three-dimiensional finite element time-history analysis, the rationality and the accuracy of the simplified method are verified. The simplified method is suitable to the cases beyond the plane strain assumption.
引文
[1]童林旭.地下空间与城市现代化发展[M].北京:中国建筑工业出版社, 2005.
    [2]童林旭,祝文君.城市地下空间资源评估与开发利用规划[M].北京:中国建筑工业出版社, 2009.
    [3]徐梅.城市地下空间灾害综合管理的系统研究[D].博士学位论文,同济大学, 2006.
    [4]于翔.地下建筑结构应充分考虑抗震问题-1995年阪神地震破坏的启示[J].工程抗震, 2002, 12(4): 17-20.
    [5]施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社, 1997.
    [6]郑永来,刘曙光,杨林德等.软土中地铁区间隧道抗震设计研究[J].地下空间, 2003, 23(2): 111-118.
    [7]郑永来,杨林德,李文艺等.地下结构抗震[M].上海:同济大学出版社, 2005.
    [8] Parra-Montesinos, Gustavo J, Bobet A, et al. Evaluation of soil-structure interaction and structural collapse in Daikai subway station during Kobe earthquake[J]. ACI Structural Journal, 2006, 103(1): 113-122.
    [9] An X H, Shawky A A, Maekawa K. The collapse mechanism of a subway station during the great Hanshin earthquake[J]. Cement and Concrete Composites, 1997, 19(3): 241-257.
    [10] Samata S, Ohuchi H, Matsuda T. A study of the damage of subway structures during the 1995 Hanshin-Awaji earthquake[J]. Cement and Concrete Composites, 1997, 19(3): 223-239.
    [11]庄海洋,程绍革,陈国兴.阪神地震中大开地铁车站震害机制数值仿真分析[J].岩土力学. 2008, 29(1): 245-250.
    [12]曹炳政,罗奇峰,马硕等.神户大开地铁车站的地震反应分析[J].地震工程与工程振动, 2002, 22(4): 102-107.
    [13]地铁设计规范(GB50157-2003)[S].北京:中国计划出版社, 2003.
    [14]铁路工程抗震设计规范(GB50111-2006)[S].北京:中国计划出版社, 2006.
    [15]公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社, 1989.
    [16]建筑抗震设计规范(GB50011-2001)[S].北京:中国建筑工业出版社, 2002.
    [17]建筑抗震设计规范(GB50011-2010)[S].北京:中国建筑工业出版社, 2010.
    [18]王树理.地下建筑结构设计[M].北京:清华大学出版社, 2009.
    [19]童林旭.地下建筑图说100例[M].北京:中国建筑工业出版社, 2007.
    [20]钱七虎,卓衍荣.地下城市[M].北京:中国建筑工业出版社,广州:暨南大学出版社, 2002.
    [21] Sharma S, Judd W R. Underground opening damage from earthquakes[J]. Engineering Geology,1991, 30(3-4): 263-276.
    [22] Elnashai A S. Analysis of the damage potential of the Kocaeli (Turkey) earthquake of 17 August 1999[J]. Engineering Structures, 2000, 22(7): 746-754.
    [23] Yashiro K, Kojima Y, Shimizu M. Historical earthquake damage to tunnels in Japan and case studies of railway tunnels in the 2004 Niigataken-Chuetsu earthquake[J]. Quarterly Report of Railway Technical Research Institute, 2007, 48(3): 136-141.
    [24]于翔,赵跃堂,郭志昆.人防工程的抗地震问题[J].地下空间, 2001, 21(1): 28-32.
    [25]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报, 2008, 16(6): 742-750.
    [26]陈正勋,王泰典,黄灿辉.山岭隧道受震损害类型与原因之案例研究[J].岩石力学与工程学报, 2011, 30(1): 45-57.
    [27]王文晖.地下结构抗震设计理论与分析方法对比研究[D].学士学位论文,清华大学, 2008.
