大跨度结构多维多点地震响应试验研究与理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了满足人民对建筑结构各种功能的需求,诸如体育馆屋盖、桥梁这些大跨度结构在当今社会工程中占有重要的组成部分,而且跨度和规模也日益增加。地震是危害人类社会的一大自然灾害,常会造成巨大的生命财产损失。地震中,如果桥梁结构发生破坏,不仅会带来了巨大的直接经济损失,也将严重影响灾害应急、震后救灾和恢复生产等工作。随着大跨度结构工程量地急剧增加,关于这类地震响应特征的研究则呼之而出。
     相对于一致激励与单向地震波激励,多点多维激励是更符合大跨度结构实际情况的地震动输入方式。目前,国内外对多点激励下大跨桥梁的抗震研究主要局限于理论和数值模拟方面;由于设备的限制,大跨度结构多维多点的振动台试验基本上一直处于“荒芜”的状况。
     多点激励方面,对实际工程千岛湖大桥进行行波地震响应数值模拟,同时对千岛湖大桥考虑行波效应的随机地震响应进行分析,并对多点激励下的某座大跨度拱桥缩尺模型进行了振动台试验研究,同时利用有限元软件对其进行了多点激励地震反应分析。多维地震动方面,本文着重对国家体育馆屋盖进行了大比例振动台试验,通过分别施加竖向、水平地震作用,以及同时进行竖向和水平地震动的两向地震激励,并对国家体育馆屋盖数值模型进行三维地震响应计算分析,来探索在不同地震波、不同边界约束条件下,其地震响应特征。通过以上研究,主要取得以下几点成果:
     1.建立了千岛湖大跨度钢管混凝土拱桥有限元分析模型,分析了行波效应的影响和随机响应,得出了视波速在一定范围内会增大地震响应的结论;
     2.对大跨度拱桥模型进行多点激励振动台试验和有限元数值分析,在正弦波激励下得到了横桥向动力响应以及行波和幅值空间变化的影响,分析结果与试验吻合较好;
     3.对国家体育馆屋盖双向张弦梁结构1:10模型进行了竖向、水平、竖向-水平两向地震输入下的模拟地震振动台试验(规模之大国内外罕见)和有限元数值分析,获得了结构的响应及其特点。
     4.通过模拟地震振动台试验和有限元数值分析,获得了滑动支座、铰支座和固定支座条件对结构动力响应的影响特征和规律,可应用于同类工程的抗震分析与设计。
In order to satisfy the various architectural and function demands, the large-span bridge structure such as the stadium roof, bridge occupy the important components in the contemporary engineering, while the design span and size of new structure are rise in nowadays. Earthquake is one of the natural disasters against humanity community, which often cause huge loss of lives and property. If a bridge was destroyed in an earthquake, it will not only bring directly huge economic-losses, but also would seriously affect disaster emergency, post-earthquake relief work and production resuming. With the number of large-span structures increasing sharply, study on the seismic response characteristics of these structure types are called the out.
     Compared to the uniform excitation and one-way seismic wave excitation, multidimensional and multipoint earthquake excitation is more in line with the actual earthquake input. At present, both at home and abroad the seismic study on response of large-span structures to the multidimensional and multipoint earthquake excitation was limited to theoretical and numerical simulation only. Just because the limits of equipment, the multi-dimensional or multi-point shaking table test for the large-span structure has been in a "barren rock" of the situation.
     On multi-input study, set up the 3D numerical model of the practical engineering Qiandao Lake arch bridge, calculate the Qiandao Lake arch bridge response to earthquake by random method and time history analysis method. A long-span arch bridge reduced scale model is adopted in this paper to the shaking table test. And set up the numerical model to computer the corresponding results with finite element software. On multi-dimensional seismic area, this paper focused on national stadium roof by a big proportion model of the shaking table tests. Excited the stadium roof by the distribution of vertical, horizontal earthquake, as well as vertical and horizontal parallel to the seismic shock, analyze the seismic response characteristics with different seismic wave and different boundary conditions.
     By above research, achievements are follows:
     1. Set up the finite element model (FEM) of QianDaohu bridge which is long span concrete filled steel tube arch bridge. Analyze the traveling wave effect and stochastic response. Gain the conclusion that apparent wave velocity can increase the seismic response in a certain range.
     2. Complete a long-span arch bridge model shaking table test and FEM numerical analysis. Get the dynamic response of transverse bridge to sinusoidal wave, the traveling wave effect and attenuation wave effect. The computer results are well in accordance with the test results.
     3. Design the shaking table test for the National Stadium roof which is large span two-way beam string structure with vertical, level, vertical-level two-direction earthquake excitation (its scale is so grand to be rare at home and abroad). And the numerical analysis was carried out. The structure seismic response characteristics were obtained.
     4. By the shaking table test and FEM analysis, the effect of support condition such as slide hinge support, hinge support and fixed support on the seismic response of the roof were achieved, which can be referred to the seismic design of the similar projects.
引文
4. 白正仙,刘锡良,李义生. 新型空间结构形式一张弦梁结构, 空间结构 2001.6
    5. 白正仙.张弦梁结构的理论分析与试验研究,天津大学博士学位论文,1997
    6. 陈荣毅,董石麟,孙文波, 大跨度预应力张弦析架结构的设计与分析, 空间结构,2003.
    7. 杨睿, 预应力张弦梁结构的形态分析及新体系的静力性能研究, 浙江人学硕士学位论文,2002
    8. 陈以一,沈祖炎等, 卜海浦东国际机场候机楼 R2 钢屋架足尺试验研究,建筑结构学报, 1999.
    9. 孙文波, 广州国际会展中心人跨度张弦梁的设计探讨,建筑结构,2002.2
    10. 中华人民共和国国家标准. 建筑抗震设计规范(GB50011-2001). 北京:中国建筑工业出版社,2001
    11. M.Saitoh, Hybrid Form-Resistance Structure, Shell, Membrane and Space Frame, Pro. IASS Symposium, Osaka, 1986, Vol.2, pp257-264.
    12. 丁阳,岳增国,刘锡良.大跨度张弦梁结构的地震响应分析,地震工程与工程振动[J]. 2003,Vol23(5):P163~168
    13. 尚文坤,代文飞.大跨度张弦桁架的实验研究.贵州工业大学学报[J].2005,
    34(6):P75~79
    14. 蒋剑锋,冯建.大跨度张弦梁结构的自振特性研究,特种结构[J].2007,24(1):46~53
    15. 熊伟,吴敏哲.大跨度张弦桁架竖向地震反应分析,世界地震工程[J].2007,23(2):145~148
    16. 董石麟.空间结构[M].北京:中国计划出版社,2003
    17. 刘晶波,杜修力.结构动力学[M],北京:机械出版社
    18. 李杰,李国强.地震工程学导论[M], 北京:地震出版社,1992 年
    19. 张敏政,孟庆林,刘晓明.建筑结构的地震模拟试验研究, 工程抗震[J].2003年第 4 期:P31~35
    20. 马永欣,郑山锁. 结构试验[M].北京:科学出版社,2001
    21. 建筑结构抗震设计规范[S],GB50011-2001
    22. 季静,赵书宁,韩小雷,郑宜.复杂高层建筑的模拟地震振动台试验.华南理工大学学报(自然科学版)[J].2007,35(3):P83~89
    23. 李国强,沈祖炎,丁翔等.上海浦东国际机场 R2 钢屋盖模型模拟三向地震振动台试验研究[J].建筑结构学报.1999,20(2):P18~28
    24. 刘劲松,裘涛,贺明卫. 大跨度刚桁架转换结构振动台试验研究.世界地震工程[J].2006,22(4):P145~149
    25. 陈以一,张大照,薛伟辰等.环向空间预应力结构模型振动台试验研究.地震工程与工程振动.2006,26(6):P158~263
    26. S.hato.etal. Active Control of Axial Forces in Beam String Space Frames. Spatial lattice and Tension Structures. Pros. of l ASS-ASCE INT.Symp.1994.644-673
    27. 白正仙. 张弦梁结构的理论分析与试验研究[D],天津大学博士学位论文.