    [28] Wang W L, Wang T T, Su J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunnelling and Underground Space Technology, 2001, 16(3): 133-150.
    [29] Wang Z Z, Gao B, Jiang Y J, et al. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J]. Science in China, Series E, 2009, 52(2): 546-558.
    [30]林皋,梁青槐.地下结构的抗震设计[J].土木工程学报, 1996, 29(1): 15-24.
    [31]林皋.地下结构抗震分析综述(上,下)[J].世界地震工程, 1990, (2,3): 1-10.
    [32] Hashash Y M A, Hook J J, Schmidt B, et al. Seismic design and analysis of underground structures[J]. Tunnelling and Underground Space Technology, 2001, 16(4): 247-293.
    [33]李彬.地铁地下结构抗震理论分析与应用研究[D].博士学位论文,清华大学, 2005.
    [34]张玉娥,白宝鸿,张耀辉等.地铁区间隧道震害特点、震害分析方法及减震措施的探讨[J].振动与冲击, 2003, 22(1): 70-71.
    [35]马行东.地震动荷载作用下地下洞室响应的初步分析[D].硕士学位论文,中国科学院武汉岩土力学研究所, 2005.
    [36]刘晶波,李彬.地铁地下结构抗震分析及设计中的几个关键问题[J].土木工程学报, 2006, 39(6): 106-110.
    [37]张庆贺,朱合华,庄荣等.地铁与轻轨[M].北京:人民交通出版社, 2002.
    [38]孙超.地铁地下结构抗震性能及分析方法研究[D].博士学位论文,中国地震局工程力学研究所, 2009.
    [39]刘祥庆.地铁地下结构地震反应分析方法与试验研究[D].博士学位论文,清华大学,2008.
    [40]于翔,陈启亮,赵跃堂等.地下结构抗震研究方法及其现状[J].解放军理工大学学报, 2000, 1(5): 63-69.
    [41]陈正发.粘性土地基中地铁隧道动力离心模型试验系统开发[D].硕士学位论文,清华大学, 2005.
    [42] Earthquake resistant design codes in Japan[S]. Japan Society of Civil Engineerings, 2000.
    [43]林皋.土-结构动力相互作用[J].世界地震工程, 1991, 7(2): 4-21.
    [44]陈国兴,庄海洋,杜修力等.土-地铁车站结构动力相互作用大型振动台模型试验研究[J].地震工程与工程振动, 2007, 27(2): 171-176.
    [45]季倩倩.地铁车站结构振动台模型试验研究[D].博士学位论文,同济大学, 2002.
    [46] Tamari Y, Towhata I. Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction[J]. Soils and Foundations, 2003, 43(2): 69-87.
    [47] Jiang L Z, Chen J, Li J. Seismic response of underground utility tunnels: shaking table testing and FEM analysis[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(4): 555-567.
    [48] Paolo N, Roberto P, Stefania P, et al. Large scale soil-structure interaction experiments on sand under cyclic loading[C]. Proc. of the 12WCEE, 2000.
    [49] Iwatate T, Kobayashi Y, Kusu H, et al. Investigation and shaking table tests of subway structures of the Hyogoken-Nanbu earthquake[C]. Proc. of the 12WCEE, 2000.
    [50]宫必宁,赵大鹏.地下结构与土动力相互作用试验研究[J].地下空间, 2002, 22(4): 320-324.
    [51]杨林德,季倩倩,郑永来等.软土地铁车站结构的振动台模型试验[J].现代隧道技术, 2003, 40(1): 7-11.
    [52] Kagawa T, Sato M, Minowa C, et al. Centrifuge simulation of large-scale shaking table tests: case studies[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(7): 663-672.
    [53]陶连金,王沛霖,边金.典型地铁车站结构振动台模型试验[J].北京工业大学学报, 2006, 32(9): 798-801.