    28. Jose Nlirafuantes Galvan. Prestress membranes structures, The 3rd Int. Conf. On Space Structures(1984)59-64
    29. 张志宏. 张弦梁结构若干问题的探讨.工程力学,工程力学,2004,6(21):16~30
    30. 刘航. 张弦梁结构受力性能.研究建筑技术开发,2005,32(12):5~8
    31. S.A Avdonin, William Moran . Simultaneous control problems for systems of elastic strings and beams. Systems and Control Letters, 2001,10:147~155
    32. 白正仙. 张弦梁膜结构几何非线性分析. 北京工业大学学报. 2002, 1(28): 22 ~ 25
    33. Andrey S. Generation of light string and light capillary beams. Optics Communications, 2002,6:131~128
    34. 张勇. 张弦梁结构弹塑性大位移分析. 北京交通大学学报, 2005, 9(29): 19~24
    35. 夏循. 张弦梁结构的动力性能研究.浙江大学硕士学位论文,2004.
    36. 单杭英. 张弦梁结构的受力性能研究及程序开发.东北大学硕士学位论文.
    37. Tomka P. Lateral Stability of Cable Structures. Int. J. of Space Structures, 1997,
    12(1).
    38. 李义生. 单棍张弦梁结构稳定性能分析.天津大学硕士学位论文,2001.
    39. 蓝天,张毅刚. 大跨度屋盖结构抗震设计[M]. 北京:中国建筑工业出版社,2000
    40. 李顺国,王学国.工程抗震试验技术现[J].国外建材科技.2003,24(5):p68~70
    41. Willams MS. Dynamic testing of structures[A].The Society for Earthquakes and Civil Engineering Dynamics 2001[C]. 15(3):5~10
    42. 王进廷,金峰,张楚汉.结构抗震试验方法的发展.地震工程与工程振动[J].2005 25(4):37~43
    43. 吕西林,邹昀,卢文胜等.上海环球金融中心大厦结构模型振动台抗震试验[J].地震工程与工程振动,2004:24(3):57~63.
    44. 哈尔滨建筑工程学院.CECS28:90 钢管混凝土结构设计与施工规程.北京:中国计划出版社,1992
    45. 马永欣,郑山锁.结构试验.科学出版社.2001
    46. 张敏政.地震模拟实验中相似律应用的若干问题.地震工程与工程振动[J]. 17(2),1997:52~58
    47. R.W.Clough and J. Penzien. Dynamic of structures. McGraw-Hill,1995
    48. Berrah M, Kausel E. A model combination rule for spatially varying seismic motions [J].EESD. 1993, 22: 791~800
    49. Zanardo G, Hao H, Modena C. Seismic response of multi-span simply supported bridges to a spatially varying earthquake ground motion [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(6):1325~1345.
    50. Nazmy Aly S, Abdel-Ghaffar Ahmed M. Non-linear earthquake-response analysis of long-span cable-stayed bridges’ theory[J]. Earthquake Engineering and Structural Dynamics, 1990, 19(1): 45~62.
    51. Wilson E L. Three dimensional static and dynamic analysis of structures: a physical approach with emphasis on earthquake engineering[M]. Computers and Structures, Inc., Berkley, California, 2002.
    52. 田玉基,杨庆山.地震地面运动作用下结构反应的分析模型[J]. 工程力学,2005,22(5):170~174.
    53. Bathe K J. Finite element procedures in engineering analysis [M]. Prentice-Hall, Inc., New Jersey, 1982.
    54. Clough R, Penzien J. Dynamics of structures, second edition [M]. McGraw-Hill, Inc., 1993.
    55. Chopra A. Dynamics of structures [M]. Prentice-Hall, Inc., New Jersey, 1995.
    56. 戴公连,李德建.桥梁结构空间设计方法与应用.北京:人民交通出版社,2001
    57. 彭卫,顾凯锋.大跨度钢管混凝土拱桥的动力特性与地震反应. 浙江交通科技,2004(2),p19~21
    58. 李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,1992
    59. Tajimi H. A Statistical Method of Determining the Maximum Response of a Building Structure During an Earthquake, Proc. Of 2nd WCEE,1960
    60. Kanai K, Semi-empirical Formula for the Seismic Characteristics of Ground, Tokyo university, Report of earthquake graduate school,1957,35(2)
    61. Harichandran, R. S. and Vanmarke, E.H. Stochastic Variation of Earthquake Ground Motion in Space and Time. J of Engineering Mechanics, ASCE,112(2)
    62. Harichandran, R.S., Hawwai, A. and Sweian B.N. Response of Long-span Bridges to Spatially Varying Ground Motion, J. of Structural Engineering, ASCE,122(5)
    63. 孙景江,江近仁. 与规范反应谱相对应的金井清谱的谱参数. 世界地震工程.1990(1)
    64. 潘旦光,楼梦麟,范立础. 多点输入下大跨度结构地震反应分析研究现状. 同济大学学报 29(10),2001:P1213~1219
    65. 范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    66. 李桂青.抗震结构计算理论和方法[M]. 北京:地震出版社,1985
    67. 王子平,陈非比,王绍比.地震社会学初探[M]. 北京:地震出版社,1989
    68. 陆赐麟.预应力空间钢结构的现况与发展[J]空间结构,1995,1(1):1~14
    69. 沈世钊.大跨空间结构理论研究和工程实践[J].中国工程科学,2001,3[3]:34~41
    70. 窦立军,袁令欣等.钢结构发展与应用中的问题[J].长春工程学院学报自然科学版,2002,3(2):6~9
    71. 胡聿贤.地震工程学,地震出版社,1988
    72. 李宏男.结构多维抗震理论与设计方法,科学出版社,1998
    73. 李国强, 沈祖炎等. 上海浦东国际机场 R2 钢屋盖模型模拟三向地震振动台试验研究. 建筑结构学报, 第 20 卷第 2 期, 1999,4,18~27
    74. Harichandram R.S. Response of Long-span bridge to spatially varying ground motion. Journal of structural Engineering,1996,Vol.122(5)
    75. 屈铁军,王前信. 多点输入下地震反应分析研究的进展[J].世界地震工程,1993,(l):30~36
    76. 廖松涛. 工程场地地震动相干函数数值分析[D]. 博士学位论文, 同济大学, 2001
    77. Dibaj D, Penzien J, Response of earth dam to traveling seismic waves, ASCE, 1969,Vol 95(2)
    78. 孙焕纯, 章元崧, 张晓志. 在双向地震波同时作用下空间框架剪扭弹塑性地震波反应分析. 大连工学院学报[J].1982,21(4):215~220
    79. 张誉, 王卫. 双向地震作用下不规则框架的扭转分析. 土木工程学报[J]. 1994, 27(5): 37~51
    80. 胡松, 王肇民. 洛阳电视塔的结构抗震分析. 建筑结构[J], 2000,30 (1):57~59
    81. 范峰. 网壳结构抗震性能、振动控制的理论与试验研究[D]. 哈尔滨建筑大学博士学问论文,1999
    82. 梁嘉庆.大跨空间结构在非一致输入下的弹性响应分析[D].硕士学位论文, 南京:东南大学土木工程学院,2004,3
    83. Nzzmy A.S., Abdel-Ghffor A.M.. Eeffct of ground motion spatial variability on the response of cbale-stayed bridges, Earthquake Engineering & Surtcutral Dynamics, 1992, Vol.21(l): l~20
    84. 项海帆. 斜拉桥在行波作用下的地震反应[J]. 同济大学学报,1983(2):1~9
    85. 袁万城. 大跨桥梁空间非线性地震反应分析[D].博士学位论文, 同济大学, 1990
    86. 刘吉柱. 大跨度拱桥地震反应的行波效应分析[D].博士学位论文,同济大学, 1987
    87. 王前信,伍国朋. 地震多点输入时非正交杆链体系的振动[J]. 地震工程与工程振动, 1982, 2(2):26~43