    [54]庄海洋,陈国兴,胡晓明.两层双柱岛式地铁车站结构水平向非线性地震反应分析[J].岩石力学与工程学报, 2006, 25(1): 3074-3079.
    [55] Huo H B, Bobet A. Seismic design of cut and cover rectangular tunnels-evaluation of observed behavior of Dakai station during Kobe earthquake[C]. Proceedings of 1st World Forum of Chinese Scholars in Geotechnical Engineering, 2003.
    [56] Choi J S, Lee J S, Kim J M. Nonlinear earthquake response analysis of 2-D undergroundstructures with soil-structure interaction including separation and sliding at interface[C]. 15th ASCE Engineering Mechanics Conference, 2002.
    [57]刘祥庆,刘晶波.基于纤维模型的拱形断面地铁车站结构弹塑性地震反应时程分析[J].工程力学, 2008, 25(10): 150-157.
    [58]刘晶波,李彬,谷音.地铁盾构隧道地震反应分析[J].清华大学学报(自然科学版), 2005, 45(6): 757-760.
    [59]李彬,刘晶波,尹骁.双层地铁车站的强地震反应分析[J].地下空间与工程学报, 2005, 1(5): 779-782.
    [60] Liu H B, Song E X. Seismic response of large underground structures in liquefiable soils subjected to horizontal and vertical earthquake excitations[J]. Computers and Geotechnics, 2005, 32(4): 223-244.
    [61] Liu H B, Song E X. Working mechanism of cutoff walls in reducing uplift of large underground structures induced by soil liquefaction[J]. Computers and Geotechnics, 2006, 33(4): 209-221.
    [62] Nam S H, Song H W, Byun K J, et al. Seismic analysis of underground reinforced concrete structures considering elasto-plastic interface element with thickness[J]. Engineering Structures, 2006, 28(8): 1122-1131.
    [63] Orense R P, Morimoto I, Yamamoto Y, et al. Study on wall-type gravel drains as liquefaction countermeasure for underground structures[J]. Soil Dynamics and Earthquake Engineering, 2003, 23(1): 19-39.
    [64]王国波,杨林德,马险峰等.地铁车站结构三维地震响应及土非线性分析[J].地下空间与工程学报, 2008, 4(2): 234-237.
    [65]王国波.软土地铁车站结构三维地震响应计算理论与方法的研究[D].博士学位论文,同济大学, 2007.
    [66]付鹏程.地铁地下结构震动变形的实用评价方法研究[D].硕士学位论文,清华大学, 2004.
    [67]刘晶波,王文晖,赵冬冬.地下结构横截面抗震设计分析方法综述[J].施工技术. 2010, 39(6):91-95.
    [68]孙钧,候学渊.地下结构[M].北京:科学出版社, 1987.
    [69]福季耶娃著,徐显毅译.地震区地下结构支护的计算[M].北京:煤炭出版社, 1986.
    [70] Kuesel T R. Earthquake design criteria for subways[J]. Journal of the Structural Division, 1969, 95(6): 1213-1231.
    [71] Seed H B, Whitman R V. Design of earth retaining structures for dynamic loads[C]. Proceedings of the ASCE Specialty Conference on Lateral Stresses in the Ground and Designof Earth-Retaining Structures, 1970, 103-147.
    [72] St John C M, Zahrah T F. Aseismic design of underground structures[J]. Tunnelling and Underground Space Technology, 1987, 2(2): 165-197.
    [73]黄先锋.地下结构的抗震计算-位移响应法[J].铁道建筑, 1999, (6):3-6.
    [74] Shukla D K, Rizzo P C, Stephenson D E. Earthquake load analysis of tunnels and shafts[C]. Proceeding of the 7th World Conference on Earthquake Enginnering, 1980, 20-28.
    [75] Kazuhiko K. Seismic analysis of underground structures[J]. Journal of Disaster Research, 2006, 1(3): 378-389.
    [76] Wolf J P, Song C M. Dynamic-stiffness matrix of unbounded soil by finite-element multi-cell cloning [J]. Earthquake Engineering and Structural Dynamics, 1994, 23(3): 233-250.
    [77] Gil L M, Hernandez E, la Fuente P D. Simplified transverse seismic analysis of buried structures[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(8): 735-740.
    [78]刘如山,胡少卿,石宏彬.地下结构抗震计算中拟静力法的地震荷载施加方法研究[J].岩土工程学报, 2007, 29(2): 237-242.
    [79]刘晶波,李彬,刘祥庆.地下结构抗震设计中的静力弹塑性分析方法[J].土木工程学报, 2007, 40(7): 68-76.
    [80]刘晶波,刘祥庆,李彬.地下结构抗震分析与设计的Pushover分析方法[J].土木工程学报, 2008, 41(4): 73-80.
    [81] Owen G N, Scholl R E. Earthquake engineering of large underground structures[R]. Federal Highway Administration and National Science Foundation, 1981.
    [82]邓爽.长江隧道衬砌结构地震响应的三维数值分析[D].硕士学位论文,武汉理工大学, 2006.
    [83] Newmark N M. Problems in wave propagation in soil and rock[C]. Proceedings of the International Symposium on Wave Propagation and Dynamic Properties of Earth Materials, 1967.
    [84] Kusesl T R. Structural design of the Bay Area Rapid Transit System[J]. Civil Engineering ASCE, 1968, 46-50.
    [85] Idriss I M, Sun J I. User’s manual for SHAKE91: A computer program for conducting equivalent linear seismic response analysis of horizontally layered soil deposits[R]. California: University of California, Davis, 1992.
    [86] Bardet J P, Ichii K, Lin C H. EERA: A computer program for equivalent-linear earthquake site response analysis of layered soil deposits User’s Manual[R]. Los Angeles: University of Southern California, 2000.
    [87] Lysmer J. FLUSH: A computer program for approximate 3D analysis of soil structureinteraction problems[R]. Berkeley: University of California, 1975.
    [88] Bardet J P. LINOS: A non-linear finite element program for geomechanics and geotechnical engineering User’s Manual[R]. Los Angeles: University of Southern California, 1991.
    [89] Monsees J E, Merritt J L. Seismic modeling and design of underground structures[J]. Numerical Methods in Geomechanics, 1991, 1833-1842.
    [90]龚成林.地铁地下结构抗震设计方法评价与研究[D].硕士学位论文,清华大学, 2007.
    [91]刘学山.盾构隧道的纵向抗震分析研究[J].地下空间, 2003, 23(2): 166-172.
    [92] Kiyomiya O. Earthquake-resistant design features of immersed tunnels in Japan[J]. Tunnelling and Underground Space Technology, 1995, 10(4): 463-475.
    [93]屠树根译.日本沉管隧道抗震设计细则[J].现代隧道技术, 1995, 32(2): 12-35.
    [94]孔戈.盾构隧道地震响应分析及抗减震措施研究[D].博士学位论文,同济大学, 2006.
    [95] Wang J N. Seismic design of tunnels: A state-of-the-art design approach[M], New York: Parsons Brinkerhoff Quade and&Douglas Inc., 1993.
    [96]刘晶波,刘祥庆,薛颖亮.地下结构抗震分析与设计的PUSHOVER方法适用性研究[J].工程力学, 2009, 26(1): 49-57.
    [97]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社, 2006.
    [98]费康,张建伟. ABAQUS在岩土工程中的应用[M].北京:中国水利水电出版社, 2010.
    [99]陈卫忠,伍国军,贾善坡. ABAQUS在隧道及地下工程中的应用[M].北京:中国水利水电出版社, 2010.
    [100]黄胜,陈卫忠,杨建平等.地下工程地震动力响应及抗震研究[J].岩石力学与工程学报, 2009, 28(3): 483-490.