    88. 王前信,伍国朋. 地震多点输入或扰力多点输入时框架的反应[J]. 地震工程与工程振动, 1983, 3(2):l~14
    89. 王前信, 伍国朋, 李云林. 拱式结构对地震多点输入的反应[J]. 地震工程与工程振动,1984,4(2):48~81
    90. 陈厚群, 侯顺载, 王均. 拱坝自由场地震输入和反应[J]. 地震工程与工程振动, 1990, 10(2):53~64
    91. 李正农,楼梦麟.大跨度桥梁结构地震动输入问题的研究现状[J].同济大学学报,1999,(l):592~596
    92. 孙建梅. 多点输入下大跨空间结构抗震性能和分析方法的研究[D]. 博士学位论文, 东南大学,2005 年
    93. 邸龙. 复杂条件下大跨度空间柱面网壳结构的抗震研究[D]. 博士学位论文, 同济大学,2006 年
    94. 刘季. 在多维地震动复合作用下结构的反应和建筑结构扭转地震效应[J].哈尔滨建筑工程学院学报,1986,2(2):59~71
    95. Wilson E, et al. A Clarification of the Orthogonal Effects in A three-dimensional Seismic Analysis. Earthquake Spectra. 1995,11(4): 659~666
    96. Lopez O A, Torres R. Discussion of “A Clarification of the Orthogonal Effects in A three-dimensional Seismic Analysis” by E. L. Wilson, I. Suharwary, and A. Habibullah. Earthquake Spectra. 1996,12(2): 357~361
    97. Menun C, Kiureghian A D. A Replacement for the 30%, 40% and SRSS Rules For Multicomponent Seismic Analysis. Earthquake Spectra. 1998,14(1): 153~163
    98. 陈国兴,孙士军,宰金珉. 多维相关地震动作用结构地震反应的反应谱法. 南京建筑工程学院学报. 1999,(4):15~23
    99. Smeby W, Kiureghian A D. Modal Combinatioan Rules for Multi-Component Excitation. Earthquake Engineering and Structural Dynamics. 1985,13(1):1~12
    100.刘季. 结构多维地震动反应的组合问题[J].哈尔滨建筑工程学院学报, 1987, (2): 1~9
    101.刘季, 阎维明. 非正交阻尼系统对多维地震动输入的反应及其组合. 地震工程与工程振动. 1988,8(1):78~86
    102.王韵玫,刘季. 在双向水平地震作用下建筑楼层反应谱法. 哈尔滨建筑工程学院学报. 1992,25(2):24~34
    103.王君杰. 多点多维地震动随机模型及结构的反应谱分析方法[D]. 国家地震局工程力学研究所博士学位论文, 1992
    104.Avramidis I E. Concurrent Design Forced in Buildings under Multicompoment Earthquake Exctation: the CQC-Theta-Method. Edited by Ko J M and Xu Y L, Advances in Structural Dynamics, Hong Kong, 2000: 795~800
    105.Berrah M, Kausel E. Response spectrum analysis of structures subjected to spatially varying motions[J].EESD,1992,21:461-470.
    106.Berrah M, Kausel E. A model combination rule for spatially varying seismic motions[J]. EESD, 1993,22:791-800.
    107.Yamamura N, Tanaka H. Response analysis of flexible MDF systems for multiple-support seismic excitation[J]. EESD,1990,19:345-357.
    108.Trifunac M D, Todorovska M I. Response spectra for differential motion of columns[J]. EESD,1997,26:251-268.
    109.Todorovska M I, Trifunac M D. Response spectra for differential motion of columns[M/CD]. Auckland: Elsevier Science Ltd,12thWCEE,2000.
    110.王淑波. 大型桥梁抗震反应谱分析理论与应用研究[D].上海:同济大学桥梁工程系,1997.
    111.Heredia-Zavoni E, Vanmarke E H. Seismic random-vibration analysis of multisupport-structural systems[J]. J Eng Mech, 1994,120(5):1107-1128.
    112.Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations [J]. EESD,1992,21:713-740.
    113.Kiureghian A D, Neuenhofer A. A coherency model for spatially varying ground motions[J]. EESD, 1996, 25:99-111.