    [101] Alterman Z, Karal F C. Propagation of elastic waves in layered media by finite difference methods[J], Bulletin of the Seismological Society of America, 1968, 58(1): 367-398.
    [102] Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media[J], Journal of the Engineering Mechanics Division, ASCE, 1969, 95(4): 859-878.
    [103]廖振鹏,黄孔亮,杨柏坡等.暂态波透射边界[J].中国科学(A辑), 1984, (6):556-564.
    [104]廖振鹏.工程波动理论导论[M].北京:科学出版社, 2003.
    [105]岳庆霞,史晓军,冯明国.无限单元在地基动力反应中的应用[C].第七届全国地震工程学术会议, 2006, 356-362.
    [106]王丽萍.山地建筑结构设计地震动输入与侧向刚度控制方法[D].博士学位论文,重庆大学, 2010.
    [107]廖振鹏,刘晶波.离散网格中的弹性波动[J].地震工程与工程振动, 1986, 6(2): 1-16.
    [108]赵建锋,杜修力,韩强等.外源波动问题数值模拟的一种实现方式[J].工程力学, 2007, 24(4): 52-58.
    [109]陈国兴.岩土地震工程学[M].北京:科学出版社, 2007.
    [110]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社, 2004.
    [111]洪小健,顾明.风和地震作用下高层建筑土-结构作用比较[J].同济大学学报, 2007, 35(4): 440-445.
    [112]工程场地地震安全性评价工作规范(DB001-94)[S].国家地震局震害防御司.北京:地震出版社, 1994.
    [113]曾亚武.地下结构设计模型[M].武汉:武汉大学出版社, 2006.
    [114] Terzaghi K. Evaluation of coefficients of subgrade reaction[J]. Geotechnique, 1955, 5(4): 197-326.
    [115]曾艳华.地下建筑ANSYS有限元分析[M].成都:西南交通大学出版社, 2008.
    [116]地下铁道、轻轨交通岩土工程勘察规范(GB50307-1999)[S].北京:中国计划出版社, 2000.
    [117]岩土工程勘察规范(GB50021-2001)[S].北京:中国建筑工业出版社, 2009.
    [118]高层建筑岩土工程勘察规程(JGJ72-2004)[S].北京:中国建筑工业出版社, 2004.
    [119]仲锁庆,张西平,潘海利.地基土基床系数研究[J]地下空间与工程学报, 2005, 1(7): 1109-1112.
    [120]屈成忠,宋巍.不同工况下基床系数的取值研究[J].东北电力大学学报, 2009, 29(1): 8-12.
    [121] Biot M A. Bending of an infinite beam on an elastic foundation[J]. Journal of Applied Mechanics, 1937, 12(2): 155-164.
    [122] Vesic A B. Beams on elastic subgrade and the Winkler’s hypothesis[C]. Proceedings of 5th International Conference of Soil Mechanics, 1963, 845-850.
    [123]上海市工程建设规范-地下铁道建筑结构抗震设计规范(DG/TJ08-2064-2009)[S].上海:上海市建筑建材业市场管理总站, 2009.
    [124]刘晶波,王文晖,赵冬冬.地下结构地震反应计算反应位移法的改进[J].土木建筑与环境工程, 2010, 32(2): 211-213.
    [125]高大钊.岩土工程勘察与设计[M].北京:人民交通出版社, 2010.
    [126]李子豪.地铁地下结构横截面震动变形的实用评价方法[D].硕士学位论文,清华大学, 2006.
    [127]徐龙军,谢礼立,胡进军.地下地震动工程特性分析[J].岩土工程学报, 2006, 28(9): 1106-1111.
    [128]张栋梁,王国波,杨林德等.侧向连续开孔地铁车站结构的三维地震响应研究[J].地震研究, 2009, 32(1): 46-50.
    [129]马伟东,王国波,谢伟平.武汉市地铁车站结构的三维地震响应分析[J].铁道科学与工程学报, 2008, 5(4): 74-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700