    114.Housener G W. Characteristics of strong Motion Earthquakes. Bull. Seism. Soc. Am. 1947,37: 17~31
    115.Kiureghian A D, Structural Response to Stationary Excitation. J. Engineering Mechanics, ASCE. 1980,106(EM6):1195~1213
    116.王虎栓,汪近仁. 高层建筑随机地震反应分析. 地震工程与工程振动. 1988, 8(3): 86~96
    117.李宏男,王苏岩. 多维地震动作用下非对称结构扭转耦联随机反应分析. 建筑结构学报. 1992,13(6):12~20
    118.李宏男. 结构多维随机地震反应分析及抗震设计计算方法的研究. 沈阳建筑工程学院学报. 1995,11(1):81~87
    119.Luco J.E., Wong H.L. Response of a rigid foundation to a spatially random ground motion [J]. Earthquake Engineering & Structure Dynamics, 1986, Vol.14 (6): 891~908
    120.Hao H. Arch responses to correlated multiple excitations. Earthquake Engineering & Structural Dynamics, 1993, 22:389~404
    121.Hao H. Response of multiple supported rigid plate to spatially correlated seismic excitations. Earthquake Engineering & Structural Dynamics,1991,20(9):821~838
    122.Hao H., Duan X. N. Seismic response of asymmetric structures to multiple ground motions. Journal of Structural Engineering,1995, Vol.121(11):1557~1564
    123.Hao H., Duan X.N. Multiple excitation effects on response of symmetric buildings. Engineering structure,1996,Vol.18(6):732~740
    124.Hao H. Characteristics of torsional ground motions. Earthquake Engineering & Structural Dynamics,1996,25(6):599~610
    125.Hao H. Torsional response of building structures to spatial random ground excitation. Engineering Structures,1997,Vol.19(2):105~112
    126.Hao H. Response of two-way eccentric building to nonuniform base excitation. Engineering Structures,1998, Vol. 20(8):677~684
    127.Hao H. Ground motion spatial variation effects on circular arch response. Journal of Engineering Mechanics, 1994,Vol.120(11), 2326~2341
    128.Hao H., Oliveira C. S., Penzien J. Multiple-station ground motion processing and simulation based on SMART-1 array data[J]. Nuclear Engineering and design.1989,Vol.111(3):293~310
    129.Harichandran R.S., Wang W. Response of simple beam to spatially varying earthquake excitation. Journal of Engineering Mechanics, ASCE, 1988, Vol.114 (9), 1526~1541
    130.Harichandran R.S., Wang W. Response of indeterminate two-span beam to spatially varying seismic excitation. Earthquake Engineering & Structural Dynamics, 1990, Vol. 19(2): 173~187
    131.Harichandran R.S. Correlation analysis space-time modeling of strong ground motion. Journal of Engineering Mechanics, ASCE, 1987, Vol.113(4):629~634
    132.Harichandran R.S. Stochastic analysis of rigid foundation filtering. Earthquake Engineering & Structural Dynamics,1987,Vol.15(7):889~899
    133.Harichandran R.S., Hawwari A.,Sweidan B. Response of long-span bridges to spatially varying ground motion. Journal of structural Engineering, ASCE, 1996, Vol.125(5): 476~484
    134.Harichandran R.S., Chen M.T. Reliability of an earth dam excited by spatially varying Earthquake ground motion. Proceedings, 1lth World Conference on Earthquake Engineering,Elsevier,Amsterdam,1996,Paper No.1287
    135.Harichandran R.S. An efficient adaptive algorithm for large-scale random vibration analysis. Earthquake Engineering & Structural Dynamics, 1993, Vol.22(7):151~165
    136.Harichandran R.S. Random vibration under propagation excitation: closed-form solutions. Journal of Engineering mechanics,1992, Vol.ll8(3):575~586
    137.Loh C.H., Ku B.D. An efficient analysis of structural response for multiple-support seismic excitations. Engineering structure, 1995,Vol.17(l):15~26
    138.Zerva A. Lifeline response to spatially variable gorund motions. Earthquake Engineering & Structural Dynamics, 1988,Vol.17(7):361~379
    139.Zerva A. Differential response spectra for the seismic response of lifeline, Structural Dynamics. Proceedings of the 4th European Conference on structural Dynamics, EUEODYN, 99A.A.Balkema, Rotterdam, Vol.2,1999:1153~1158
    140.Zerva A. Effect of spatial variability and propagation of seismic ground motions on the response of multiply supported structures. Probabilistic EngineeringMechanics, 1991, 7:217~226
    141.Zerva A. Effect of spatial variation of ground motions on bridges. Proceedings of the 5ht ASCE Specially Conference on Probabilistic Methods, 1988:253~256
    142.Zerva A. Seismic loads Predicted by spatial variability models. Structural Safety, 1992, vol.11: 227~243
    143.Zerva A. Response of multi-span beams to spatially incoherent seismic ground motions. Earthquake Engineering & Structural Dynamics, 1990,Vol.19:819~832
    144.Zerva A., Harada T., Effect of surface layer stochastic on seismic ground motion coherence and strain estimates. Soil Dynamics and Earthquake Engineering, 1997, Vol.16: 445~457
    145.Zerva A. Shinozuka M.,Stochastic differential ground motion. Structural Safety, 1991, Vol.10(l): 129~143
    146.Zerva A. Seismic ground motion simulation from a class of spatial viability models. Earthquake Engineering & Structural Dynamics,1992,Vol.21(2):351~361
    147.林家浩,钟万勰,张亚辉. 大跨度结构抗震计算的随机振动方法[J].建筑结构学报, 2000,21(l):29 ~35
    148.林家浩. 随机地震响应的确定性算法[J]. 地震工程与工程振动, 1985, 5(l): 89 ~94
    149.林家浩,李建俊,张文首.大跨度结构考虑行波效应时非平稳随机地震响应[J]. 固体力学学报,1996,17(l):65~68
    150.林家浩,李建俊,张文首. 结构受多点非平稳随机地震激励的响应[J].力学学报,1995,27(5):567 ~57
    151.关海涛,大跨锥面拱壳预应力钢屋盖结构地震反应分析[D]. 博士学位论文, 同济大学,2007 年
    152.王亚勇, 程民宪等. 结构抗震时程分析法输入地震记录的选择方法及其应用. 建筑结构, 1992, 5,3~7
    153.Bonganoff J. L., Goldberg J. E., Schiff A. J. The effect of ground transmission time on the response of long structures. Bull Seism Soc Am, 1965, 55: 627~640
    154.苗家武, 胡世德, 范立础. 大型桥梁多点激励效应的研究现状与发展. 同济大学学报, 1999, Vol.27(2):189~193
    155.Abdel-Ghaffar A M. Cable-stayed bridges under seismic action. In: Ito M, ed. Cable-Stayed Bridges: Recent Developments and Their Future. Amsterdam: Elsevier Science Publishers, 1991. 171~191
    156.Nazmy A. S., Abdel-Ghaffar A. M. Effects of ground motion spatial variability on the response of cable-stayed bridges. EESD, 1992, 21:1~20
    157.陈幼平,周宏业. 斜拉桥地震破坏的计算研究. 地震工程与工程振动, 1995, 15(3): 127~134
    158.Harichandran R. S., Vanmarcke E. H.. Stochastic variation of earthquake ground motion in space and time. J Eng Mechanics, ASCE, 1986, 112(2): 154~174
    159.Abdel-Ghaffar A. M., Stringfellow R. G.. Response of suspension bridges to traveling earthquake excitation. SDEE, 1984, 3:62~81
    160.Harichandran R. S., Hawwari A. Response of long-span bridges to spatially varying ground motion. Journal of Structural Engineering, 1996, 5:476~483
    161.Dumanoglu A A, Brownjohn J M W, Severn R T. Seismic analysis of the Fatih sultan mehmet suspension bridge. EESD, 1992, 21: 881~906
    162.胡世德,范立础.江阴长江公路大桥纵向地震反应分析[J].同济大学学报, 1994, 22(4): 434~ 438
    163.王君杰,王前信.大跨度拱桥在空间变化地震动下的响应.振动工程学报, 1995, 8(2): 119~126
    164.Nazmy A. S. Earthquake-response characteristics of long-span arch bridges. Proc of 11th WCEE. Amsterdam: Elsevier Science Ltd, 1996. 1309
    165.Hong Hao. Arch response to correlated multiple excitations. EESD, 1993, 22: 389~404
    166. 曹资; 薛素铎; 刘景园; 张善余; 索网屋盖结构阻尼特性试验研究[J]. 地震工程与工程振动.1995,vol15(2):92~99
    167. J.J.Jensen.Dynamics of Tension Roof Structures. International Conference On Tension Roof Structures. April 8~10,1974
    168. 沈祖炎, 陈学潮,陈扬骥. 网架结构模型抗震试验研究[J]. 土木工程学报.1994. vol.(27),1:29~39
    169. 冯庆山,董石麟,邓华. 大跨度环形空腹索桁结构体系[J].空间结构, 2003, Vol(9): 55~59
    170. 蔺军,冯庆山,董石麟. 大跨度环形平面肋环空间索桁张力结构的模型试验研究[J].2005, Vol26 (2):34~39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700